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It is shown that in a clean two-band (transition-metal) superconductor there appears a 

collective excitation corresponding to small fluctuations of th~ relative phase of the two 

"condensates". In contrast to the transverse collective excitations in ordinary superconduc

tors, the energy of this mode can be derived directly from existing experimental data ; for 

Nb it lies about at the middle of the smaller single-particle gap. Direct experimental detec

tion of this resonance is estimated to be rather beyond the limits of available techniques, 

but its effect on th~ ultrasound dispersion curve should be easily observable. The pheno

menon is used to elucidate the physical nature of excitons in superconductors in general. 

§ 1. Introduction 

It was long ago suggested1
) that, if sufficiently purified, the transitiOn metal 

superconductors should be describable by a 'two-gap' theory of superconductivity, 

which is the appropriate generalization of the usual BCS theori) to the case 

when the Fermi surface intersects two bands. In such a theory Cooper pairs 

are formed in each band separately, but under the influence of a self-consistent 

:field arising from the pairs in both bands. Earlier experimental w:ork on the . 

transition ·metals failed to show the expected 'two-gap' behaviour, probably 

because the samples were too dirty, but. recent specific-heat measurements on 

niobium3
) appear to be in good agreement with the theory4

) and we may there

fore accept that two-gap superconductors do exist in nature. A number of 

authors5
) have discussed the thermal, electrodynamic and transport properties 

of su~h superconductors; generally speaking, the results are qualitatively ana

logous to those well-known in the one-band case. 

In this paper we shall investigate a phenomenon which, at first sight 

at least, does not have an analogue in the one-band case: the existence of ·a 

collective oscillation corresponding to small fluctuations of the relative phases 

of the two 'condensates'. Such an oscillation arises because the total energy 

of the system depends not only on the relative phase of the two condensates 

but also on the canonically conjugate variable, the relative density of electrons 

in the two bands; in a sense it may be thought of as an internal 

second-order Josephson effect. From another point of view, its existence is a 
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902 A. J. Leggett 

consequence*> of the fact that under realistic conditions the coupled gap equa

tions for the two-band system have more than one nontrivial solution. This of 

course is also true in the usual single-band theory if other spherical harmonics 

of the pairing interaction besides the zeroth are attractive ; thus, in principle, 

the effect we shall discuss here does have an analogue in the l=I=O 'exciton' 

modes investigated within the framework of the BCS theory by many authors.6> 

However, in practice there is the following important difference: in the single

band case, with realistic values of the parameters, any unstable solutions of the 

gap equations have a condensation energy small compared to that of the BCS 

solution, so that the corresp.onding exciton modes lie very close to the top of 

the gap. On the other hand, both theoreticar> and experimentaP>·4> investigations 

indicate that the opposite is likely to be true in the· case of two bands: there 

ex.ists an unstable solution whose condensation energy is very little smaller than 

that of the true ground state, and as a result the corresponding exciton may 

lie well below the smaller of the two gaps; This feature not only makes its 

possible experimental consequences of greater interest but permits a rather 

clearer physical picture of the collective excitation than is usually available 

in the' one-band case. In fact, we shall u~e it to try to shed so~e light on the 

latter. 

The experimental detection of this resonance would be of great value in 

confirming the basic hypotheses of the two-gap theory of transition metal su

perconductors. We shall. find that in spite of the advantageous feature that it 

is well separated from the two-particle continuum, its direct observation probably 

lies rather beyond the limit of present experimental possibility, even under rather 

favourable conditions. The basic difficulty is that, in a charged system, the 

o!lly physical response function in whi~h it appears as a pole is the response 

function of the relative density of the electrons in the two bands, and no external 

probe will couple directly to this quantity in the long-wavelength limit. The · 

most promising method of dynamic detection seems to be indirect neutron scat

tering via a virtual intermediate phonon, but an order of magnitude estimate 

suggests that this is rather beyond the limits of available experimental technique. 

On the other hand it turns out to be possible to measure the excitation spectrum 

indirectly by observing its effect on the ultrasound dispersion relation;, such an 

experiment is estimated to be well within current experimental feasibility. The 

existence of this excitation may also haye a marked effect on the specific heat 

at very low temperatures, but the absolute magnitude of the effect is probably 

rather beyond the limit of present experimental accuracy; though not hopelessly 

so. It should perhaps be mentioned that Geilikman8> has recently suggested 

that some transition metals or ordered alloys might become superconducting at 

room temperature or above under favourable conditions; although the mechanism 

*) In the simplified model usually used. See the footnote to Eq. (3 ·12) below. 
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Number-Phase Fluctuations in Two-Band Superconductors 903 

he considers most favourable does not lead to a ' two-gap ' super conducting state, 

he concludes that such a state cannot be ruled out. If this were the case, it 

should be comparatively easy to detect the corresponding collective excitation 

directly; however, such a hypothesis must be regarded as very speculative at 

present. 

In the next section we shall present a simple physical argument, based on 

the number-phase uncertainty relation, which demonstrates the existence of a 

collective excitation and enables us to calculate its energy in thelong-wavelength 

limit under a certain approximation which is probably quite realistic. In § 3 

the problem is attacked under gene:r:al conditions by field-theoretic methods and 

the dispersion relation is obtained in some physically interesting limits. In § 4 

we make a quantitative estimate of the parameters of the excitation for niobium 

and discuss the possibility of experimental detection. Section 5 considers various 

aspects of the results obtained: the relation to the Josephson effect and to the 

l=/=0 excitons in a one-band superconductor is elucidated, and an interpretation 

is given in terms of a quasi-hydrodynamic model of the twq-condensate system. 

Section 6 is a brief conclusion. 

§ 2. Number-phase fluctuations 

We shall work with a two-band Hamiltonian of the standard type :1
),

5
) 

HA - ~ (1) + + "' (2)b+ b 
- L....i Ckrr akrrakrr L....i 8qrr qrr qrr 

, krr qrr 

(2·1) 

Here and subsequently the notation is as follow: atrr and b~rr create, respectively, 

an electron in the first and second band, with energy sk!J and c~~. We shall 

denote the operator of the total number of electrons in the j-th band by Nh 
and the density of states of both spins at the. Fermi surface by pj: 

(2·2) 

when PFj is the Fermi momentum in the j-th band and· vj the corresponding 

Fermi velocity. Here we have chosen units so that lz = 1 and assumed that the 

Fermi surface is isotropic in both bands (an unlikely assumption in practice 

but one which is unlikely to lead to qualitative error in the results). We shall 

also choose a BCS-type form for the pairing interactions U, V and J: 

V kk' = V, if I sk C
1

) I, I dY I <w, · =0 otherwise, 

Uqq' =U, if lc/2)1, lc~~)l<w, =0 otherwise, 

Jkq = J, if I s,,Y) I, I c/2
) I <w, = 0 otherwise. 

(2·3) 
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904 A. J. Leggett 

In (2 · 3) the energies are measured from the Fermi energy in the normal state. 

Thus, we have omitted a constant term NsF in the Hamiltonian (2·1) (We 

work in this paper with a fixed total number of particles-see below). Again, 

the relaxation of the rather artificial assumption of the same cutoff for all ~hree 

interactions is unlikely to change the results qualitatively. Rather more ques

tionable, possibly, is the assumption of symmetry of the interaction with respect 

to the Fermi surface ; we shall assume that the effects of relaxing it will be 

essentially no different from those arising in the one-band problem and will in 

any case be negligible in the weak-coupling limit, to which we shall restrict 

ourselves. We notice that while· V and U are completely fixed by the physics 

of the problem, the phase of J is a matter of convention (corresponding to the 

choice of the relative phases of the Bloch waves in the two bands). We shall 

take advantag~ of this to choose J to be real and positive. For the moment we 

make no particular assumptions about the signs of U or V or their magnitudes 

relative to J. Finally, we shall always deal with pure specimens and work at 

zero temperature unless explicitly otherwise stated. 

Before starting on the calculations we should make' two remarks about the 
/'-. 

Hamiltonian (2 ·1). First, it does not include a chemical potential term - /f.N, 
. /'-. "" 

where N=N'1 + N 2 is the total number of electrons in the system; this feature 

makes the subsequent argument somewhat clearer, but it means that strictly 

speaking we must always choose the wave function explicitly to be an eigen 

function of N. This introduces no special difficulties and we shall simply assume 

it is done at the necessary points in the argument without always mentioning 

it explicitly; this point is further discussed at the end of this section. Secondly, 

there are no terms in (2 ·1) corresponding to interactions diagonal in the qua

siparticle occupation number ("Fermi-liquid" terms). In a real system such 

terms certainly exist, and if they are large may change the quantitative results 

quite considerably (cf. reference 9) where their effect on l=fo-0 excitons in one-band 

superconductors is discussed). However, if we can calculate the appropriate 

correlation functions for the system described by the Hamiltonian (2 ·1) -which 

is easy to do by the methods of § 3, though we do not actually carry out the 

calculation*)-then it is trivial to· incorporate the effects of such 'Fermi-liquid' 

terms (cf. reference 10)). Since they certainly do not change the results by 

more than a factor of order unity, we shall not consider them in this paper. 

Let us rewrite the Hamiltonian (2 ·1) (with the simplifications (2 · 3)) in 

the following identically equivalent form: 
A A A """' 

H=Ho+J+L, 

RA -" (lJ + + " (2)b+ b v " + + 
0- LJ Clcrrakrrakrr LJ Cqrr qrr qrr- LJ akta-kJP-k'JPk"t. 

krr qrr kk' 

(2·4) 

*> Cf. also Eqs. (5 · 35-6). 
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Number-Phase Fluctuations in Two-Band Superconductors 905 

.-. A ·-"' 

Here the operator Eo (Nh N 2) is defined by its matrix elements in the represen-
tation in which N1, N2 are diagonal ; in this representation Eo is also diagonal 
with elements equal to the normal-state ground state energy*). of Ho +Eo for 

;") /'. A /'. A 

the values of N1, N 2 in question (we note that Ho commutes with N1 and N2 
separately), i.e. we have defined Eo so that the normal-state ground state energy 

of Ho is identically zero for arbitrary values of N 1 and N 2• In practice (because 
of the boundary conditions, various re.sidual scattering processes, etc.) the values 
N 1 (O), N 2 (O) of N1, N 2 in the real groundstate, whether normal or superconducting, 

of Ho +Eo are fixed by the conditions 

(2·5) 

Let us write 

(2·6) 

and expand Eo in powers of 1?. For the simplified model considered (here, if 

desired, we could easily incorporate the effects of 'Fermi-liquid' terms) we 

have 

(2·7) 

where Eng is the normal groundstate energy of the real physical system, which 

is fixed by (2 · 5). It should be noted that in writing (2 · 7) we have assumed 
we will eventually consider only states with ·a fixed value of N; otherwise we 

should have had to include terms not only in (N- NoY but also in (iV- No) K. 
In Eq. (2 · 4) the operator H0 commutes, of course, not only with N but 

also with 1?. Moreover, the eigenvalues are by construction independent of 
K (or N) . (This is strictly true 6nly so long as we can neglect the shift of 
the limits of integration which is effectively introduced when the Fermi surfaces 

of the two bands are shifted ( cf. (2 · 3)) and also the fact that the density of 
states pi may depend on the position of the Fermi surface. We shall assume 
this to be the case.) Thus, by writing (2·1) in the form (2·4) we have lumped 

A /'- /'. 

all the dependence of H on K into the operator L. 

The Hamiltonian Ho (Eq. (2·4)) is simply the sum of two commuting 
BCS-like Hamiltonians referring to the two bands separately, and can be di

agonalized by any of the standard methods. Let us restrict ourselves to the 
subspace spanned by functions of the BCS type :2

) 

(2·8) 

*) I.e. the "ground state energy" obtained by ordinary perturbation theory without anomalous 
pairing. 
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906 A. J. Leggett 

where I (jjo) is the vacuum state and 

lukl
2 + lvkl

2
=1, I u~ 1

2 + I v~ 1
2 

= 1, 

(2·9) 

where .dr, L1 2 are complex constants which we allow for the moment to take 

arbitrary values and the energies are measured from the Fermi ene~gy. In the 

limit N~ oo the functions (Jj (L11, L/2) defined by (2 · 8) are effectively orthogonal 

for different values of the complex parameters L/1, L/2 (that ts~ the normalization 

integral becomes a-function-like). If we define operators 

(2·10) 

(the sum being understood to be limited by the cutoff (2·3)), then within the 

subspace and in the representation defined by (2 · 8), W1 and W2 are diagonal in 

the limit N~oo ; their eigenvalues are given by 

(j=1,2) (2 ·11) 

so that we can -equally well label the states (2 · 8) by their '!Jfi values. The 

Hamiltonian H0 (Eq. (2 · 4)) is also diagonal within the representation (2 · 8). 

in the appropriate limit; we can write,: in fact, 

(2·12) 

where jj (I '!Jfi 12
) corresponds to the kinetic energy of the electrons in the j-th 

band. We see, then, that the energy depends only on the magnitudes of '!Jf'1 

and '!Jf'2 and. not on their phases,· either absolute or relative. Minimization of 

(2 ·12) in fact leads to two independent ' one-band ' gap equations ; in our 

notation they read simply 

(2 ·13) 

(They reduce to the conventional form if we use (2 ·11) .) If we write 

'!Jfi =I '!P'il exp i¢i, (2 ·14) 

then within the subspace corresponding to given I'!P'1J, I'!P'2 / all the wave functions 

corresponding to different values of the phases ¢1 and ¢2 separately are degenerate. 

Since by an appropriate superposition of states with different values of ¢j we 
A 

can construct an eigenfunction of N/1
), we can therefore choose the eigenstates 

of Ho t~ be also eigenstates of N and/or K if we wish. · 

Now we add to Ho the term J (Eq. (2 · 4)). The resultant Hamiltonian H' 
is essentially that used in the previous treatments of two-band superconductors, 

since in these treatments Eo is implicitly treated as a constant. In the represen

tation (2·8) the extra term can be written 

(2·15) 
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Number-Phase Fluctuations in Two-Band Superconductors 907 

and hence the total Hamiltonian becomes 

H' =.fiCIP"d
2
) + f2CIP"2I

2
)- VIP"ll

2
- UIP"2I

2 

- 2JIP"1IIP"2I cos Cifh- ifh) . (2·16) 

Since this expression depends explicitly on the relative pha~e of the two 'con

densates' (r/h -¢2), we cannot choose ¢1 and ¢2 independently in the groundstate. 

In fact the condition for the energy to have an extremum gives the ~amiliar 

coupled gap equations1), 7
) 

Ll1 = VP"1 + JiJf2, 

Ll2 = UP"2 + J1I!1. 

(2·17) 

Equations (2 ·17) always have one nontrivial solution unless V <O, V<O and 

J 2<UV. 12
) However, if IV>O, U>O, J 2<UV they have two nontrivial solutions, 

of which one corresponds to the true groundstate and the other to a saddlepoint 

of the ~nergy. The stable' solution must have ¢1 = ¢ 2, as is obvious from (2 ·16) 

(we recall that Jis positive by convention); the unstable one has ¢1-¢2='/r. 

Note that in general the addition of J to Ho not only fixes the relative phases 

but changes the equilibrium values of liJ.fjl from those given by (2 ·13). However, 

if U and V are positive and J is small, the relative change of IP"jl is only of 

order (JjUV P1) (LI2/ L/1), where p1 is the small~r of the densities of states, which 

in general is associated with the smaller gap. Thus far, our results .are 1n 

complete agreement with those of previous treatments. 

However, we still have to take into account the term L of Eq. (2 · 4). In 

the general case this leads to a rather complicated problem, which is best 

handled by field-theoretic methods from the start (see next· section); however 

in the case U>O, V>O, J < UV p1 (LI 2/ L/1) we can give a very simple and illu

minating treatment. Therefore for the rest of this section we shall consider 

only this case, which,. as will be shown later, is actually quite realistic from a 

physical point of view. 

Going back, then, to Eq. (2 ·16) we see that under the conditions we have 

assumed the term in J may be treated iJ.S a small p~rturbation on Ho (Eq. (2 ·12)). 

Applying first-order perturbation theory and denoting the values of IP"jl obtained 

from (2 ·13) · by P} (without the modulus sign), we can therefore approximate 

(2~ 16) by 

(2·18) 

where ~Vo is the true groundstate energy of H' and we have expanded the 

cosine for s:rnall values of ¢1-¢2 (which, we must remember, is an operator iu 

the subspace of interest to us; this latter, within our approximation, is now 

the subspace corresponding to the minimum value of IW'jl but arbitrary ¢J). 
A 

If now we add the term in L (Eq. (2· 4)) we can finally write the full HaAJ.-

iltonian H, within the subspace of interest, in the form 
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908 A. J. Leggett 

H nr onr o ( A A )2 A 2 
=Eoo+J:rl:r2 rfh-¢2 +rK (2 ·19) 

where ~- $2 is the operator of the relative phase of the two condensates and 

K the operator of their relative density fluctuation. Let us examine the com

mutation relation of these two operators. According to the definition (2 ·10) 

we have 

(2·20). 

and hence, using (2 ·14) and the fact that I Pii is a c-number (equal to ?fl/) in 

our subspace, we get the 'number-phase uncertainty relation' 

(2· 21) 

The derivation of (2 · 21) sketched here is of course far from rigorous. It 

is by no means obvious prima facie either that (2 ·20) remains true when the 

intermediate states are restricted ·to our subspace, or that (2 · 21) is a necessary 

as well as sufficient condition for (2 · 20). Physical arguments can, in fact, be 

given to support both these assumptions, but since this section is anyway not 

intended as a rigorous demonstration we shall not pause to do so here. 

Equations (2 ·19) and (2 · 21) simply define the problem of the simple 

harmonic oscillator. The 'frequency of the characteristic vibration is 

(})0 = 8 (r J?Jil O?JI2 °/12 (2. 22) 

or, using the values of ?fl/ given by (2 ·13) and the definition of r (Eq. (2 · 7)), 

(2 ·23) 

In practice it is very likely4
l that p1 <P2, L11 <J2• Then the ratio of Wo to the 

smaller threshold for single-particle excitations 2L11 is given by 

(wo/2L11Y = 
2J(L1 2

/ L11)- =a' . 
P1UV 

(2. 24) 

A realistic value of a' is probably of order 0.5 (see § 4). · Thus the collective 

excitation is well separated from the single-particle threshold. Strictly speaking, 

for such a value of a' the derivation used above is invalid, but we shall see in 

§ 4 that the error involved is not great. 

Thus, in the. limit k = 0 there exists in the two-band system a collective 

oscillation corresponding to small fluctuations of the relative phase (or relative 

density) of the two condensates. In the limit N -HJo, V ~ oo, N /V = const, the 

zero-point root-mean~square fluctuation of the relative phase decreases as N- 112 

while that of the relative number increases as N 1
1

2
; the zero-point energy of 

the oscillation remains constant in this limit. Thus the conventional results 

for the groundstate and one-particle excitation spectrum are not modified. 

It may be asked whether the frequency w0 given by (2 · 23) is in fact the 

correct limit of w (k) as k~O (clearly we expect the collective excitation to exist 

also for long but finite wavelengths). The question arises because in setting 
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Number-Phase Fluctuations in Two-Band Superconductors . 909 

up the problem we assumed N = const ; this is of course ·strictly true for k = 0 

for a closed system, but for arbitrarily long but finite wavelengths fluctuations 

of the total density are possible and it might be thought. they would affect the 

results (since in general the Hamiltonian contains a cross-term NK). Actually, 

in a real metal this problem does not arise, because the Coulomb forces screen 

out fluctuations of the total density perfectly in the limit k~o. However, it is 

also not difficult to show that even in a neutral system (2 · 23) is the correct 

limit of {)) (k) as k~o; in this limit the problem is completely analogous to 

that of a harmonic oscillator of finite mass coupled to another whose mass tends 

to infinity. 

The validity of the above treatment is limited· ·by the assumption that the 

weak interband coupling is a small perturbation on a superconducting state 

already established by the stronger intra-band forces, and is also restricted to 

the limit k = 0. In the next section we remove these restrictions by a. more 

general field-theoretic approach. 

§ 3. Field-theoretic discussion 

We shall look for the collective oscillation by investigating the poles of 

the scattering amplitude for two particles of nearly opposite momentum. We 

start with the case of a neutral system; then we may neglect the coupling of 

two-particle states to particle-hole states (this is equivalent to neglecting the 

Fermi-liquid terms). If the two particles are initially in (say) the first band 

they may as a result of the scattering either both remain in the first band or 

both be transferred to the second band; for small total momentum there are 

no processes in which the two particles end up in different bands. 8
l Thus, 

provided we are going to be interested only in the even harmonics of the 

scattering amplitude, the relevant equations may be written in the form (cf. 

references 13) and 14)) 

(3·1) 

Here a, {3 may take the 'values 1 or 2 (corresponding to the two bands); sum

mation over repeated indices is implied. Ta 13 is the complete amplitude for the 

process in which a pair in· band a is transferred to band {3, and T!13 is the 

corresponding irreducible amplitude, in the usual terminology. We introduce 

the factor. l/2 so that the sum implicit in (3 ·1) may be taken to include a sum 

over spins-a convention we shall use consistently throughout this section. 

Thus, Eq. (3 ·1) written out explicitly is 

Ta 13 (pp': k(J)) =T!13 (pp': k(J))'-t :E:E:E \ d 2 s'~ Tt
7 

(pp": k(J)) 
"~ p" "" J nz 

X {G7 (- p" + k/2, - s" + (J)/2) G 7 (p" + k/2, s" + (J)/2) 

+ F 7 (- p" + k/2, - s" + (J)/2) F 7 (p" + k/2, s'' + (J)/2)} X T 713 (p"p' : k(J)), 

(3·2) 
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910 A. J. Leggett 

. where to simplify the notation we have already assumed that T"' and T do not 

depend on the energies e and e' analogous to p and p'. In Eq. (3 ·1) , the 

notation is the standard one, i.e. (3 ·1) is the Bethe-Salpeter equation for scat-. 

tering of two particles of nearly opposite momenta p + k/2, - p + k/2 (and 

energiese+w/2, -e+w/2) to states p'+k/2, -p'+k/2. Ifweconfineourselves 

to the simple BCS-type theory of the last section, we must make the identifica

tions 

T1~ (pp' : kw) = const = ~ V, 

T2~(pp': kw) =const= -U, 

rl~ (pp' : kw) = r2~ (pp' : kw) = const = - J. (3·3) 

If we substitute the forms of G and F appropriate to the super:fluid phase, the 

integrals over e" and p" are easily carried out ;13
l we can then write Eq. (3 ·1) 

explicitly in the form 

Tn = - V + V~\Tu + J~2T21 

r21 = - J + J~1r11 + u~2r21 

(and similar equations for r12, r22)' where 

(3·4) 

(3· 5) 

where vi is the Fermi velocity in the j-th band. The vertex parts therefore 

have a pole . when 

or 

(1- V~1) Tn- J~2Tn = 0, 

-J~1Tn+ (1-U~2)T21=0 (3·6) 

(3·7) 

Before proceedjng, we emphasize once again that (3 · 7) is a correct description 

of the exciton mode we are looking for only for a neutral system (and iri the 

limit that 'Fermi-liquid ' terms may be neglected). For a charged system Eqs. 

(3 ·1) and hence (3 · 7) must be generalized; see below. However, we investigate 

the formally simpler neutral case first to bring out the main features of the 

problem. 

Equations (3 · 6) always have a solution for k= w = 0 , (when (}j=O). , With 

the convention, which we continue to use in this section, that J is positive, ·this 

solution gives the same sign for T 11 a:nd T 21 ; it is in fact just equivalent to the 

gap equations (2 ·17). Correspondingly, there will always be a solution for 

small k and w,_ with w proportional to k; this is just the Bogolyubov-Anderson 
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Number-Phase Fluctuations in Two-Band Superconductors 911 

mode corresponding to a fluctuation of the total density. However, under certain 

conditions there will also be a second solution, in which T 11 and T 21 have opposite 

signs; at sufficiently long wavelengths this solution corresponds to a fluctuation 

of the relative density in the two bands, i;e. to the collective excitation we are 

looking for. 

To see this, we subtract from (3·7) its. value for k=w=O, i.e. the determi

nantal equation of the gap equations (2 ·17). This gives 

{V + (J
2- UV) t P2ln (2&5/1 J2i)} 81 (k, w) 

+ {U+ (J2-UV)tp1ln(2&5/IJ11)}82(k, w) 

+ (J2- UV) 81 (k, w) 82 (k, w) = 0. (3·8) 

Substituting (2 ·12) and using the gap equations (2 ·17), we can reduce (3 · 8) 

to the form 

(3·9) 

with 8i(k, w) given by (3·5). 

The solution of (3 · 9) in the general case requires rather tedious calculations, 

. in view of the complicated f~rm of 8i(k, w). Here we shall examine some 

limiting cases of physical interest. First, let us examine the (improbable) case 

of complete symmetry between the two bands, i.e. p1 = p2, v1 = v 2, V = U. We 

recall that while J is positive by definition, U may be positive or negative. 

Then we have J1=J2==J, 81=82=8; if we neglect the solution 8 (k, w) =0 which 

corresponds to the Bogolyubov-Anderson mode, (3 · 9). reduces to 

8(k w) = ZJ 
, . u2_J2 

(3·10) 

where 

8 (k w)' =1,_ \ ~ {3 arc sin {3 
. ' . 2 p J 47C (1- {32)1/2 ' 

(3·10a) 

In the limit k = 0 the function 8 (k, w) is proportional to (w2/ 4J2) for small w 

and tends to infinity as W--"'241. For w>2J it becomes imaginary, indicating 

the possibility of real ·processes in which two quasi particles are excited. We 

see that a collective mode can exist only if U 2>J 2 
•. If U were negative, such 

a condition would mean that the superconducting state could not exist/2
) while 

if U is positive, it is just the necess,ary and sufficient condition for the existence 

·of a second nontrivial solution to the gap equations (2 ·17). Indeed, the situa

tion is entirely analogous to that encountered in the theory of excitons in a 

one-band superconductor. We can see this more clearly if we rewrite (3·10) 

in the form 

8 (k, w) -
1 

U-J 
1. 

U+J 
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912 A. J. Leggett 

In corresponding notation the equation determining the frequencies of the l=!=O 

excitons in a one-band superconductor in the approximation of no Fermi-liquid 

interactions is6
) (in the limit k~O) 

1 1 
(}(k w) =--~ 

' Vl Vo ' 
(3 ·11) 

· where Vo is the S-wave part of the pairing interaction which binds the true 

ground state and . Vl is the appropriate higher harmonic of the interaction. The 

analogy is further discussed in § 5. It is not difficult to see from (3 · 9) that 

these qualitative considerations hold under general conditions; the general 

necessary and sufficient condition for the existence of a collective excitation is 

U, V>O, (3 ·12) 

which agmn IS just . the condition for the gap equations to have an unstable 
solution.*) 

Next we consider the case discussed in the last section, where(h=f=P2, U=!= V, 

etc., but where U, V>O and J~UV p1 (L11/ .d2) (we again assume by convention 

that P1 is the smaller density of states ; then usually .d1 will be the smaller of 

the gaps). In this case we may look for a solution of (3 · 9) with w, '-' 1 k~L1 1 • 

Expanding (}i (k, w) in powers of w2 and k2
, we have 

(}j (k, w) = t Pi (w
2

- i k
2v/) / 4L1/ + · · · , 

whence (3 · 9) can be written 

where 

P1 (w2
- t k2

'-'1
2
) + P2 (w

2 -t k2
V2

2
) 

-Q(w~-i k2
V1

2
) (w2-t Pv2

2
) =0, 

(3 ·13) 

(3 ·14) 

(3 ·15) 

Equation (3 ·14) is valid to zeroth order in w/ Llh vk/ L11 but to all orders 

In w/wo, vkjw0 (this makes sense because under the conditions assumed here 

wo<Jl). (wo is defined below.) 

Equation (3 ·14) has the general solution 

oJ
2 =t{wo2

+ (c1
2
+c2

2
)k

2 

± [wo
4

+ (c1 2 -c2 2 ) 2 k 4 -2wo 2 (-~:-~-~:-) (c1
2
-c2

2
)k

2r12

}, (3 ·16) 

where 

*) However, the significance of this coincidence should not be overstressed. It appears to 

fail when 'Fermi-liquid' terms~are present. 
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Number-Phase Fluctuations in Two-Band Superconductors 913 

and for brevity we have written t v/-c/. 
We see that in the limit k-?0 ('L'ik<wa) one branch of (3 ·16) has the 

sound-wave-like dispersion relation 

(3 ·18) 

while the other Is of exciton type: 

(3 ·19) 

In the limit k-?oo (i.e. for our purposes, wa<t:•ik<2Jb in the unlikely case 
that such a criterion can be satisfied for both vi simultaneously), the first and 
second solutions go over respectively into 

(3. 20) 

where we have assumed that c1>c2. 

Equations (3 ·18) ~ (3 · 20) are easily interpreted if we regard the two 
' condensates ' as perfect hydrodynamic liquids ; this is discussed in § 5. Since 
we have always been working in the weak-coupling approximation and have 
already assumed J<UV p1 (.:1 1/ .:1 2), we should neglect J 2 in comparison to UV 
in (3 ·17). Thus the result (3 ·19) agrees with (2 · 23) of the last. section. 

Let us now consider the case of a real superconductor:, where the Coulomb 
field prevents long-range oscillations of the total density at low energies. To 
apply the field-theoretic technique to this case it is necessary to generalize it so 
as to include the coupling between two-particle states and particle-hole states. 
Such a generalization has been developed by a number of authors ; here we 
follow the notation of reference 14). Consider first the one-band case. In the 
formalism of reference 14), we are interested in the low-energy poles of the 
matrix 1-T"'g, where T"' and g are given explicitly by E'qs. (13) and (12) of 

· reference (14) respectively ; T"' is a matrix describing the irreducible particle
particle (pairing) and partide-hole scattering amplitudes and g a matrix describing 
the various possible combinations of G and F functions. We must now take 
the particle-hole irreducible scattering amplitude to be the Coulomb potential: 

(3. 21) 

For simplicity we neglect, as usual, any short-range ('Fermi-liquid') terms. 
This means that T"' (p, p') is isotropic on the Fermi surface. Since we have 
already taken T<P(p, p') to be isotropic, and since the quantities (G-F-FG) 
.(k, w) and cc-c-- GG) (k, w) which enter into Eq. (12) of reference 14) are 
odd with respect to k, they vanish on integration over the Fermi surface and 
the third row and column of the matrix {j may be ignored. For the same reason 
we may write t(GG+ c-c-) as simply GG. Thus we are left with the fol
lowing two equations, where r as before represents the two-particle scattering 
amplitude and Z the amplitude for two particles to be converted into a particle-
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914 

hole pair : *) 

A. J. Leggett 

T=T1>+tT1>{(-GG--FF)T+ (G-F+FG)Z}, 

Z=T(O{(GG-FF)Z+ (G-F+FG)}. (3 ·22) 

The problem is therefore determined by a knowledge of the quantities 

t (-GG-- FF) (kw) · - ~ (kw) , 

2-1
;

2 
( c-F + FG) (kw) -:= ¢ (kw) , 

( GG- FF) (kw) :=<J; (kw) . 

(cf. (3·5)) 

(3 ·23) 

(The peculiar-looking factor of 2-1
;

2 is due to our convention that all integrals 

include a spin sum; cf. the remark ort Eq. (3 ·1)). It is easy to see that if T"' 

has the form (3 · 21), the condition for the existence of a low-energy collective 

oscillation is 

(3. 24) 

or using the gap equation, 

<J; (kw) (} (kw) + {¢ (kw)} 2 =0 (3. 25) 

with (}(kw) given by (3·10). However, (3·25) has no solution, at least for 

small k and w, and hence in the simple one-band model considered no low

energy collective oscillation is possible.**) 

Turning now to the two-band case, we easily see that Eqs. (3 · 22) are still 

valid provided that we regard T, T1>, Z and TID as matrices in the 'space' of 

the two bands and (- cc-- FF)' etc., as diagonal matrices Ill this space (cf. 

Eq. (3·1)). Explicitly, we have 

r•=-G ~), r- =4ne'jk'( ~ ~) 
(3. 26) 

~= (~' :) , ~j= ( --:-GG--FF)j 

and similar definitions for ¢ and <J;. Substituting the second of Eqs. (3·22) 

and dropping the inhomogeneous term, we get. the matrix equation 

(3 ·27) 

which determines the frequency of the collective excitation for our model two-

*) In reference 14) the factor ! was omitted in the :first line. This is simply equivalent to a 

redefinition of F1>, which does not appear in the final results of that reference. 

**) It is claimed by Thouless and Tilley15) that Eq. (3·25) does have a solution for small k 

and ar---vk if the finite-temperature forms of (}, ifJ, ¢ are substituted, and they interpret this as re

presenting a sort of collisionless second sound wave. I believe however their results to be incor

rect, owirig among other things to their neglect of the imaginary parts of 8, ¢ and 'ljr. 
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Number-Phase Fluctuations in Two-Band Superconductors 915 

band system. 

Consider the matrix (1- T"'<jJ) - 1T"', where T"' is given by (3 · 26). Even 

in the limit k2v/<.(J)P 2 (i.e. T"'</J':P 1) we cannot immediately put this equal to 

- </J-1, because the matrix T"' is singular. In fact, calculating the matrix for 

finite k and taking the limit k~o, we find that in this limit we must put 

~) . (3 ·28) 

Substituting (3 · 20) into (3 · 27), we find that the frequency of the collective 

oscillation is determined by the equation 

det(l+ Ttf>C) =0 

where the matrix C is defined by 

Cij=~t:Oij+ (</JI+</J2)-1¢i¢j. 

Explicitly, (3 · 29) · reads 

1- {VCu + UC22 + 2JC12} + (UV- J 2) CCuC22- C12C21) = 0 . 

Writing 

(3. 29) 

(3. 30) 

(3. 31) 

(3. 32) 

(where (}i (k(J)) is defined by (3 · 5)), and subtracting the gap equation, we can 

put (3 · 31) in the form 

{V + (J2- UV) t P2 ln (2w/l .d21)} Cn + {U + (J2- UV) t PI ln (2w/l .Jll)} c22 

(3. 33) 

which is the appropriate generalization of Eq. (3 · 8). Proceeding as with (3 · 8), 

we can write (3 · 33) in the form 

(.J1/.J2)Cu+ (.J2/.J1)C22+J-l(J2-UV) (CuC22-C12C21) =0 (3·34) 

with Cij given by (3 · 32). As with (3 · 9), the solution is complicated in the 

general case; again we shall consider some simple limiting cases. 

First, consider the case of complete symmetry between the two bands. 

Then ¢1=¢2=¢, etc., and (3 · 34) reduces to 

ce+¢2/<P) -t J-lcu2-J2) {e+¢2/2</JY- C¢2/2</JY} =e. (3·35) 

The factor (f)+ ¢2/</J) (which cannot be zero) cancels and we are left with 

(3. 36) 

which is identical to (3 ·10). Hence in the special case of complete symmetry 

between the bands the Coulomb interaction has no effect whatever on the col

lective oscillation of interest to us. This is not difficult to understand physically, 

since in this case the Hamiltonian splits into two commuting terms referring 
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916 A. J. Leggett 

respectively to the total and relative density. 

Next we consider the case J<UV p1 (Li1/ J2) and expand the Cij to lowest 

order in k2 and ui. We have (cf. reference 14)) 

ej = t { (w2
- i v/k

2
) I 4L1/} Pi· 

Substituting these values, we get 

(L11/ L12) Cu + (L12/ L11) C22 + 2612 = - (8L11L12)_1 (p1c12 + P2C2 2) P , 

CnC22- C12C21 

__ __.P1P2 { CP1 + P2) c12C22 k4
- (p1c12 + P2c2 2) k2

W
2

} , 

(8J1J2)
2 

CP1 + P2) 

(3· 37) 

(3· 38) 

where agmn c/=i v/. Finally, substituting (3 · 38) into (3 · 34), we get 

(3· 39) 

Equation (3 · 39) is valid in the whole region vk<2L11. *> Comparing it with 

(3 ·19) and' (3 · 20), we see that the infinite-wavelength limit w0 is insensitive 

to the Coulomb interaction but the dispersion relation is affected. The velocity 

v given by (3 · 39) is in fact just the velocity of 'quasi-hydrodynamic ' sound 

in a system of two perfect classical liquids coupled only by the Coulomb force 

(see § 5). 

Finally let us examine the physically very important case where we· have 

P1 <(p2 but not necessarily J<UV p1 (L11/ L12). Let us consider explicitly the neutral 

case, take the limit k~o and assume for the moment that w0 will still be suf

ficiently far from 2J1 that the function l91 (k, w) (Eq. (3 ·lOa) is still only of 

order of magnitude P1. Then we may neglect the term (L11/ L1 2) {11 (kw) in (3 · 9), 

which therefore becomes 

(3· 40) 

Thus, using Eq. (3 ·lOa), we finally get as the equation determining Wo 

woY(wo/2L11) =8JL11L12/P1CUV -J2
) , 

f(x) =arc sin x/ x (1- x
2)112 (3 · 41) 

which agrees with (3 ·17) in the limit w 0 ~0. We will assume without detailed 

calculation, on the basis of the physical argument given at the end of the last 

*> Even if v 1k)>2LI1• See § 5. 
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Number-Phase Fluctuations in Two-Band Superconductors 917 

section, that this formula remains valid in the presence of Coulomb interactions. 

It is clear from a comparison of (3 · 41) and (3 · 39) that the latter expression 
for w0 is a good approximation up to quite large values of w0/2L1l. Similarly it 

can be seen by detailed consideration of the exact expressions for (), ¢ and <jJ 

(Eqs. (3 · 23); cf. reference 9)) that the velocity given by (3 · 39) 'is at least of 

the right order of mag~itude until Wo (or vk) is. very close to 2Jl. For purposes 

of estimation in the next section we shall therefore usually use Eq. (3 · 39). 

To conclude this section we briefly mention the behaviour of the collective 

mode at finite temperature. The necessary generalization simply. consists in 

using the appropriate finite-temperature forms of the functions (), ¢ and <jJ; in 
the long-wavelength and low-frequency limit these were calculated in reference 

14). In general they have finite imaginary parts even in this limit, owing to 

the possibility of scattering an already excited quasiparticle; however, since 
the maximum velocity of the quasiparticles is the higher Fermi velocity v1, the 
collective mode will not be damped in the long-wavelength region where w (k) 

>kv1• Detailed examination shows that w0 increases relative to L/1 with increas

ing T ;_ at first sight we should expect the oscillation to disappear altogether at 

temperatures of the order of J 1 (0), since at much higher temperatures the gap 

equations have only a single nontrivial solution. However, detailed examination 
of the one-band case shows that at finite temperature the existence of a second 

solution is not a necessary condition for the existence of the corresponding 
exciton even in the simplified model considered here ;· thus we can dra.w no 

conclusion without exp.licit calculation. 

§.4. Experimental aspects 

In this section we shall, first, try to estimate the parameters of the collective 

excitation for niobium, the only transition metal superconductor for which suf

ficient experimental information is available at present, and then go on to discuss 

the general question of the feasibility of its experimental detection. It should 

be stated at once that the answer to this question is rather sensitive to the 

values of certain parameters of which at present we have only rather crude 

estimates ; thus the conclusions must be regarded as somewhat tentative. 

Let us label the 's '-band (that is, the band with the lower density of states) 

1, as in the last section; in practice this band will almost certainly also have 

the smaller gap, and probably though not certainly also the higher Fermi velocity. 

We suppose, as is almost certainly the case in practice, that p1 <P2• Then the 
parameter w0 is given by (3 · 41): 

(wa/2L1lYf(wa/2L1l) = ____ ?_!_(J 2
/ J 1

) -=a. ( 4 ·1) 
. . Pl(UV-J 2

) 

Since the condition J 2<UV is almost certainly fulfilled in practice,4
),T) a Is 

equivalent to the parameter a' defined in (2 · 24). Moreover, it is identical to 
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918 A. J. Leggett 

the parameter a defined by Sung and Shen ;4),*) they show that its value can 

be obtained from the specific heat data and find that Jor niobium the best fit 

corresponds to a=0.5. We should remark that Sung and Sherr's method of 

obtaining a is certainly not valid in general, since they tacitly assume in pro

ceeding from their Eq. ( 4) to Eq. (8) that the temperature variation of the 

larger gap can be neglected in the region where the smaller gap is fast varying 

(which they use to fit the data to the theory). It seems probable that this as-

sumption is justified for Nb, but it would be desirable to check the value of 

a, which is a fundamental parameter of the theory, by fitting the exact theoretical 

specific-heat curve to the data without approximations (unfortunately this requires 

the numerical solution of two rather unpleasant simultaneous equations). For 

present purposes we shall use Sung and Sherr's value of a with appropriate 

reservations. Putting this value into ( 4 ·1), we :find 

(4·2) 

Thus, in niobium the collective excitation should be well separated from the 

two-particle threshold. It is reasonable to hope that in some other transition 

metals a will be smaller and the excitation may even lie near the bottom of 

the smaller gap. We notice, in any case, that even for the comparatively large 

value of (1) 0 given by ( 4 · 2) Eq. (3 · 39) is n?t a bad approximation. Hence we 

shall generally use (3·39) rather than (4·1) in this section. 

Equally important to (1) 0 from the point of view of experimental detection 

Is the velocity v of the excitation, which is given by (3·29). We see that v 

Is of the order of the smaller of the quantities vh CP2/ p1)112v 2 : 

(4·3) 

Unfortunately experimental information on the values of v 1 and v 2 for the tran

sition metals seems to be rather scanty at present. Tb get an order-of-magnitude 

estimate we may assume with Vasudevan and Sung5
) that the Fermi momenta 

in the two bands are . of the same order of. magnitude. In this case P2/ p1 "-/v1/ v 2, 

so we have 

(4·4) 

This estimate should however be treated with a certain amount of reserve; if 

anything it will probably underestimate v relative to v1. 

Turning now to the problem of experimental detection, we consider :first 

the thermodynamic consequences of our collective mode. We use the dispersion 

relation (3 · 39) :**) 

*) The equation defining a in reference 4) is presumably misprinted· and should read 

a=- [.Ja(O) I.Js (0) J xJ INs (JJ a~J 2 ). 
We recall that our fh is twice N 8 and our J has the opposite sign by convention. 

**) The temperature dependence of (!)o and v is sufficiently weak to be neglected fo:r ksT4:..Jl. 
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Number-Phase Fluctuations in Two-Band Superconductors 919 

(4·5) 

which is valid for vk<2L11 ; we therefore confine our attention to the region 

kBT<L11• We shall assume (hopefully) that there are transition metal super

conductors for which (J) 0<LI1 (a<1), and thus consider both the regions kiJT<(J)o 

·and (J)o<.kBT<L11'. The specific heat due to a boson with the dispersion relation 

(4·5) is easily calculated in these limits; for kBT<(J)0 we have (here and below 

Ch C2 and C3 are constants of order unity) 

(4·6) 

(4·7) 

On the other hand, for kBT<L11 the specific heat due to the· quasi-particle exci

tations is 

( 
Jl )3/2 

Cqv(T) =CsL11P1 -- exp(-Lit/kBT). 
kBT 

(4·8) 

Then (since for purposes of estimation (J){h kBT and L11 may be taken as of the 

same order) the characteristic . factor occurring in the ratio of the boson and 

the s-electron specific heats is just (L11
2 /v1

3p1) (v1/v )3
• The first factor is probably 

of order 10-7 -1o-s; thus, if we use the estimate ( 4 · 4), to detect the effect of 

the collective mode on the specific heat we should have to be able to measure 

quantities of the order of 10- 4 -10-'-5 of the s-electron specific heat in the normal 

state. This is certainly beyond the reach of present experimental technique, 

but not unthinkably. so. It should be emphasized that if (J)o<Lib which requires 

a value of a only slightly smaller than that found for . niobium, the collective 

mode will dominate the electronic specific heat at ultra-low temperatures-a 

situation which is very unlikely to Occur in ordinary one-band superconductors 

since in them {)) 0 is expected to be close to 2L1. We see however that the above 

estimates are very sensitive to the value of v. 

Next we consider the possibility of exciting the resonance by an external 

probe. We see at once that no external potential which varies over a distance 

large compared to the lattice spacing will be able to ~xcite it. This is because 

such a potential cannot 'see' which are the s-electrons and which the d-electrons; 

mathematically speaking, the matrix element of the total electron density Fourier 

transform 

p(k) =\ cp+(r)cp(r)exp(-ik·r)dr 
ol 

to which an external scalar potential· couples, is identical in the limit of small· 

k to the Fourier transform of the sum of the 'Bloch wave densities' in the two 
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920 A. J. Leggett 

bands (i.e. what we have been referring to throughout this paper as the total 

density operator); thus it cannot involve the relative density. This would not 

matter in a neutral system, since the relative and total densities are not decoupled 

for vk"-'Wo and a fluctuation of the total density would excite a fluctuation of 

the relative density; however in a real metal the total-density response is strongly 

screened out at long wavelengths and thus to excite a fluctuation of the relative 

density one must couple to it directly. So far,' we have considered an isotropic 

model; however, for a crystal with arbitrary symmetry and for an arbitrary 

direction of wave propagation, the transverse total current will in general couple 

to the longitudinal 'relative' current and hence to the relative density. Thus, 

in principle a pole corresponding to our collective excitation should appear in 

the transverse current response function, and one could then in principle detect 

it by electromagnetic absorption or transmission experiments (cf. reference 9)). 

Since this effect is likely to be small and there are a large number of theoretical 

and experimental complications, we have not attempted to make a detailed 

estimate; but it should be noted that in any case this pole will not appear until 

vk"-'Wo (for reasons connected with the fact that the relative density does not 

obey a continuity equation-see next section), and this alone may well put 

electromagnetic detection out of the question. We conclude therefore that no 

external probe of long wavelength is likely to be able to detect the excitation. 

Therefore we must find some probe of the electron system which varies 

strongly over a unit cell and thus can 'tell the difference' between s- and d

electrons. The most promising candidate is the crystal ions, or nuclei; the 

nucleus can clearly discriminate the two bands since in general the densities of 

the corresponding electronic wave functions at its site are different. Generally 

speaking, the nucleus can interact with the electrons either through its trans

lational motion (electron-phonon coupling) or by changing its internal state, as 

in nuclear spin relaxation for instance. The second kind of interaction is not 

very useful for our purposes; the energy of interest is W0 , which is of the order 

of 1 o K, and to get a splitting of the nuclear levels of this magnitude by the 

Zeeman effect would need a magnetic :field many times larger than the super

conducting critical field. In general the nuclear energy scale is either much 

too small (as here) or much too large (as, say, in the Mossbauer effect) to be 

useful for this purpose. 

What, then, of the translational motion of the nucleus? The effects of 

electron-phonon coupling in a two-band metal will be considered in detail 

elsewhere; here we just quote the main results. As to the possibility of direct 

detection of the resonance, say by a neutron scattering experiment, it turns out 

that a subsidiary pole does indeed appear in the phonon propagation function· 

at about the frequency of the electronic resonance (in contrast to the case of a 

one-band metal), but the amplitude of the corresponding peak in the neutron 

scattering cross~section relative to that of the 'primary' (real-phonon) peak is 
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Number-Phase Fluctuations in Two-Band Superconductors 921 

only of order (p2/p1) (c/vY where cis the phonon velocity. The value of this 

quantity is subject to considerable uncertainty but it seems unlikely to be much 
greater than 10-4

• Hence detection by neutron scattering does not seem feasible, 

unless some revolutionary advance in sample preparation and/or resolution is 

made. However, the possibility of observing the subsidiary resonance directly 

by ultrasound transmission experiments cannot be entirely ruled out, though 

here too the practical difficulties are likely to be formidable. 

It turns out, however, that the existence of the electronic collective resonance 

has a quite appreciable effect on the velocity of propagation of ultrasound. 
Indeed, under probably realistic conditions the shift of the ultrasound dispersion 

curve at very low temperatures in the region krv(J)0/v gives a direct measure 

of the (inverse of) the excitation energy {)) (k) of the electronic resonance. The 

relative magnitude of this effect is of order (P 2/Pl) (c/vY; even under very 

unfavourable conditions this quantity can hardly be smaller than 10-\ and it 

may even be as large as 10- 2 
· in some cases. Since the (theoretical !) absorp

tion of ultrasound is negligible even in the r~gion .d1 <kBT <J2, the detection 

of a shift of the predicted order of magnitude as the temperature is lowered 

below .d1 should be well within the power of current experimental technique. 

In order that the effect give a direct measure of {)) (k) it is probably necessary 

that the parameter a should be small; however, there should be an unambiguous 

shift in the ultrasound velocity even when this is not so. It would therefore 

be of great interest to detect this effect evenin niobium. Details of the theory 
will be given elsewhere. 

We conclude, therefore, that indirect detection of the proposed electronic 

collective resonance is certainly experimentally feasible at present and that 

'direct' detection (by specific heat measurements or, possibly, ultrasound trans

lnission) is not hopelessly beyond reasonable expectation for the future. More 

quantitative estimates require, in particular, knowledge of the excitation velocity · 

v, and hence of v 1 and v 2 ; in principle these quantities are obtainable from 

any one of a number of experiments on the pure two-band superconductor in 

question, and it is to be hoped that good values will become available in the 
near future. 

§ 5. Discussion 

In this section we shall try to elucidate the connection of the results of 

this paper with certain other phenomena in' the theory of superconductivity. 

First, we consider how the effects investigated here are related to the 
Josephson effect_l6

l A treatment of the latter which is in many ways similar to 

the discussion of § 2 has been given by Wallace and Stavn.17l They show that 

the Hamiltonian of two superconductors coupled by a Josephson junction in 

the absence of an external field can be written 
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922 A. J. Leggett 

(5 ·1) 

when Fh and HR are the Hamiltonians of the systems to left and right of the 

junction in the absence of the coupling, cfh and ¢R are the phases of the cor

responding 'condensates' and T is the coupling matrix element. This expres

sion should be compared with our equation (2 ·16); in our notation (.dL/VL) 

would be 7J! L, etc. It should be pointed out that; strictly speaking, (5 ·1) 

cannot be correct for a closed system ; as in our problem, · there should be a 

term proportional to (NL- NRY (where NL is the. deviation of the number of 

electrons on the left-hand side of the barrier from its equilibrium value, etc.), 

and in principle this should give rise to har1nonic oscillations of the current 

in zero external field. The basic difference between our case and that of a' 

Josephson junction is, of course, that in. the latter case the coefficient of (NL 

- N R) 2 is inversely proportional to the mutual capacitance of the two systems 

and so goes to zero with increasing volume, whereas the coupling matrix element 

T is determined by the size and geometry of the junction and is independent 

of the size of the two superconductors. Thus the frequency of the harmonic. 

current is usually negligibly small. Now when we create an external potential 

difference between the two systems (say by applying a voltage V) the total 

Hamil toni an can be written 
A A A, ,.....,_ 

H =Ha-2T(L1LL1R/VL V R)cos(¢L- ¢R) +eV(NL -NR) 

with the commutation relation (cf. (2·21)) 

[NL-NR, if;L-if;R] = -4i. (5·3) 

Because there is now no 're.storing force' proportional to (NL- NR), It IS not 

legitimate to expand the second terrn in (5 · 2) to lowest order in C¢L- ¢RY· 
Thus, in the Josephson case 'the relative phase performs steady rotation, whereas 

in our case it performs small vibrations around the equilibrium position~ 

Next we consider the analogy to the problem of li=O excitons in a one-band 

superconductor. We shall consider only even-l (spin~zero) excitons and make 

the rather artificial assumption that one of the higher harmonics of the pairing 

interaction U (n, n'), say the second, is compar(:l.ble in magnitude to the zeroth 

harmonic which actually binds the physical grounds tate. We introduce the 

quantity 

(5· 4) 

where n is a unit vector specifying the direction on the Fermi surface. We 

confine ourselves to states of the type ( cf. (2 · 8)) 

(5·5) 

where I ({)0) IS the vacuum state, and uk, vk satisfy 
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Number-Phase Fluctuations in Two-Band Superconductors 923 

lukl
2 
+ l·v~;,l

2 

= 1, (5·6) 

UkVk *- L1 (n) 
--2{e-~ 2 -t-fi(~)l 2 }i/- 2 ' 

where L1 (n) IS a complex function of n. Then we have 

?ff ( n) = i p L1 ( n) ln ( 2&5 /I L1 ( n) I ) . (5·7) 

The total Hamiltonian can be written (cf. (2 ·16)) 

H=(fi?J'(n)l 2 dQ -t \\ U(n, n') {?ff*(n)?ff(n') +?ff(n)?ff*(n')} dQd_~!_, 
J 4n ~J 16n 

(5·8) 

where the first term represents the kinetic energy. In the groundstate we have 

?Jf(n) =const:=?ff0 =L10/U0 (5·9) 

where. L1o is the value of the gap determined by the BCS equation and Uo is 

the zeroth harmonic of the pairing interaction. If for the moment we assume 

that in the states we are going to consider the ' best ' value of I ?Jf (n) I for a 

given functional form of arg ?ff(n') is only slightly different from ?ffo (this is 

equivalent, roughly speaking, to the assumption that the second harmonic u2 is 

close to U0-cf. below) then we can take the magnitude of ?ff(n) to be equal 

to ?ff0 in these excited states too, and write 

?ff(n) =?Jf0 exp (i¢(n)). (5·10) 

Then we can write part of (5·8) in the form (where Eo is the BCS groundstate 

energy) 

(5 ·11) 

However, we must also take into account a term corresponding to L in Eq. 

(2 · 4) -that is, a term corresponding to the fact that the ' average' Fermi surface 

may be distorted (while the total volume enclosed by it must of course remmn 

constant). This term has the form 

A P{ }2 
L==iP-1 J oN(n) d!2/4n, (5 ·12) 

where p IS the density of states at the Fermi surface and 

(5 ·13) 

(we note that oN(n) when acting on the BCS groundstate gives zero identically). 

Adding this term to (5 ·11) and expanding the cosine to second order in its 

.1rgument, we finally put the Hamiltonian in the form 
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924 A. J. Leggett 

H =Eo+ t p-1 J {oN(n)} 2dJ2/ 4n 

+ t J l U (n, n') {¢ (n) -¢ (n')} 2dJ2dJ2' /16n2
• 

From (5 · 4) and (5 ·13) we have the commutation relation 

[oN(n), ¢(n')] = ( -i/2n)o(n-n'). 

Now let us assume for ¢ (n) and oN(n) the forms 

¢ (n) =¢Y2m(n) , oN(n) =oNY2m(n) , 

(5 ·14) 

(5 ·15) 

(5 ·16) 

where Y2mCn) is a normalized spherical harmonic, and expand U(nn') in 

Legendre polynomials : 

U(nn') = ~ UzPz(nn') . 
l 

Then the Hamiltonian (5 ·14) becomes 

H =Eo+ t P- 1 (oN)2 + 'iJfo2 (Uo- U2) ¢2 

with the commutation relation 

[oN,¢]= -2i. 

(5 ·17) 

(5 ·18) 

(5 ·19) 

Thus, from (5 ·18) and (5 ·19), oN and ¢ oscillate with the harmonic frequency 

(5. 20) 

or using (5 · 9) 

(5. 21) 

Finally, defining a dimensionless quantity Vz-PUz/2 to agree with the defini

tion of gz of Bardasis and Schrieffe:r,6
) we can write (5· 21) as 

(5 ·22) 

If Vo- V2<Vo 2 this agrees with the usual results. 6
) Now the above argument 

was based on the assumption that there exist unstable solutions of the gap 

equation for which I 'iJf (n) I is not much different from 'iJf0 ; the condition for this 

assumption to hold is precisely V 0 -V2<V0
2 (cf. below), thus our argument is 

consistent. 

Of course, this assumption is very unlikely to be satisfied in practice ; the · 

virtue of the above argument is simply that it gives a rather simple picture of 

the physical nature of excitons, which should be qualitatively valid under more 

general conditions. We see that excitons in superconductors correspond to a 

coherent distortion of the shape of the "average" Fermi surface, accompanied 

by a small fluctuation of the relative phase of the pairs in different regions of 

the Fermi surf~ce. In a sense, therefore, they are the analogue of the anisotropic 

zero sound vibrations which may be possible in the normal phase ;18
) however, 
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1Vumber-Phase Fluctuations in Two-Band· Superconductors 925 

the conditions for their existence are much less stringent. One may say that 

the l=FO collective modes in a superconductor foreshadow the breakdown of 

the "rigidity" of the condensate wave function, since they correspond to a 

distortion of its spherical symmetry. From this point of view it is also easy 

to see why "Fermi-liquid" terms must affect their frequencies quite strongly ;9
) 

indeed, it is trivial to take these terms into account in the above method. 

Before leaving the .subject of excitons in one-band superconductors, we 

should perhaps draw attention to one slightly embarrassing point. According 

to (5 · 22) the frequency of the collective excitation becomes imaginary, signal

ling the instability of the groundstate chosen, as soon as V 2> V 0• On the other 

hand Anderson and MoreP9
) found that the binding energy of the D-wave

paired state does not become equal to that of the S-wave-paired state until V2 
is somewhat greater than V 0• A similar difficulty was noted by Balian and 

Werthamer20
) for the case of P-wave pairing; they claimed to have resolved it 

by showing that if one takes into account all spin components of the triplet 

pairing interaction . one gets an isotropic trip~et state whose binding energy 

exceeds that of the BCS state as soon as V 1> Vo. Unfortunately the exciton 

instability occurs at V 1 = V 0 whether or not one considers all spin components 

of the pairing interaction, and in any case no such explanation is available 

for the instability with :respect to D-wave pairing. The most likely resolution 

of the apparent contradiction is that (contrary to the estimate of reference 

19)) the true groundstate is neither pure S-wave nor pure D-wave over a 

considerable range of the coupling consta~t ratio (V2/V0); actually, this is 

necessary for the argument given above, since it was supposed that if Vo 

_: V2~Vo 2 there exist low-lying unstable solutions of the gap equation with 

!W (n) / almost constant, and presumably these should go over into the stable 

solution as soon as V2> V 0 • To the present author's knowledge this problem 

has never been satisfactorily cleared up. In our case no such difficulty arises, 

since there are no geometrical factors entering the- expressions for the binding 

energies of the stable and unstable solutions. 

Finally, we shall show that the results of § 3 for the dispersion relation 

of the collective excitation can be easily interpreted from a "quasi-hydrodynamic" 

point of view ; that is, we treat the two-condensate system as a system of 

two perfect hydrodynamic liquids coupled by an unusual type of coherent 

transfer interaction. We consider first the case of a neutral system. Then 

the equation of motion of the current in the j-th band is the usual hydrodyna

mic one 

c}=iv}. (5·23) 

Here Ni is the deviation of the local nl}mber density in the j-th band from its 

equilibrium value; we have neglected terms connected with the nonconservation 

of Ni in the two bands separately as being of second order in, the deviation in 
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926 A. J. Leggett 

(5 · 23). However, these terms are of first order in the equation of motion of 

Ni. itself. This does not affect .the total density, which is conserved: 

(5· 24) 

In considering the equation of motion of the relative density fluctuation (N1- N2) 

we must take into account (a) the possibility of incoherent conversion of an 

s-electron into a d-electron, say by impurity scattering (b) the possibility of 

coherent conversion of a pair of s-electrons into a pair of d-electrons by the 

"internal Josephson effect" discussed in the body of the paper. We shall neglect 

the first, since we have always considered pure. samples in this paper. To in

corporate the effect of the second we argu~ as follows. First; in the limit that 

N1 + N2 =const. (e.g. in the very long wavelength limit) we must recover the. 

results of § 2, i.e. we must have 

-.d
2 

(NI- N2) =- Wo
2 (Nl- N2) 

dt 2 
(5. 25) 

with Wo given by (2 · 23). Secondly, in the general case the part of the equa

tion of motion arising from this effect must be nondissipative, that is it must be 

a second-order differential equation, and furthermore we expect the driving force 

to be proportional to the deviation of the local energy from the equilibrium 

value for the given local value of (N1 + N 2); that is, this term should have the 

general form 

d
2 

(N1-M) = -A{p1-1N1+P2-1N2- ---
2

---CN1+N2)} 
dt

2 
· P1 + P2 

= -A: (p2N1- P1N2) . (5. 26) 

Comparing (5 · 26) with (5 · 25), we can make the identification A'= 2wo
2 / CP1 + P2). 

Finally, there is an additive contribution to the acceleration of (N1- N2) from 

the influx of particles into the region, which is given by the analogue of (5 · 24) 

together with (5 · 23). Combining these results, we finally get the equation of 

motion of (N1 - N2) : 

- d
2 

(N1-N2) = -2wo 2 (J! 2 N 1 -p 1 N~-) + (c12-c22)P'2(Nl-N2). 
dt2 

. P1 + P2 
(5. 27) 

Substituting (5. 23) into (5 · 24) and taking the Fourier transforms of the re

sulting equation and (5 · 27), we find: 

w2(N1-N2). = 
2w

02
--(p2Nl-p1N2) +k2(c12N1-c22N2), 

PI +P2 

w2
(Nl +N2) =k2(c12N1 +c2

2
N2). (5· 28) 

Equations (5 · 29) have a nontrivial solution if the following equation is satisfied : 
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Number-Phase Fluctuations in Two-Band Superconduc~ors 927 

4 2 2 2 2 2 2 2 { P1C1
2 
+ P2c2 

2 
} 2 2 4 _ {)) - {{J)o + Cc1 + C2) k} {)) + {J)o k ---------- + c1 C2 k -0 . 

P1 + P2 
(5. 29) 

This is just Eq. (3·14). We see that at long wavelengths (v1k<{J)0) the motion 
of the relative density is largely decoupled from that of the total density and 

governed mainly by the coherent transfer effect; at short wavelengths (vi~?>uJo), 

on the other. hand, the two bands are themselves decoupled and behave as in
dependent classical liquids (it goes without saying, of course, that we assume 

vJk<il1 ; if {)) 0<v2k<ilh 7hkrv il1 then only one hydrodynamic wave will persist). 
In the Coulomb case it is tempting but incorrect to assume N1 + N2~o from 

the start. Instead we shovld replace Eq. (5 · 22) by 

' 2 

e (N1 + N2) (r') dr' . 
lr-r'l 

This leads to the following equations in place of (5 · 28): 

{))
2 (N1- N2) =~ 0 ~- (p2N1---:- P1N2) + k2 (c12N1 -c22N2) + {))_ 2 (N1 + N2) , 

P1 + P2 

{J)
2
(Nl +N2) =k2

(c1
2N1 +c22N2) +{J)/CN1 +N2), 

where 

(5· 30) 

(5. 31) 

(5· 32) 

Since {J)/:>{))0
2

, c/k2 we may substitute N1 = - N 2 everywhere in the first equation 

except in the term containing {))_ 2 
; in the latter we must put 

N1 + N2 = Cc22- c12) k
2N1/ {))/ . 

Then the first of Eqs. (5·31) gives the dispersion relation 

{))
2 

= {J)o 2 + t k2
(c12 +c/) + t ({))_j {J)+Y (c/- C12

) P 

= {)) 2 + k2 { CP1 + P2) C1
2
C2 

2 
} 

0 
2 2 

P1C1 + P2c2 

(5· 33) 

(5. 34) 

in agreement with (3· 39). Again the long-wavelength behaviour is governed 

by the coherent transfer effect while the short-wavelength behaviour is that of 

two classical liquids coupled by the· Coulomb force. 

We can use this approach to show that the formula (5 · 34) is approximately 

correct throughout the whole region vk<ilh even if v 1 k~ il1. In this case 
we cannot of course treat the s-band as a perfect hydrodynamic liquid. 

However, the behaviour of the collective excitation is essentially determined by 
the unscreened density response functions in the two bands. Provided {J)<vlk, 

these are not changed much in the process of passing from v 1k<il1 to v1k?> il1 ; 
indeed in the limit {)) ___,. 0 the unscreened density response function for v1k?> il 1 

is essentially the normal-state compressibility' (of a fictitious neutral system) 
which is well-known to be identical to the superfluid-state compressibility to 
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928 A. J. Leggett 

order (L1/cp)2
• In the limit vk~LJ, w~L1, however, no collective excitation can 

be propagated except under very artificial assumptions. 

It is obvious, incidentally, that even in a normal two-band system a "hydro
dynamic" wave of the relative density will be able to propagate in a certain 

frequency region provided that the establishment of thermodynamic equilibrium 
within each band is very much faster than the establishment of equilibrium 

between the two bands, as is likely to be the case in a pure specimen. Such 

a wave would have the velocity v given by (3 · 39), with a frequency which 

goes to zero with k instead of tending to the finite limit w0• It is possible that 
the experimental observation of this wave would be rather easier than that of 

. the effect discussed in this paper, and it would in. itself be of some interest. 

To conclude this discussion we write down for reference the forms of the 
various response functions of the particle densities in the two bands; more 
precisely, the retarded Green functions 

in the standard notation. These response functions may be straightforw?-rdly 
obtained by adding appropriate driving terms representing external potentials 

to Eqs. (5 · 28) or (5 · 31); it is essential to remember that these will affect the 

term containing w0
2 as well as the terms in c/P. After a short calculation we 

get for the neutral case 

XI2=X21 = (- w2wo2PIP2 )Q-I(k, w)' 
PI+ P2 

(5. 35) 

where Q(kw) is the quantity on the left-hand side of (5·29). X22 is obviously 

obtained from Xu by interchanging the suffices 1 'and 2. Notice that in the 

static limit all the correlation functions are independent of k. For the Coulomb 

case we have the simpler result 

PIP2 W
2
(k) 

Xu = X22 = - XI2 = - X21 = PI + p
2 

{})2 _ {}) 2-(k) ' (5· 36) 

when w2 (k) is the quantity on the right-hand side of (5 · 34). It follows from 
(5 · 36) that any correlation function in which the total density NI + N2 appears 

must be zero, as we should expect. 

§ 6. Conclusion 

In this paper we have shown that in a clean two-band superconductor the 
dependence of the energy on the relative phase of the two condensates as well 
as on their relative density gives rise to a peculiar kind of collective excitation. 
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Although this excitation is in principle analogous to the transverse collective 
excitations in ordinary superconductors, it has a number of distinguishing 

features. ·First, it is probably the only case in which a reasonable estimate of 

the frequency of a collective mode in a superconductor can be made from 
available experimental data (we have no way of estimating the higher harmonics 

of the pairing interaction in an ordinary superconductor from experiment). 

Secondly, it is well separated from the single-particle excitation threshold; we 

saw that for niobium w/2.11"-/0.6. Thirdly, it is possible to give a very clear 

physical picture of the nature of the excit~tion; it corres~onds to small fluctu

ations of the relative phase of the two condensates around its equilibrium value 
(or, equivalently, to small fluctuations of the canonically conjugate variable, the 

relative density). In view of these points it is of considerable interest from a 

theoretical point of view. , 

From the point of view of experiment, we have seen that although direct 
observation of the resonance itself is probably not feasible at present, its effect 

on the ultrasound velocity should be easily observable and, under favoutable 
conditions, yield its dispersion curve. Such an experiment would provide an 

extremely interesting confirmation of the basic hypotheses of the two-band theory 
of superconductivity. 
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