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Abstract, A number operator for a representation of the canonical commutation
relations is defined as a self-adjoint operator satisfying an exponentiated form of
the equation Na* = a*(N - I), where a* is an arbitrary creation operator. When
N exists it may be chosen to have spectrum {0, 1, 2, ...} (in a direct sum of Fock
representations) or {0, 4-1, +2, ...} (otherwise). Examples are given of represen-
tations having number operators, and a necessary and sufficient condition is given
for a direct-product representation to have a number operator.

Introduetion

The Fock representation of the canonical commutation relations has
a total occupation number operator . One way of completely describing
N is to say
(i) it is self-adjoint
(i) its spectrum is {0, 1,2, ...}
and
(iii) it satisfies the commutation relation,

Na*(p) = a*(p) (N + 1) (0.1)

in a suitably rigorous form. Here a*(p) is the creation operator for a
wavefunction ¢, and (0.1} is to hold for all ¢.

In fact, the only representations of the canonical commutation rela-
tions which have a number operator N satisfying (i)—(iii) are direct
sums of Fock representations [2, 4, 5].

If we relax the requirements on N by eliminating the assumption (ii)
about the spectrum, then there exist other representations of the can-
onical commutation relations possessing such number operators. We
call them particle representations.

In Section 1 we discuss general properties of particle representations.
For a strange particle representation (other than a direct sum of Fock

* Research supported in part by National Science Foundation Grant GP 5882.
** Address for 1967-8. Research supported by AFOSR Grant 44620-67-C-0008.



Canonical Commutation Relations 165

representations) the number operator is always unbounded below
(Theorem 1.3). Furthermore, given a strange particle representation, one
can always select a number operator which has every integer (negative
as well as positive) as an eigenvalue (Theorem 1.3).

In Sections 3 and 4 we consider direct-product representations of the
canonical commutation relations as described by Krauper, McKENNA,
and Woobs [11] and by StrEIT [20]. We determine precisely which ones
are particle representations; they are the ones having in the representa-
tion space a vector ¢; ® @, ® * * » where each g, is a multiple of a Hermite
function (Theorem 3.3). We discuss the problem of extending these
representations so that they are defined over a Hilbert space, showing
that this can be done in a smooth way if and only if the indices on the
Hermite functions are bounded (Theorem 4.7). We understand that
M. REED [14] has considered similar and related questions about direct-
product representations, but his work was not yet available at the time
of this writing.

In Section 5 we discuss a class of particle representations which in-
cludes the extreme universally invariant representations as described by
SHALE and SEcAL [18] and the representations corresponding to a non-
relativistic infinite free Bose gas as described by ARakr and Woobs [1].
They have generating functionals of the form

p(z) = exp[—1/4 | T2|*],
where 7' = I. The corresponding representation is a direct sum of Fock
representations if and only if 7% — I is trace class (Theorem 5.1).

1. Number Operators

We consider representations of the canonical commutation relations
over a space 9 of test functions. § is assumed to be a complex inner
product space, with'the imaginary part of the inner product serving as
the commutator bracket. This means that the commutation relations,
in the Weyl form, are

W(z) W () = exp [%7, Tm (z, z’)] W+ 2), (L1)

where z and 2’ are arbitrary elements of §, and (z,2') is their inner
product (linear on the left).

By a representation of the Weyl relations (or a Weyl system) over £ we
mean a map W from $ into the unitary operators on some complex
Hilbert space R such that the Weyl relation (1.1) is satisfied, and, in
addition, for each fixed z ¢ 9, the function W (tz) of the real variable ¢ is
weakly continuous at 0. For a description of the motivation for this
definition and its connection with other formulations of the commutation
relations, see [2] or [19].
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If W is a representation of the Weyl relations over $ and z € $), one
can define the associated creation operator a*(z) to be the closure of
2-Y2{R(z) — 1R (¢2)], where R(2) is the self-adjoint generator of the
group ¢ — W (tz). In case Wy is the Fock-Cook representation [9, 3] and
W is the total oceupation number operator, a suitable exponentiated form
of the commutation relation

Naj(2) = af(2) (N + I) (1.2)
is satisfied. To be precise, for each z € £ the relation
et Wp(z) e *1Y = Wp(ettz) (1.3)

is satisfied for all ¢t € R [3, 2].

As has been suggested by Secar [16, 19 p. 64], if one has a Weyl
gystem W and an operator N satisfying the indicated commutation
relations, then that N should have a physical interpretation as an
occupation number operator. Accordingly, we take the commutation
relation as a definition of a number operator, and then we investigate
the properties of such operators.

1.1 Definition. Let W be a Weyl system over £ on K. A self-adjoint
operator NV on R is a number operator for W if

et W (2) e~ ¢tV = W (efiz), (1.4)
forall2 ¢ 9, t ¢ R.
This definition differs in two respects from the definition

N= 3 at(e)ale),
k=1

where {e,} is an orthonormal basis of $. First, the infinite sum can
converge in certain strange representations where Eq. (1.4) fails to hold
[2]. These representations agree with the Fock-Cook representation on
a dense subspace of §. Second, we shall see that number operators (in
the sense of Definition 1.1) exist in many physically interesting repre-
sentations where the infinite sum fails to converge. In fact the sum
D a*(e,) a(e;) exists only in representations which are direct sums of
those indicated above (i.e. those which agree with the Fock-Cook repre-
sentation on a fixed dense subspace) [2, 4]. The distinction between the
two definitions arises from the fact that when the sum exists, it is a non-
negative operator, whereas number operators are not generally bounded
below.

One difficulty with Definition 1.1 is that a number operator need not
have integer eigenvalues. To see this, suppose W pis the Fock-Cook repre-
sentation of the Weyl relations on Rp, and N is the usual number
operatior. Let & be an infinite dimensional Hilbert space and let 4 be
a self-adjoint operator on & having continuous spectrum. Then the self-
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adjoint generator of the group ¢ — e?*4 ® ¢ft¥ is a number operator for
the Weyl system I @ Wy acting on & ® K. (I is the identity operator.)
This number operator for I @ Wy is easily seen to have no eigenvectors.

In this example one sees a feature which occurs in general; namely
the representation I ® Wy also has another number operator I @ N
which does have integer eigenvalues.

1.2 Lemma. If a Weyl system W has a number operator N, then it has
another number operator N' whose spectrum is o subset of the integers.

Proof. Since, for every z €9, e i N W (2) ¢=27tN = W (e27%2) = W (2),
the unitary U = €27¢¥ commutes with all the W (z)’s. Now U has a

1
spectral resolution U = [ €279 F (0) where the spectral projections F ()
0

commute with every bounded operator which commutes with U (see [22],
p- 307). Thus each F(0) commutes with all the W (z)’s and also with

etV tC R, Let A=~ fIGdF(G), and
° V(f) = eit¥ gitd
Then V is a continuous one-parameter unitary group, and
V(&) W) V(—t) = ettl [¢itd T (2) e~ ttA] g— 4t N
= itV  (2) e~ #t¥

so the self adjoint generator N’ of V is a number operator for W. The
spectrum of N’ is a subset of the integers since

27N — 27N o278 4 - 27iN [J-1 — [, I

Actually the spectrum of N' looks like {n,, 7o+ 1, 7o+ 2,...} or
{+-—2,—-1,0,1,2,...}. It appears easy enough to prove this: Take
an eigenvector ¢ of N’, with eigenvalue n. Then a*(z) ¢ should be,
according to (1.2), an eigenvector of N’ with eigenvalue % + 1. However
it is important to realize that (1.2) is symbolic, not rigorous, so to make
this argument correct we would have to check that ¢ is in the domain
of a*(z) and that a*(z) ¢ is in the domain of V. Instead of this, we shall
prove the desired result, and more, using only bounded operators.

1.3 Theorem. Suppose W is a Weyl system with a number operator N.
If the spectrum of N is bounded below, then W is a direct sum of Fock-Cook
representations. Otherwise W has a number operator N' whose spectrum is
the set of all integers {...,—2,—1,0,1,2,...}.

Proof. Define 4 and N’ as in the proof of Lemma 1.2. Since N=N"4 4
in the sense of strong sum of commuting operators, and the spectrum of
4 is a subset of [—1, 0], the spectrum of N’ is bounded below if and
only if that of N is. If the spectrum of N’ is bounded below by the
integer n, then N’ + nl is a number operator for W whose spectrum
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consists of non-negative integers. By Theorem 1 of [2], p. 64, W is
a direct sum of Fock-Cook representations.

The possibility that N’ is not bounded below is handled by the next
lemma.

1.4 Lemma, If N’ is a number operator whose spectrum is unbounded
below and consists of integers, then its spectrum is {0, +1, +2, .. .}.

Proof. Fix a unit vector z; € 9. Then by the Stone-von Neumann
Theorem [12] (or see Ref. [2], p. 27), the representation of the Weyl
relations over € given by « — W («z,) is unitarily equivalent to a direct
sum of copies of the Schrodinger representation W,. So we may assume
that R = & ® &, where &, is the representation space L?*(IR) for the
Schrodinger representation, and

W(xzg) =1@ Wi{ax).

Let N, be the usual number operator %(P2 + @% — 1) for the Schro-

dinger representation. Then, writing U (¢) = (I ® ¢! %) ¢~¢?¥', we have
U(t) W(xzy) U(—1t) = W(axz,) for all € €, so U(f) commutes with all
the operators I @ W («), « € C. Thus U (f) must lie in the commutator
of the algebra {I ® W,(«): « ¢ C}". Since the Schrodinger representation
is irreducible this commutator consists of all operators of the form
A, ® I,50 we have U(t) = U, (1) ® I or ¢i*¥ = U, (t) ® ¢i*%s. Thus U, (})
is a continuous one-parameter unitary group; call its self-adjoint gener-
ator A. The spectrum of A4 is a subset of the integers since e27¢4 @ I = I,
Furthermore A cannot be bounded below, because N, is non-negative,
and we are assuming N’ is not bounded below.

Now we can prove that any integer m is in the spectrum of N’.
Select an integer m, < m belonging to the spectrum of 4. Since the
spectrum of N, is {0, 1,2, ...}, (m — m,) is in the spectrum of N, But
the spectrum of N’ is the sum of that of 4 and that of N,, so m = m,
-+ (m — my) is in the spectrum of N'. |

The existence of a number operator imparts a particle interpretation
to the vectors in the representation space. To see this consider a Weyl
system W acting on R, and suppose no subrepresentation of W is uni-
tarily equivalent to the Fock-Cook representation. Then if W has a
number operator N, we may suppose, according to Theorem 1.3, that N
has spectrum {0, 4-1, 4-2, . . .}. We may think of any eigenvector v of NV
with eigenvalue 0 as a ‘“‘ground” state, even though it has an infinite
number of ““bare’” particles with probability one [2]. Then an eigenvector
of N with eigenvalue n > 0 has » more particles than » has, and an
eigenvector with eigenvalue —n < 0 has n fewer particles than ». In

(o]

fact, using the spectral representation N = J}' nP,, we may asso-
7 = ~- 00
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ciate with any unit vector x € & the probability (P,z, x> that the
number of particles in z differs from the number in » by n. For this
reason we adopt the following terminology.

1.5 Definition. A representation W of the Weyl relations which has
a number operator is called a particle representation. A number operator
for W is called normalized if its spectrum is either {0, +-1, +-2,...} or
{0,1,2,...}.

2, Generating Functionals for Particle Representations

We review briefly the definition of generating functional. Terms not
defined here are explained in Ref. [2], p. 44—45.

Let W be a Weyl system over $. Define for each finite-dimensional
subspace .# of H the weakly-closed algebra A (W)= {W(z):2z € .4}".
Then the Weyl algebra A(W) is the C*.algebra generated by all the
Ay, (W)s as A varies over the finite-dimensional subspaces of §. As
a C*-algebra, 2 is independent of W [16].

Given any state E of 2, the Gelfand-Segal construction [10, 15],
[6] yields a cyeclic representation 7z of U on a Hilbert space Ry with
a normalized cyclic vector vy such that

E(A4) = {ng(4) vg, vi)
forall 4 ¢ 2.

Assuming E is regular, which means that Z is strongly continuous
on the unit ball of each A, (W), .# finite-dimensional, then the oper-
ators Wg(2) = nF(W )) form a representation of the Weyl relations
whose Weyl algebra is 75 (). Furthermore the complex-valued function
4 on 9 defined by

= (Wg(2) vg, vgy = E(W (2))
completely determines E and is called the generating functional of E [17].
Suppose W is a particle representation of the Weyl relations (Defn.

1.5). H N is a normalized number operator, and v is any eigenvector of
N, then the generating functional

= <W(z) v, U)

is tnwariant under changes of phase;

u(ettz) = u(z) forall z¢9, teR, (2.1)
In fact,
pleitz) = (Y W(2) et v, v)

= (W) e itV y, e~ 1tV p)

= pu(2).

12 Commun. math, Phys,, Vol. 8
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It is easy to see that every particle representation is a direct sum of
cyclic representations whose cyclic vectors are eigenvectors of N, and
hence whose generating functionals satisfy (2.1). Conversely, as we prove
below, any generating functional y which has the property (2.1) corre-
sponds to a particle representation. Since it is quite easy to exhibit
generating functionals which are invariant under changes of phase, and
it is also easy to determine whether a given functional has that property,
this observation is quite helpful in studying particle representations.

We now proceed to a proof of the statement made above about
generating functionals which satisfy (2.1).

2.1 Proposition. Let u be a generating functional which is invariant
under changes of phase (2.1). Then the Weyl system Wy determined by
via the Gelfand-Segal construction has a number operator which annihilates
the cyclic vector vg.

Proof. A theorem of SEaAL [16] shows that the map W (z) - W (e?tz)
induces an automorphism y, of the Weyl algebra Q. The condition (2.1)
implies that the regular state £ determined by u is invariant under y,:

E(y(A)=E(A) foral Ac.

Now it is an easily checked property of the Gelfand-Segal construc-
tion that the invariance of £ under y, implies the existence of a unitary
U (t) on the representation space & which leaves the cyclic vector vg
invariant and which implements the automorphism:

U@ AT = pi(d).
In fact U (¢) is defined by
Ut) Avg = y(A)vg, forall 4cA.

Clearly Ut +t')=U(@) U(¥), so U is a one-parameter group of
unitary operators. To prove the existence of a number operator N, we
just have to show that U () is a strongly continuous function of ¢ at
t = 0. Then its self-adjoint generator N will be a number operator since

eV W(2)e itV =y (W(2)) = W(eftz).
To do this it suffices to prove that for all z € 9
lim |[U(0) — 1] W () 05] = 0.
But
U @) — 1) W (2) vg|® = 2 — 2 Re (U (t) W (2) v, W (2) vp)
= 2 — 2 Re (W (—2z) W(ett2) vy, vg)
=2 — 2 Re u((e*t — 1) 2) exp [—%—z sint ]]z”z] .

This — 0 as ¢t 0 because yx is continuous on finite-dimensional sub-
spaces and its value at O is 1. i
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If a generating functional is not invariant under change of phase,
then the corresponding representation may or may not have a number
operator. In future work I hope to present a criterion by which one can
tell directly from px whether or not a number operator exists.

3. Number Operators for Direct-Product Representations

Suppose B = {e,, €,, . . .} is an orthonormal basis of §), and 7" is the
et of all finite linear combinations of vectors in B. We consider direct-
product representations of the Weyl relations over ¥~ following Krau-
DER, McKENNA, and Woops [11]. Our goal will be to determine which
of them are particle representations.

For each n=1,2,... let R, be the representation space L?*(IR) for
the Schrodinger Weyl system W, over C. Denote by R the complete
infinite tensor product space &; ® K, ® - - - [13].

Iftz¢c¥, say 2= ) z;e;, then defining
=1

We)=W,()® @ W()elele: -,

we get a representation of the Weyl relations over ¥~ acting on . This
representation leaves invariant each incomplete infinite tensor product
space. In fact, if p =y, ® y, ® - - - is a decomposable vector in K such
that |y, = 1 for all n, then the incomplete infinite tensor product space
R, whose distinguished vector is o is defined as the closed subspace
spanned by vectors ¢ = ¢, ® @, ® - -+ such that ' [1 — {g,, ¢)| con-

n
verges. Since, for z € ¥°, W (z) changes only a finite number of factors in
@, such a W (z) maps R, into K.

So for each y, by restricting W to R, we get a Weyl system W, on
Ky, which we shall call a direct-product representation. It is known [11]
that each W, is irreducible, and that W, is unitarily equivalent to W,
if and only if y is weakly equivalent to ¢ (ie. 3|1 — [{@n, ¥u)||
converges).

One might guess that the self-adjoint generator N of the unitary
group

U(t) = etV @ gitls @ itV - - - (8.1)
is a number operator for the whole representation W because
Ut) W) U(—t) = W(ettz), for z ¢ V. (Here N, is the usual number
operator for the Schrodinger representation.) However it is easy to see
that ¢ — U (t) is not weakly continuous at zero, so it has no self-adjoint
generator. In fact if ¢ € L?(IR) is a normalized eigenfunction of N, with
eigenvalue 1, then (U(#) [p® ¢ ® -], 9 ® ¢ ® + + ) is one when ¢ is an
integer multiple of 277, zero otherwise.

12*
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To find the representations W, for which a number operator does
exist, we first look for those p such that the generating functional

(@) = Wy (2) v, 9) (3-2)
is invariant under change of phase.

3.1 Proposition. Suppose p = p; ® P, @ - - -, where each |y, = 1. The
generating functional u, given by (3.2) is invariant under change of phase
tf and only if each vy, is an eigenfunction of N, (i.e. each vy is a multiple
of some Hermite function ).

Proof. If each:y; is an eigenfunction of N, then the generating
functional

(@) = Ws(2) vio i), 2€C (3.3)
is invariant under change of phase for each k. Then if z = Z 23
we have " v k=1
:“-p(e“z) =k{71 Uz (ettzy)
= JT pr(z)
k=1
= iy (2) -

On the other hand, if u, is invariant under change of phase, then
each My, 88 given in (3.3), will have the same property. By Prop. 2.1, this
implies there exists a number operator for the Schrédinger representa-
tion which annihilates y,. Because W is irreducible, any number operator
for it differs from N, by an additive constant. So ), is an eigenfunction
of N, I | |

3.2 Corollary. If y= 1, ® 9, ® - - - and each p, is an eigenfunction of
N, then the direct-product representation W, has a number operator.

Proof. This follows immediately from the proposition, using Prop. 2.1
and the fact that W, is irreducible (so that v is a cyelic vector). §i

It is easy to exhibit explicitly the number operator N for W, which
annihilates y. In fact, if n, is the eigenvalue of N, corresponding to
Ve (Nsyr = nz9y), then

&Y = expit (N, — m 1) ®@ expit{(N,— n, ) ® -+ -

[This is proved by observing that the operator on the right leaves R,
invariant, and (1.4) is satisfied.] So we see that N is obtained from
2 a*{e;) ale;) by subtracting a constant multiple of the identity. The
constant is infinite, except in the case where all but a finite number of
the n;’s are zero, which is the case that W, is unitarily equivalent to
the Fock-Cook representation (Theorem 1.3; or this can be proved
directly by calculating the generating functional).

The representations W, singled out by Prop. 3.1 were among the first
strange representations to be discussed; they are unitarily equivalent to
the discrete representations of WicHTMAN and ScEHWEBER [21]. It may
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appear that Prop. 3.1 identifies these representations as the only direct-
product representations having a number operator. However, there
remains the possibility that some direct-product representation is a par-
ticle representation, but that no number operator for it annihilates any
vector of the form y, ® y, ® - - -. This is excluded by the next result.

3.3 Theorem. The only direct-product representations of the Weyl rela-
tions which have number operators are the discrete representations, i.e. those
with a vector ¢ = @, ® @, @ - - + in the representation space such that each
@ s an eigenfunction of N, (i.e. is a multiple of a Hermite function).

Proof. Suppose p = 9, ® 9, ® * * +, each |y, = 1, and W, has a num-
ber operator N, assumed normalized.

Step 1. For every t € R, U(t) ¢ is weakly equivalent to y, where
U (t) is defined in (3.1).

Proof of Step 1: For each € R, define V(f) = U(t) e~*¥. Con-
sidered as a map from R, to Ry, V() is unitary. Moreover, for
each z € ¥ '

VO Wy (@) VE) =Y [U(=1) Wy ) Ut)] Y
: = ¢itN Ww(e‘—-it Z) it N
= W,(z) .
This shows that for each ¢ V () establishes a unitary equivalence between
W, and Wy, 1t follows [11] that for each ¢ U(t) y is weakly equi-

valent to .
Step 2. There exist real constants a,, a,, . . . such that

eV — expit(N, — a 1) ® expit (N, — a,I) ® - -. (34)
Proof of Step 2: By Step 1 and the definition of weak equivalence,

we know that 3’ |1 — |u,(f)]| converges for each ¢, where
E=1

pi(t) = (o, i)

Now each u,(t) is the characteristic function (Fourier transform) of
a probability measure, as one sees by using the spectral resolution of
N,. It follows from a theorem in probability theory (e.g. Doos [8] Th.

2.7) that there exist real constants a,, @y, . . . such that
e 0] <oo (3.5)
for all £.

For each real s, let Y (s) = e ?%8 @ ¢~'%8 @ .-+, a unitary operator
on R [13] which commutes with all the U(t)’s. Now (3.5)says
U(t) Y(¢) v € Ry, s0 we may restrict U(f) Y (f) to R, getting a unitary
operator Z(t).
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Z is easily seen to be a one-parameter group, and Z(t) is weakly
measurable in ¢ since

Z(t) = st-lim expit (N, — oy ) ® + - * Q@ expit(N;— @, )@ I@I® - - -.
N~y 00

Since R, is separable this implies that ¢ — Z (¢) has a self-adjoint generator
N'. Clearly N’ is a number operator for W, because
Z@) W,() Z(—8) = Ut) W,(2) U(—0)
= W,(ettz) .

Then, since ¢‘¥" ¢~*¥ commutes with all the W, (z)’s, the irreducibility
of the representation implies that N’ differs from N by a constant
multiple of the identity. Hence by changing the real number a; selected
above, we may suppose N' = N. This gives (3.4).

Step 3. The constants a,,a,,... in (3.4) may be selected to be
integers n,, #,, . . .

Proof of Step 3: Since each y;(27) = 1, we have from (3.5)

2l —e 2 % < 4 oo (3.6)

If we write a; = ny -+ by, where n, is an integer and — 1/2 < b, < 1/2,
then (3.6) says ' [l — e~ 27i%| < + oo, which implies [13] that J [by|
converges. So we have

ety = exp(—itz bk) expti(N, — n, I) ® expit(Ny — n,[) ® -+ -
P
Taking t = 27, we see that 3, b, is an integer, which we may incorporate
into n;. We then have
eV = expit (N, — n,J) @ expit(Ny — n ) ® - - - . (3.7
Step 4. If h;, is the kth Hermite function, then p is weakly equiv-

alent to
h=hn,®kn,®hm®

where 7y, #,, . . . are the integers in (3.7).
Proof of Step 4: Using (3.7) and the fact that ¢*Y¥ ¢ € R, we have
(e p, v =k{]1 (expit(N, — niI) wi, vi) - (3.8)

Using the spectral theorem we see that the function ¢ — {e!!¥ p, y) is
the characteristic function of a probability measure, and likewise
t — {expit(N, — niI) p;, v, is the characteristic function of a proba-
bility measure m;. In fact, if P, is the projection of L2(R) onto the one-
dimensional subspace spanned by the Hermite function #,, then

o
N,= 3} nP, Hence m,; assigns measure {P,y;, y;> to the integer
n=0
n—n,n=0,1,2 ...
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Now we use the Kolmogorov three series theorem (see {8], p. 111,
or [20]) which tells us that since the infinite product of the characteristic
functions of the dm;’s converges to a characteristic function, we have

2 [ dm(z) <+ 0. (3.9)
k |xl>e

Here ¢ is any positive number; for our purposes we take ¢ = 1/2. Then

f dmy,(x) = m;({0})

fzl<e
= (Pp ¥ Vi)
= |l Pi)1® -
So
[ dmp(@)=1— [P Wi)I?
|z]>¢

a‘nd (3.9) Sa,ys
k§1 (1 — [Py P2D|®) < 00

Since each [(h,,, ¥;)| = 1, this implies the convergence of

2 (1= [y wi)l) 5

which is the definition of weak equivalence of v with 4, ® b, ® -+ -.
Step 5. The theorem is now proved, since if p is weakly equivalent
to h, then [13] there exist constants ¢, ¢y, . . . such that

2 1= (enbny )]
converges. Then ¢ = ¢k, ® ¢,h, ® * -+ €R,, and each ¢ = c,h,, is an
eigenfunction of N,. Ii

4. Continuity Properties of Discrete Representations

The direct-product representations, as described in Section 3, are
defined only over the space ¥”, which is the algebraic span of a basis.
But for physical applications such a space is too small; generally one
needs a representation defined over a space of test functions or over
a complete space. So it is of interest to inquire which of the discrete
representations can be extended from ¥~ to $. And for our purposes it
is not sufficient to prove abstractly that such an extension exists, since
we would want the extended Weyl system over & to have a number
operator. Examples are known [2] of Weyl systems over £ which have
no number operator, yet whose restrictions to ¥~ do have number
operators.

The most natural idea is to extend the representation by continuity.
For the case of a direct-product representation W, StrrErr [20] has

o

determined the precise set of z = 3, 2;¢;1in & to which the representation
j=1
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can be extended via the formula

W (z) = st-lim W(

n—-00

X z,-e,-) . (4.1)
=1

J

However, to use his criterion to determine whether or not a particular
discrete representation can be extended to every z €9 using (4.1) is
much more difficult than proceeding directly. So our method is inde-
pendent of STrREIT’s Theorem. The result is that some of them can be
extended to all of § via (4.1) and some cannot be.

4.1 Definition. Let £ be an inner product space and W a Weyl system
over 9. W is continuous (on all of $ ) if the map z — W (z) is continuous
from the metric topology of $ into the weak operator topology.

We recall that every Weyl system is continuous on finite-dimensional
subspaces of §, but examples are known [2, 20] of Weyl systems which
are not continuous on all of . Our interest in continuous Weyl systems
lies in the fact that they may be easily extended from dense subspaces
to the whole space, and if the original representation had a number
operator, so will the extended one. There is nothing difficult about these
results, and the first is essentially proved elsewhere [1], but we give the
proofs here for later reference.

4.2 Lemma. Let $ be an inner product space and ¥~ a dense subspace
of 9. A continuous Weyl system over ¥~ has a unique extension to a con-
tinuous Weyl system over $.

Proof. We just have to prove the existence of a continuous extension,
since such an extension is clearly unique and satisfies the Weyl relation
{1.1). Since every representation is a direct sum of cyclic representations
it suffices to consider a cyclic continuous representation W over ¥~
acting on, say, K. _

We must show that if z, €9, and {z,} is any sequence in ¥~ con-
verging to z,, then the sequence {W (z,) #} is a Cauchy sequence in & for
every x € . Since the W (z,)’s are unitary, it actually suffices to prove
this only for those z lying in a total subset S of R. For S we choose
{W(2) v:2z € ¥}, where v is a unit cyclic vector. The Weyl relation (1.1)
then gives directly

IV @) — W (2,)] W (2) o] (4.2)
=2—~2Re [,u (2, — 2,,) €Xp —;—z Im{(z,, 20) + 2 (2 — 2> z)}] R
where p(z, — 2,) = (W(z, — 2,) v,v). This -0 as m,n—»> oo since

2y — 2, €V and |z, — 2| ~> 0, so that by the continuity of W at 0 in
¥, Wz, — 2,) > L.
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Hence we know there is an operator W(z,) such that for any
sequence {z,} in ¥" converging to z,, st-im W (z,) = W (z,). Since W (2,)
is the limit of unitaries, it is jsometric. But since W (—z,) also exists, and
the Weyl relation shows it is the inverse of W{z;), we know W(z,) is
unitary.

4.3 Lemma. Let W be a continuous representation of the Weyl relations
over 9, and V" a dense subspace of 9. If the restriction of W to ¥~ has
a number operator N, then N is a number operator for W over 9.

Proof. If z €9, and {z,} is a sequence in ¥~ converging to 2, then

N W (2) e~ = gt-lim ¢t ¥ W(z,) e~V
Nn—»0

= gt-lim W (ettz,)

N >0
= Wettz). Ik

Now we need a practical criterion for deciding whether or not a
representation is continuous, and this is given in the next result.

4.4 Proposition. Let W be a cyclic Weyl system over ¥ on R, let v be
a unit cyclic vector and u the generating functional

() = (W) v, 0) .
W is continuous on all of ¥ if and only if y is continuous at 0 € ¥,
4.5 Corollary. A Weyl system is continuous if and only if it is con-
tinuous at zero.
Proof of Proposition (sufficiency). Suppose yu is continuous at 0. If
2o €¥, and {z,} is any sequence in ¥~ converging to z,, we must prove
that sﬁ-]im W (z,) = W(z,). This is done exactly as in the proof of

Lemma 4.2, except that in (4.2) we replace 2, by z,. I

Now we use these observations to analyse the discrete representa-
tions. In this case ¥ is the algebraic span of the orthonormal basis
{es, €3, . . .}. Each discrete representation is unitarily equivalent to a
W, where % has the form & = %, ® k4, ® - - -, and A, is the nth Hermite
function. The generating functional

p(@) = Wi(2) b, by (4.3)
is entirely determined by the functions u, on C defined by
,un(“) = <Ws(“) hm hn>> o€ C. (4.4)
P
Forif z = }) «ze; € ¥, then
i=1 »
1) = I (). (4.5)
j=

The functions y, are easily calculated using the fact that
b = (n1)-42 Oy,
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where hy(x) = 7-1/4 ¢~U2% and O is the creation operator for the Schro-
dinger representation. We omit the details, and give the result:

i = 3 0) & (5 o oo

) is the binomial coefficient.

n

Here ( A

Knowing the explicit form of the generating functionals, we can
determine their continuity properties. The result is this:

4.6 Proposition. Let b =h, ® h, ® - - -, where h, is the nth Hermite
function. The generating functional y defined on ¥~ by (4.3) is continuous
at O if and only if the sequence ny, n,, . . . is bounded.

As an immediate corollary of 4.2—4.4, 4.6 we have

4.7 Theorem, Let h=h, ® h, ® - - -, where h, is the nth Hermite
function, and let W, be the direct-product representation of the Weyl rela-
tions over ¥, which acts on the infinite tensor product space L?(R)
® L2(R)Y® - - - with distinguished vector h. Then W, has a continuous
extension to a particle representation (Defin.1.5) on $ (= completion of ¥~)
if and only if the occupation nwmbers n,, ny, 7, . . . are bounded.

For the purpose of proving Proposition 4.6 we will need the following
simple inequality.

4.8 Lemma. Let u,, be the generating functional (4.3). If |«| = 2-", then

1= pp{e) = exp(—27 |«|?) . 4.7)

Proof. Since u, is a generating functional, |u,(x){ = 1 for all &, and
since y, is real [cf. (4.6)], half of the inequality is proved. For the other
half, write

pin (@) = (1 + by (o) e~ WD, (4.8)

ba(@) =k§‘ HESER-S

Then for |x| < 2"

where

Ba(e)] = A% (kZ" (Z)) = ey

=1
< lap2r-1< 1/2.

Hence
log (1 + b, ()] = 2]b, ()] = (27 — 1) |2,
S0
1+ b,(x) = exp[—(2* — 1) |«[?].

In view of (4.8) this gives
pn(a) Z exp(—2" |o]?),

and the lemma is proved. Kl
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Proof of Proposition 4.6 (sufficiency ). Suppose the sequence n,, n,, . . .
»

is bounded above by the integer M. Then if z = } e;e; € ¥ is such
=1

that ||z]| < 2-2M, then each |o;| < 2 5o it follows from Lemma 4.8 that

L2 py,(2;) 2 exp(—2% |o]?)
forj=1,...,p.
Hence, using (4.5), if ||2]|? < 2-2 we have

12 p@) 2 JT exp(—2M Joy]t) = exp(— 27 [2]?) .
j=1

This shows u is continuous at zero in ¥".
(Necessity ). Suppose the sequence 7, n,, . . . is unbounded. We will
show that for any 8 > 0 there exists z € ¥~ such that ||z] < é and yet

1 —uz)>1/4. 4.9)
This proves u is not continuous at 0.
So suppose § > 0 is given. Since the sequence n, n,, . . . is unbounded

we can find n; such that (2/n;)¥2 < §, and we suppose n; = 3. Select
z = (2/n;*e;. Then |z| < J and we see that (4.9) is true as follows
(we drop the subscript §, writing n for n;):

1) = pn((2/n)'2)

where

Thus we have |u(z)| < |r|. But

n! 11
Irl = 2 L (v — B)1 R Tl nE
i n! 1
§k§2 W= BT ()
LA | 3
§k22 #e <8—-—2<Z,

80 |u(2)] < 3/4 which implies |1 — u(2)| > 1/4. Ki

It is still thinkable that the dlscrete representations corresponding to
unbounded occupation numbers 7, n,, . . . might be extendable to all of
9 via (4.1), even though the Weyl system is not continuous. But an
easy modification of the proof just completed shows that this does not
happen. In general, such a representation can be extended by (4.1) to
a Weyl system on a subspace strictly larger than ¥~, but not to all of $.
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b. Some Qther Particle Representations

If T is a self-adjoint operator on § such that I' = I, and 2 is its
domain, then a generating functional on 2 is given by

ue)=exp[— 5172, z2¢€9. (5.1)

Special examples of representations having generating functionals of this
form are those given by the extreme universally invariant states found
by SHALE, in which case 7' is a constant operator (see SEgAL [18]), and
the states of an infinite free nonrelativistic Bose gas discussed by ARAKI
and Woobs [1].

Since the x given in (5.1) is invariant under change of phase, by
Prop 2.1 there is a number operator for the cyclic representation of the
Weyl relations determined by u. Using a construction due essentially to
Araxt and Woobs, it is possible to exhibit explicitly the representation
and its number operator. This construction also proves that (5.1) is
actually a generating functional.

Let 4= %(’_l’2 —I), and let B be any conjugation of § which
commutes with 4. (§ is anti-linear, and f2=1I; such a conjugation
always exists.) Now let .# be the closure of the range of 4172, a subspace
of 9, and denote by Hz (resp. A 5) the Fock-Cook space constructed over
9 (vesp. A). For z € 2, it is easy to see that [I + AJY2 2z and 4V/2 fz are
both defined, so we may define a unitary operator W (z) on H» ® 4z by

W)= Wg(( + A)22) @ W (A2 fz) . (6.2)
Here the first Wy is the Fock-Cook representation of the Weyl relations
over 9, and the second is the analogous representation over .#.

Direct calculations show that W is a representation of the Weyl
relations over & and that the function g given in (5.1) satisfies

p(2) = (W (2) v ® v, % ® o)
where v, is the zero-particle state in the Fock-Cook representation. Also
simple modifications of the proofs in ARARI-WooDs [1] show that v, ® v,
is cyclic for W (z), and W is a factor representation, reducible unless
A=0.

In case 4 #= 0, an explicit normalized number operator for W is the
closure of Nz ® I — I ® Np, where the first Ny is the usual number
operator for the Fock-Cook representation over §, and the second is the
analogous operator for .#. In fact

(eith ® e—ith) W(z) (e—ith® eitNi’)

= Wa(e# [+ AT22) ® Wolem+t A2 fz)
= Wp([l + AJ72 (¢4 2)) ® Wyp(4V2? f(e'2))
= W{ettz),
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which shows that the self-adjoint generator of the group ¢-— e!t¥r
® e~ ¥¥r js a number operator N for W, and this is the operator de-
scribed above. Since ¢¥ leaves invariant the cyclic vector v, ® v, whose
generating functional is g, this is the operator one obtains using the
construction described in the proof of Prop, 2.1.

The simplicity of constructing N disguises the fact that it is not
really a natural number operator for W. First of all, IV is not affiliated
with the weakly-closed algebra B generated by the W (z)s, i.e. e/ ¢ B.
Hence it is difficult to think of NV as an observable or as a renormalization

<] n
of the formal operator X' afay, since the finite sums > afa; are all
E=1 k=1
affiliated with B. To see that e'*¥ ¢ B, observe that when 4 == 0 it is
always possible to find non-zero z, € & such that [I-+ AJ/22,€ .#. Then

the Weyl relations show that the operator

Wr(4Y2 Bze) @ Wr([I + AT 2)
commutes with all the W (z)’s; but it does not commute with e*¥ except
when ¢ is an integer multiple of 2.

A second peculiarity of N, related to the first, is that its spectrum
always consists of all integers (positive and negative). However for cer-
tain choices of 7' the cyclic representation (5.2) determined by u is
actually unitarily equivalent to a direct sum of Fock-Cook representa-
tions. So for these representations it is possible to find a non-negative
number operator, in which case the operator N selected above is a par-
ticularly unnatural choice.

We conclude with a determination of which 7”s give rise to a direct
sum of Fock-Cook representations. The proof uses the fact that such
representations are the only finite-particle representations [2].

5.1 Theorem. Suppose T = I is a self-adjoint operator with domain
D C 9. The cyclic particle representation W of the Weyl relations determined
by the generating functional

u(z) = exp [——%" Tzl]z] , 2€92

18 (unitarily equivalent to) a direct sum of Fock-Cook representations if
and only if T — I has convergent trace.

Proof. First we show that if 4 = —;—(T2 — I) does not have pure

point spectrum, then the representation (5.2) corresponding to u is not
a direct sum of Fock-Cook representations. Let £, be the continuous
subspace for A4, i.e. the orthogonal complement of the subspace of 9
spanned by the eigenvectors of 4. It suffices to show that the W (z)’s for
2 €9, give a Weyl system which is not a direct sum of Fock-Cook
representations over the same subspace $,. So there is no loss of gener-
ality in assuming A4 has no point spectrum, i.e. , = .
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We shall use the following lemma which is proved, but not stated,
by Arakr and Woobs [1].

5.2 Lemma. Suppose the weakly-closed algebra B of operators on R is
a factor other than all bounded operators on K, and v is a cyclic vector for B.
Suppose further that there exists a unitary operator U on R such that
UBU-L= B and v is the unique eigenvector of U. Then B is not type I.

We apply this lemma to the algebra B = {W(2):z ¢ 9}, which is
a reducible factor, as mentioned earlier. For v we take the cyclic vector
vy ® v,. For U we take the operator ¥ ® V-1 where

n=0

a unitary operator on the Fock-Cook space $p. Since 4 has only con-
tinuous spectrum, the same is true of (¢?4)®?, so that ¥ has only one
eigenvector, v,. Hence U has only one eigenvector, namely v = v, ® v,.

Furthermore, for z ¢ &

UWR)Ur=VWg([l+ AP22) V1@ V-1 Wg(AW282) V
= Wgp(etd[I + APV22) @ Wg(ei4 A2 2)
= W(etdz).

This shows UB U-1 = B, and then the Lemma 5.2 says B is not Type L
But the algebra generated by a direct sum of Fock-Cook representations
ts Type I, since the Fock-Cook representation is irreducible. So if 4 has
continuous spectrum, the representation is not a direct sum of Fock-Cooks.

We are thus reduced to the case that 4 (or 7') has pure point spec-
trum. So let {e;, e,, ...} be an orthonormal basis of & consisting of
eigenvectors of 7':

Te;=te;.

For simplicity we shall first consider y as defined only on the set ¥~ of
finite linear combinations of the basis vectors e, e, . . .

Let E be the regular state of the Weyl algebra over ¥~ whose gen-
erating functional is u. According to Theorem 4, p. 77 [2], the cyclic
representation determined by E is a direct sum of Fock representations
if and only if the functions y 4 (f) = E(e!*¥“#) converge uniformly in
t as .4 — ¥~ through the finite-dimensional subspace of ¥". (Here N (.#)
is the usual number operator over .#.) In the present case, since
every finite-dimensional subspace of ¥” is contained insome .#
= span{e,, . . ., &}, it can be shown that this is equivalent to the con-
vergence of the sequence vy, (f) = E(expitN (.#;)) to a characteristic
function.
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n
Now if 2 = } z;¢; € 77, then the generating functional u factors as

j=1
ue) = IT sle) (53)
where ’
usl@) = exp[— 5 #[apt], acC. (5.4)

Let UA; be the weakly-closed algebra generated by the Weyl operators
corresponding to z’s lying in the one-dimensional subspace [¢;] spanned by
e;. And let B, be the state of U; whose generating functional is u; (5.4).
Then by (5.3) and the regularity of E it follows that if 4, €,
7=1,...,n, we have

E(d,4,...4,)= ]]1 E;(4;).
f=
But the operator exp(itN(.#,)) is just such a product. In fact
(e.g. [2] p. 35, 37)

exp (it N () = exp(iEN ([ey]) - - . exp(iEN ([es]) ,
80

P (t) = B(exp (it N (A1) (5.5)
&
= JI ¢;(t)
j=1
where
@;(t) = E;(expit N ([e;])) - (5.6)

Thus we are reduced to finding necessary and sufficient conditions
for the infinite product I7 ¢; to converge to a characteristic function.

These are given by the Kolmogorov Three-series Theorem if we know
the measure whose characteristic function is ¢;. For this we need the
explicit formula for E; as given by SEGaL [18], Theorem 1. Namely

B (4) = (1—o¢) go o trace (4 P, (7)) .

(E2 and P, G) is
the projection onto the n-particle subspace of N ([e¢;]). Then, using (5.6),
we see that the measure whose characteristic function is ¢; has mass
(L—c¢;)ctatn,n=0,1,2,...The Three-series Theorem (e.g. [20]) then

says that IIp; converges if and only if these three series converge:

%‘c,, Z’,' ¢;/1—¢;), and %’ [(1—35,—)2 +L] .

1""0’

where c; is selected between 0 and 1 so that #f =
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The convergence of these three is equivalent to that of 3 ¢;/(1 — ¢;)
and since 7 — 1 = 2¢,/(1 — ¢;), this is equivalent to the convergence of
the trace of 72 — I.

It follows that if 7 — I is not a trace class operator, then the re-
presentation W over #” is not a direct sum of Fock-Cook representations
over ¥". In this case the representation over & > ¥ cannot be a direct
sum of Fock-Cook representations over 2.

Conversely; if 7% — I is trace class, then the representation W over
¥ is a direct sum of Fock-Cook representations over ¥". Since T is
bounded, Z = $ so the representation W is defined on all of &, and by
Prop. 4.4 it is continuous on all of §. Since a direct sum of Fock-Cook
representations is also continuous on all of §, the two agree everywhere. §
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