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Abstract

Number restrictions are concept constructors
that are available in almost all implemen-
ted description logic systems. However, even
though there has lately been considerable ef-
fort on integrating expressive role construc-
tors into description logics, the roles that may
occur in number restrictions are usually of a
very restricted type. Until now, only langua-
ges with number restrictions on atomic roles
and inversion of atomic roles, or with num-
ber restrictions on intersection of atomic roles
have been investigated in detail.

In the present paper, we increase the expres-
sive power of description languages by allo-
wing for more complex roles in number re-
strictions. As role constructors, we consider
composition of roles (which will be present
in all our languages), and intersection, union
and inversion of roles in different combina-
tions. We will present two decidability re-
sults (for the basic language that extends A~U
by number restrictions on roles with com-
position, and for one extension of this lan-
guage), and three undecidability results for
three other extensions of the basic language.

1 Motivation and introduction

Description logics is a field of knowledge representa-
tion in which there is a rather close interaction bet-
ween theory and practice. On the one hand, there
are various implemented systems based on description
logics, which offer a palette of description formalisms
with differing expressive power [Peltason,1991; Brach-

man et a/.,1991; MacGregor,1991; Mays et al.,1991;
Baader et al.,1994; Bresciani et al.,1995]. On the
other hand, the computational properties (like de-
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cidability, complexity) of various description forma-
lisms have thoroughly been investigated [Nebel,1988;

Schmidt-Schauss,1989; Patel-Schneider,1989; Donini
et a/.,1991a; 1991b]. These investigation were often
motivated by the use of certain constructors in systems
or the need for these constructors in specific applicati-
ons [Baader & Hanschke,1993; Franconi,1994], and the
results have influenced the design of new systems.

The terminological formalisms of knowledge represen-
tation systems based on description logics provide con-
structors that can be used to build complex concepts
and roles out of atomic concepts (unary predicates)
and roles (binary predicates). Until recently, the main
emphasis, both in implemented systems and in theo-
retical research, was on constructors for building com-
plex concepts. The need for rich role constructors in
certain application domains (such as representing rich
schema languages for databases [Calvanese et a/.,1994;
1995], or domains that require the appropriate
modeling of part-whole relations [Padgham & Lam-
brix,1994; Artale et a/.,1994; Sattler,1995]) has trigge-
red research on description languages that also pro-
vide for expressive role constructors [Baader,1990;
De Giacomo & Lenzerini,1995]. These investigations
were facilitated by the observation that the for-
malisms considered in description logics are very
similar to certain modal logics [Schild,1991; De
Giacomo & Lenzerini,1994]. In particular, well-known
modal logics, such as propositional dynamic logics

(PDL) and its extensions [Fischer & Ladner,1979; Ben-
Ari et a/.,1982; Harel,1984], provide for role construc-
tors like composition, union, transitive closure, and
inversion.

Number restrictions are concept constructors that are
available in almost all implemented description lo-
gic systems. They allow to restrict the number of
role successors of an individual w.r.t, a given role.
For example, if has-child is an atomic role and
person is an atomic concept, then we can describe
all persons having at most 2 children by the concept
person ~ (_< 2 has-child). In contrast to the rather
prominent rSle that number restrictions play in de-
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scription logics, the corresponding constructors in mo-
dal logic--so-called "graded modalities" [Fine,1972;
van der Hoek&De Rijke,1995]--have been studied
only recently, and thus there are not many results
available that could be transferred to description lo-
gics. In [De Giacomo&Lenzerini,1994], the problem
of adding number restrictions to PDL and various of
its extensions has been investigated in detail. Howe-
ver, even though the description languages conside-
red in this work have very expressive formalisms for
constructing complex roles, the roles that may occur
in number restrictions are restricted to atomic roles
and their inverse. To the best of our knowledge, the

only other well-investigated concept description lan-
guage with number restrictions on non-atomic roles is
AECAfT~, which allows for intersection of roles in num-
ber restrictions.

The present paper is a first attempt to overcome this
research deficit. It considers description languages
that extend MEg or MEg+ (the description logic equi-
valent to PDL) with number restrictions on complex

roles. As role constructors in number restrictions, we
will allow for composition (which will be present in
all our languages), and intersection, union, and inver-
sion of roles in different combinations. Number re-
strictions on roles with composition are particularly
interesting from a practical point of view since they
allow to impose restrictions on role successors for a
composed role without explicitly stating restrictions
on its atomic components. For example, the restric-

tion person[7 (= 17 has-childo has-child) describes
persons that have 17 grandchildren without explicitly
saying anything about the number of children, and the
number of children of each child. From a theoretical
point of view, number restrictions on roles with com-
position introduce a new level of complexity: the tree
model property (which most of the modal logics and
description logics investigated in the literature have) is
no longer satisfied (see Section 3.1). By adding inver-
sion of roles, we can express that a person has at least
5 siblings: person [7 (> 6 has-child -1 ohas-child);
intersection of roles can prohibit that a parent marries

his/her own child: (_< 0 has-childYlis-married-to);
union and composition can be used to describe that all
children have the same name as their parent:

(= 1 has-name [_] (has-childohas-name)).

Number restrictions on complex roles are not only of
interest in toy examples like the family domain used
above. Our original motivation for considering these
constructs comes from a process engineering applica-
tion, where planning and optimization of large che-
mical plants is supported by building process models.
The engineering knowledge concerning standard buil-
ding blocks of these models is to be represented in a
description logic system. For example, the concept
(device V1 (= 1 controlled-by))describes devices
that are controlled by a single control unit. If we want

to describe a device such that all devices connected
to it are controlled by the same control unit, we need
composition in the number restriction: (device [-1 (=
1 connected-to o controlled-by)). To assure that
the device itself is also controlled by the same unit con-
trolling the devices connected to it, we additionally

need union in the number restriction: (device [-1 (----
1 controlled-by U connected-toocontrolled-by)).
Inversion of roles comes in if we need the role controls
as well. There are also more complex properties of de-
vices and other parts of process models that could be
expressed with number restrictions on complex roles.
However, to be useful in practice, it is not sufficient
to have a description language that can just be used
to represent the relevant properties of objects. The
description logic system must also be able to reason
about the descriptions.

As a positive result in this direction, we show that

the subsumption and the satisfiability problem for the
language AggAf(o), which extends AlL with number
restrictions on roles built with composition, are deci-

dable. On the other hand, three extensions of this lan-
guage turn out to be undecidable: Af-E+with number
restrictions on roles built with composition and union;
MEg with number restrictions on roles built with com-

position and intersection; and MEg with number re-
strictions on roles built with composition, union, and
inversion. However, if union and intersection are re-
stricted to role chains of the same length, then we ob-
tain a decidable extension of Af_~.

In the next section, we introduce syntax and semantics
of the concept and role constructors that will be con-
sidered. Section 3.1 describes the algorithm that deci-
des satisfiability of AE_gAf(o)-concepts, and Section 3.2
extends this decidability result to number restrictions
on union and intersection of role chains of the same
length. The subsequent section sketches the undecida-
bility proofs, which all use a reduction of the domino
problem. In Section 5, we mention related decidability
and undecidability results from modal and description

logics.

2 Concept and role constructors

We define syntax and semantics of all the constructors
considered in the present paper, and introduce the de-
scription languages that will be investigated in more

detail.

Definition 1 Starting with atomic roles from a set

NR of role names, complex roles are built using the
role constructors composition (RoS), union (R 0 

intersection (R ~ S), inversion (R-I), and transitive
closure ( R+ ).

The set of Mr_E-concepts is built from a set Nc of
concept names using the concept constructors disjunc-
tion (C U D), conjunction (C N D), negation (-~C),
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value restriction (VR.C), and existential restriction
(3R.C), where the roles occurring in value restrictions

and existential restrictions are atomic roles. In flXC+-

concepts, the roles occurring in value restrictions and
existential restrictions may be complex roles that are
built using the constructors composition, union, and
transitive closure.

Number restrictions are concepts of the form (> n R)

or (< n R), where n C 1N is a nonnegative integer and
R is a complex role. For a set M C_ (kl, M,o, -1, +}

of role constructors, we call such a number restric-
tion an M-number restrictions iff R is built using
only constructors from M. The set of Af~Af(M)-

concepts (resp. AEC+Af(M)-concepts) is obtained from

flffff.-concepts (resp. M/~+-coneepts) by additionally al-
lowing for M-number restrictions in concepts.

As usual in description logics, the extensions of con-
cepts and roles involving the constructors introduced
above are defined inductively on the structure of com-
plex concepts and roles.

Definition 2 An interpretation I = ( Az, .z) consists

of a set Az, called the domain of l, and an extension
]unction .z that maps every concept to a subset of Az,

and every (complex) role to a subset of z ×Azsuch
that the followings equalities are satisfied:

(R1 n R2)Z= z n R2z,

(R1 ii R2)z_- R1z u R2I,

(RloR2)Z= {(d,f) z x Az ] 3 e E Az :

(d, e) ¯ ^ (e, S) ̄  
{(e,d) × I (d,e) 

(R+)Z= U _>I (RZ)i,

(Cn D)Z= z MDz ,

(C tJ D)Z= z uDz,

~CZ= Az \ z,

(3R.C)Z= {d ¯ z I 3e¯ AZ:
(d,e) ¯ z A e ¯ Cz},

(VR.C)Z= (d z I V e ¯ AZ:

(d,e) RZ~e ¯ C Z},
(>nR)Z={d¯ Azl#{e¯Azl(d,e) ¯R z} >n},

(<nR)Z=-{d¯ Azl#{e¯Azi(d,e) ¯R z} <n}.

Here # X denotes the size of a set X. If d ¯ Cz, we
say that d is an instance of C in Z. If (d,e) ¯ Rz,

we say that d is an R-predecessor of e, and e is an
R-successor of d in I.

A concept C is called satisfiable iff there is some in-
terpretation 2: such that CI # 0. We call such an
interpretation a model of C. A concept D subsumes a

concept C (written C E D) if[ for all interpretations 
we have Cz C_ Dz. Since all the languages considered
in the present paper allow for negation and conjun-
ction of concepts, subsumption and (un)satisfiability
can be reduced to each other:

¯ C E D if[ C n -~D is unsatisfiable,

¯ C is unsatisfiable iff C _ A n -~A (for a concept

name A).

For this reason, we may restrict our attention to the
satisfiability problem, both in the decidability and in
the undecidability proofs.

3 Decidability results

In the first part of this section, we show that satisfia-
bility of AECAf(o)-concepts is decidable. This result
is extended in the second part to a description lan-
guage where, additionally, union and intersection of
role chains of the same length are allowed in number
restrictions.

3.1 .AfLAf(o) is decidable

We present a tableau-like algorithm for deciding sa-
tisfiability of MECAf(o)-concepts. The algorithm and
the proof of its correctness are very similar to exi-
sting algorithms and proofs for languages with num-

ber restrictions on atomic roles [Hollunder et al.,1990;
Hollunder&Baader,1991]. It should be noted, howe-
ver, that the presence of number restrictions on role
chains of the form R1 oR2 o...oRn with n > 1 has as
consequence that the finite models generated by the
algorithm need no longer be tree models. A tree model
of a concept C is an interpretation such that (1) every
element of the model can be reached from an initial

(root) element, which is an instance of C, via role
chains, (2) the root does not have a role predecessor,
and (3) every other element has exactly one role prede-
cessor. The following .Atl2Af(o)-concept is satisfiable,
but it obviously does not have a tree model:

(3R.A) n (3R.-~A) M (VR.(3S.B)) M (< 

Nevertheless, the models that will be generated by our
algorithm are very similar to tree models in that pro-
perties (1) and (2) are still satisfied, and every 
chain from the root to an element has the same length
(even though there may exist more than one such
chain). This fact will become important in the proof

of termination.

As usual, we assume without loss of generality that
all concepts are in negation normal form (NNF), i.e.,
negation occurs only immediately in front of concept
names. The basic data structure our algorithm works
on are constraints:

Definition 3 Let 7 = {x, y, z,...} be a countably in-

finite set of individual variables. A constraint is of the
form

xRy, x:D, or x#y, 1

1We consider such inequalities as being symmetric, i.e.,
if x ~ y belongs to a constraint system, then y # x (impli-
citly) belongs to it as well.
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where R is a role name, x, y are individual variables,
and D is an Af_CAf(o)-concept in NNF. constraint
system is a set of constraints. For a constraint system
S, let Ts C T denote the individual variables occuring
in S.

An interpretation Z is a model of a constraint system
S iff there is a mapping ~ : TS -+ AZ such that Z, 7r
satisfy each constraint in S, i.e.,

(~(x), ~(y)) ~ for all xRy e S,

r(x) ~ ~r(y) for all (x ~ y) E 

7r(x) e z for all x : D ̄  S.

For a constraint system S, individual variables x, y,
and role names Ri, we say that y is an Rio...oRm-

successor of x in S iff there are Y0,.-.,Ym ¯ T such
that x = Yo,Y = ym, and {yiRi+ly~+l [ 0 < i < m-

1} C_ S. S contains a clash iff {x:A,x:-~A} C S for
some concept name A and some variable x ¯ TS, or

X :(_< n R) ¯ S andx has ~ > n R-successors YI,... ,Ye
in S such that for all i ~ j we have Yi ~ Yj ¯ S. A

constraint system S is called complete iff none of the
completion rules given in Figure 1 can be applied to
S. In these rules, the constraint system S[y2/yl] is
obtained from S by substituting each occurrence of y2
in S by Yl.

Figure 1 introduces the completion rules that are used
to test AECAf(o)-concepts for satisfiability. The com-
pletion algorithm works on a tree where each node is
labelled with a constraint system. It starts with the
tree consisting of a root labelled with S = {x0 : C0},
where Co is the AECAf(o)-concept in NNF to be tested
for satisfiability. A rule can only be applied to a leaf
labelled with a clash-free constraint system. Applying
a rule S ~ Si, for 1 < i < n, to such a leaf leads to the
creation of n new successors of this node, each labelled
with one of the constraint systems Si. The algorithm
terminates if none of the rules can be applied to any

of the leaves. In this situation, it answers with "Co
is satisfiable" iff one of the leaves is labelled with a
clash-free constraint system.

Correctness of this algorithm is an immediate conse-
quence of the following facts:

Lemma 4 Let Co be an AfLAf(o)-concept in NNF,
and let S be a constraint system obtained by applying
the completion rules to {x0:C0}. Then

1. For each completion rule T~ that can be applied to
S, and for each interpretation Z we have Z is a
model of S iff Z is a model of one of the systems
S~ obtained by applying T~.

2. If S is a complete and clash-free constraint sy-

stem, then S has a model.

3. If S contains a clash, then S does not have a mo-
del.

4. The completion algorithm terminates when ap-
plied to (x0 : Co}.

Indeed, termination shows that after finitely many

steps we obtain a tree such that all its leaf nodes are
labelled with complete constraint systems. If Co is sa-

tisfiable, then {x0 : Co } is also satisfiable, and thus one
of the complete constraint systems is satisfiable by (1).
By (3), this system must be clash-free. Conversely, 
one of the complete constraint systems is clash-free,

then it is satisfiable by (2), and because of (1) 
implies that {x0 : Co} is satisfiable. Consequently, the
algorithm is a decision procedure for satisfiability of
AECAf(o)-concepts:

Theorem 5 Subsumption and satisfiability of
AECAf ( o )-concepts is decidable.

Proof of Part 1 of Lemma 4: We consider only

the rules concerned with number restrictions, since the
proof for Rules 1-4 is just as for AC_C.

5. Number restriction: Assume that the rule is ap-
plied to the constraint x :(:> n Rio...oRm), and
that its application yields

S’ -- S U {xRly2, ymRmz}
U {yiRiyi+l ] 2 < i < m-1}

U {z ~ w ] w is an
R1 o...oRm-successor of x in S).

Since S is a subset of S’, any model of S’ is also
a model of S.
Conversely, assume that Z is a model of S, and
let ~r : TS -+ AZ be the corresponding mapping
of individual variables to elements of Az. On the

one hand, since Z satisfies x :(> n R1 o...oRm),
~r(x) has at least n R1 o... o Rm-successors 
Z. On the other hand, since Rule 5 is applica-

ble to x:(_> n Rlo...oRm), x has less than n

R1 o... oRm-successors in S. Thus, there exists
an R1 o... o Rm-successor b of ~r(x) in Z such
that b ¢ It(w) for all RlO...oRm-successors w
of x in S. Let b2,...,bm ¯ /kz be such that
(~(x),b2) L (b2 ,b3) ¯ R L. ..,(bm,b) ¯ R
We define 7d : TS, --+ AZ by u’(y) := 7~(y) 
all y ¯ TS, 7r’(yi) := bi for all i,2 < i < m, and
7~’(z) := b. Obviously, Z,u’ satisfy ~.

6. Number restriction: Assume that the rule can
be applied to x:(< n Rio...oRm) ¯ S, and let
Z together with the valuation r : ~’s --+ Az be

a model of S. On the one hand, since the rule
is applicable, x has more than n R1 o... oRm-
successors in S. On the other hand, Z, r satisfy

x :(< m Rio...oRm) ¯ S, and thus there are two
different Rio...oRm-successors yl, y2 of x in S such
that r(yl) = ~r(y2). Obviously, this implies 

(Yl ~ y2) ¢ S, which shows that Sy1,y2 = S[y2/yl]
is one of the constraint systems obtained by app-
lying Rule 6 to x :(< n Rio...oRm). In addition,
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1. Conjunction" If x :(C1 f3 C2) E S and x:C1 ¢ S or x:C2 ¢[ S, then

S.-~ SU{x:CI,x:C2}

2. Disjunction: If x :(C1 LI C2) E S and x : C1 ¢ S and x : C2 ¢ S, then

S-+ Sl=SU{x:C1}
S-~ S2=Su{x:C2}

3. Value restriction: If x :(VR.C) E S for a role name R, y is an R-successor of x in S and y : C ~ S, then

S--+ SU{y:C}

4. Existential restriction: If x :(3R.C) E S for a role name R and there is no R-successor y of x in 

with y : C E S, then

S --+ S U {xRz, z : C} for a new variable z E T \ TS.

5. Number restriction: If x :(> n R1 o...oRm) E S for role names R1,..., Rm and x has less

than n R1 o...oRm-successors in S, then

S--+ SU{xRly2,ymRmz}U{yiRiyi+l i 2 < i < m-1}U

{z ~ w I w is an R1 o...oRm-successor of x in S}

where z, Yi are new variables in v \ TS.

6. Number restriction: If x :(<_ n Rio...oRm) E S, x has more than n Rio...oRm-successors in S,

and there are R1 o...oRm-successors Yl, y2 of x in S with (Yl ~ Y2) ~ S, then

s --, =
for all pairs Yl, Y2 of Rio...oRm-successors of x with (yl # y2) ~ 

Figure 1: The completion rules for AECAf(o)

since 7r(yl) = 7r(y2), Z,~r satisfy Sy,,y2.

Conversely, assume that Syl,y 2 = S[y2/yI] is ob-
tained from S by applying Rule 6, and let 5[ to-

gether with the valuation zr be a model of Syl,u2.
If we take a valuation zr~ that coincides with 1r

on the variables in TS,,.~2 and satisfies 7rl(y2) ----

/r(yl), then Z, ~ obviously satisfy S.

Proof of Part 2 of Lemma 4: Let S be a complete
and clash-free constraint system that is obtained by
applying the completion rules to {Xo : Co}. We define

a canonical model Z of S as follows:

Az := Ts and

for allAEArc: x E Az iff x : A E S,
for allRENR: (x,y) ERz iff xRyES.

In addition, let 7r : TS -~ AZ be the identity on TS. We
show that Z, r satisfy every constraint in S.

By definition of E, a role constraint of the form xRy
is satisfied by Z, lr iff xRy E S. More generally, y is an
Rio...oRm-successor of x in S iff y is an R1 o...oRm-
successor of x in Z. We show by induction on the
structure of the concept C that every concept con-
straint x : C E S is satisfied by Z, zr. Again, we restrict

our attention to number restrictions since the induc-
tion base and the treatment of the other constructors
is just as for Af_C.

Consider x:(> n Rlo...oRm) E S. Since 
is complete, Rule 5 cannot be applied to x:(_>

n Rio...oRm), and thus x has at least n Rio...oRm-
successors in S, which are also R1 o... o Rm-
successors of x in Z. This shows that Z, zr satisfy

x:(> n Rio...oR,,).
Constraints of the form x :(< n R1 o...oRm) E 
are satisfied because S is clash-free and complete.

In fact, assume that x has more than n Rio...oRm-
successors in Z. Then x also has more than n Rio
...oR,n-successors in S. If S contained inequality
constraints yi ~ yj for all these successors, then
we would have a clash. Otherwise, Rule 6 could
be applied.

Proof of Part 3 of Lemma 4: Assume that S con-

tains a clash. If {x:A,x:-~A} C_ S, then it is clear
that no interpretation can satisfy both constraints.

Thus assume that x:(< n R) E S and x has ~ > 
R-successors Yl,...,Ye in S with (Yi ~ Yj) E S for

all i ~ j. Obviously, this implies that in any mo-
del Z, zr of S, 7r(x) has ~ > n distinct R-successors
lr(yl),...,zr(ye) in Z, which shows that Z, Tr cannot

satisfy x :(< n R).

Proof of Part 4 of Lemma 4: In the following,
we consider only constraint systems S that are obtai-
ned by applying the completion rules to {Xo : Co}. For
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a concept C, we define its and/or-size ICIn,u as the
number of occurrences of conjunction and disjunction
constructors in C. The maximal role depth depth(C)

of C is defined as follows:

depth(A) := depth(-,A) := 0 for A E Nc,

depth(C1 r7 C2) := max{depth(C1), depth(C2)},

depth(el tJ C2) := max{depth(C1), depth(C2)},

depth(VR1.C1) := depth(3R~.C~) := 1 + depth(C~),

depth(> n R1 o...oRm) := 

depth(< n R1 o...ORm) := m.

For the termination proof, the following observations,
which are an easy consequence of the definition of the
completion rules, are important:

[,emma 6 1. Every variable x ~ Xo that occurs in

S is an Rio...oRm-successor Of Xo for some role
chain o] length m > 1. In addition, every other

role chain that connects xo with x has the same
length.

2. If x can be reached in S by a role chain o/ length

m from Xo, then/or each constraint x:C in S,
the maximal role depth of C is bounded by the
maximal role depth o/ Co minus m. Consequently,
m is bounded by the maximal role depth of Co.

Let mo be the maximal role depth of Co. Because
of the first fact, every individual x in a constraint sy-
stem S (reached from {xo : Co) by applying completion
rules) has a unique role level level(x), which is its di-
stance from the root node Xo, i.e., the unique length of
the role chains that connect Xo with x. Because of the
second fact, the level of each individual is an integer

between 0 and m0.

In the following, we define a mapping ~ of constraint
systems S to 5(too + 1)-tuples of nonnegative integers
such that S --+ S’ implies ~(S) ~- ~(S~), where ~- 
notes the lexicographic ordering on 5mo-tuples. Since
the lexicographic ordering is well-founded, this implies
termination of our algorithm. In fact, if the algorithm

did not terminate, then there would exist an infinite
sequence So --+ $1 --+ ..., and this would yield an infi-
nite descending ~--chain of tuples.

Thus, let S be a constraint system that can be reached
from {x0 : Co} by applying completion rules. We define

,,(s) 
where ~t := (k~,l, kt,2, kt,3,kt,4,kt,5) and the compo-

nents k~,i are obtained as follows:

¯ kt,1 is the number of individual variables x in S
with level(x) = 

¯ kt,2 is the sum of the and/or-sizes ICIN,u of all
constraints x:C E S such that level(x) = and
the conjunction or disjunction rule is applicable

to x:C in S.

¯ For a constraint x :(_> n Rio...oRm), let k be the
maximal cardinality of all sets M of R1 o...oRm-
successors of x for which yl ~ yy C S for all pairs
of distinct elements Yi, Yj of M. We associate with

x:(> n R1o...oRm) the number r := n - k, if
n > k, and r := 0 otherwise, ke,3 sums up all

the numbers r associated with constraints of the
form x:(> n Rlo...oRm) for variables x with
level(x) = 

¯ kt,4 is the number of all constraints x :(3R.C) E 
such that level(x) -- £ and the existential restric-
tion rule is applicable to x :(3R.C) in 

¯ k~,5 is the number of all pairs of constraints
x :(VR.C), xRy E such th at le vel(x) = and the
value restriction rule is applicable to x :(VR.C),
xRy in S.

In the following, we show for each of the rules of Fi-
gure 1 that S --~ S~ implies ~(S) ~- n(S’).

1. Conjunction" Assume that the rule is applied to
the constraint x:C1 ~ C2, and let S~ be the sy-
stem obtained from S by its application. Let

:= level(x).
First, we compare ~t and ~, the tuples respec-
tively associated with level ~ in S and SC Ob-
viously, the first components of ~t and ~ ag-
ree since the number of individuals and their le-
vels are not changed. The second component
of ~ is smaller than the second component of

~t: [C1 [7 C2[n,u is removed from the sum, and
replaced by a number that is not larger than

IC11n,u + IC21n,u (depending on whether the top
constructor of C1 and 6’2 is disjunction or con-
junction, or some other constructor). Since tuples
are compared with the lexicographic ordering, a
decrease in this component makes sure that it is
irrelevant what happens in later components.

For the same reason, we need not consider tu-
ples nm for m > ~. Thus, assume that m < ~.
In such a tuple, the first three components are
not changed by application of the rule, whereas
the remaining two components remain unchan-
ged or decrease. Such a decrease can happen if
level(y) = and S contains co nstraints yRx,
y :(VR.Ci) (or :(3R.Ci)).

2. Disjunction" This rule can be treated like the
conjunction rule.

3. Value restriction" Assume that the rule is ap-

plied to the constraints x :(VR.C),xRy, and let
St be the system obtained from S by its applica-
tion. Let ~ := level(x). Obviously, this implies

that level(y) = level(x) + 1 
On level £, the first three components of ~t re-
main unchanged; the fourth remains the same,
or decreases (if S contains constraints zSy and

z :(3S.C) for an individual z with level(z) = ~);
and the fifth decreases by at least one since the
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constraints x :(VR.C), xRy are no longer counted.
It may decrease by more than one if S contains
constraints zSy and z :(VS.C) for an individual 

with level(z) = 
Because of this decrease at level g, the tuples
at larger levels (in particular, the one for level
level(x) 1, where the re might be an increase),

need not be considered.
The tuples of levels smaller than e are not chan-
ged by application of the rule. In particular, the
third component of such a tuple does not change
since no role constraints or inequality constraints
are added or removed.

4. Existential restriction: Assume that the rule is
applied to the constraint x :(3R.C), and let S’ 
S U {xRy, y : C} be the system obtained from S

by its application. Let e := level(x). Obviously,
this implies that level(y) = level(x) + 1 
The first two components of ~e obviously remain
unchanged. The third component may decrease
(if y is the first successor for an at-least restric-
tion) or it stays the same. Since the fourth com-
ponent decreases, the possible increase of the fifth
component is irrelevant.
For the same reason, the increase of the first com-
ponent of ~e+i is irrelevant.
Tuples of levels smaller than t~ are not increased by
application of the rule. All components of such a

tuple remain unchanged, with the possible excep-
tion of the third component, which may decrease.

5. Number restriction: Assume that the rule is ap-

plied to the constraint x :(> n Ri o...oRm) E S,
let S’ be the system obtained by rule application,

and let ~ = level(x).
As for Rule 4, the first two components of ~e re-

main the same. In addition, there is a decrease
in the third component of t~e, since the new indi-
vidual z can now be added to the maximal sets
of explicitly distinct Ri o...o Rm-successors of x.
Note that these sets were previously smaller than
n (because even the set of all Rio...oRm-successors
of x was smaller than n).
For this reason, the possible increase in the fifth
component of ~e and in the first components of
tuples of levels larger than t are irrelevant.Tuples
of levels smaller than ~ are either unchanged by
application of the rule, or their third component
decreases.

6. Number restriction: Assume that the rule is ap-
plied to the constraint x :(< n Ri o...oRm) E S,
let S~ = Sy1,~2 be the system obtained by rule ap-
plication, and let e = level(x).

On level ~ + m, the first component of the tuple

~e+,~ decreases. Thus, possible increases in the
other components of this tuple are irrelevant.
Tuples associated with smaller levels remain un-
changed or decrease. In fact, since Yi in S~ has all
its old constraints and the constraints of y2 in S,

some value restrictions or existential restrictions
for individuals of the level immediately above level

+ m may become satisfied (in the sense that the
corresponding rule no longer applies). Since no
constraints are removed, previously satisfied value

restrictions or existential restrictions remain sa-
tisfied. The third component of tuples of smaller
level cannot increase since the individuals Yi, Y2
that have been identified were not related by ine-
quality constraints. ..

For languages where number restrictions may
contain--in addition to composition--union or inter-
section of roles, an important property used in the

above termination proof is no longer satisfied: It is
not possible to associate each individual generated by
a tableau-like procedure with a unique role level, which
is its distance to the "root" individual x0 (i.e., the in-
stance Xo of Co to be generated by the tableau algo-
rithm). Indeed, in the concept

Co := (3R.3R.A) ~ (< 1 R U RoR),

the number restriction enforces that an R-successor
of an instance of Co is also an R o R-successor of this
instance. For this reason, an R-successor of the root
individual must be both on level 1 and on level 2, and
thus the relatively simple termination argument that
was used above is not available for these larger langua-
ges. However, as we shall show in Section 3.2, this ter-
mination argument can still be used if union and inter-
section are restricted to role chains of the same length.
Without this restriction, satisfiability may become un-
decidable: in Section 4, we show that satisfiability is

in fact undecidable for A~A[(o, 9). For A52A/’(o, 
decidability of satisfiability is still an open problem.

3.2 An extension of the decidability result

The algorithm given in Section 3.1 will be extended
such that it can also treat union and intersection of
role chains that have the same length. The proof of
soundness, completeness and termination of this ex-
tended algorithm is very similar to the one for the
basic algorithm, and will thus only be sketched.

In the remainder of this section, a complex role is

¯ a role chain ~ = Rio...oRn, or

¯ an intersection T~ = Ri o... o Rn n $1 o... o Sn of
two role chains of the same length, or

¯ a union T~ = Rio...oR,, U Sio...oSn of two role
chains of the same length.

The satisfiability algorithm is extended by adding two
new rules 5a and 5b to handle number restrictions
(_> n T~) for complex roles with union or intersection,
and by substituting rule 6 by a new rule 6’ that is
able to handle the new types of complex roles. To for-
mulate the new rules, we must extend the notion of



5a. Number restriction: If x :(_> n R1 o...oRm U S1 o...oSm) E S and x has less than n

(R1 o...oRm U S1 o...oSm)-successors in S, then

S ~ S1 -- Su {xRly2,YmRmZ} U {yiRiyi+i I 2 < i < rn- 1} U

{z ~ w I w is an (Rio...oRm U S1 o...oSm)-Successor of x in S}

S -~ $2 -- S U {xSlY2, YmSmZ} U {yiSiyi+i t 2 < i < m - 1} U

{z ~ w I w is an (Rlo...oRm U Slo...oSm)-successor of x in 

where z, Yi are new variables in ~- \ TS.

5b. Number restriction: If x :(> n R1 o...ORm I7 S1 o...OSm) E S and x has less than 

(R1 o...oRm [7 S1 o...OSm)-Successors in S, then

S ~ S U {xRly2,xSly~,ymRmZ,Y’mSmZ } U {yiR~yi+l,Y~SiY~+i I 2 < i < m - 1} U

{z ¢ w ] w is an (Rlo...oRm R Slo...oSm)-successor of x in S}

where z, y~, Yi are new variables in T \ TS.

6’. Number restriction: If x :(< n T~) E S for some complex role 7~, x has more than n T~-successors

in S, and there are T~-successors yl,y2 of x in S with (Yl ~ Y2) ~ S, then

for all pairs Yl,Y2 of T~-successors of x with (Yl ~ Y2) ~ 

Figure 2: The additional completion rules.

a role successor in a constraint system appropriately.
Building up on the notion of a role successor for a role
chain, we define:

¯ y is an (Rio...oRn U Slo...oSn)-successor of x 
S iff y is an Rio...oRn-successor or an Slo...oSn-

successor of x in S, and

¯ y is an (RlO...oRn ~ S1 o...oSn)-successor 
x in S iff y is an R1 o... oRn-successor and an

S1 o...oSn-successor of x in S.

Obviously, this definition is such that role successors
in S are also role successors in every model of S: if
Z, ~r satisfy S, and y is an T~-successor of x in S for a

complex role T~, then lr(y) is an 7~-successor of 7r(x)
in/:.

The new rules are described in Figure 2. The rules 5a,
5b are added to the completion rules, whereas rule 6’
substitutes rule 6 in Figure 1.

To show that the new algorithm obtained this way
decides satisfiability of concepts for the extended lan-
guage, we must proof that the four parts of Lemma 4
still hold.

1. Local correctness of the rules 5a, 5b and 6’ can be
shown as in the proof of Part 1 of Lemma 4 above.

2. The canonical model induced by a complete and
clash-free constraint system is defined as in the
proof of Part 2 of Lemma 4. The proof that this
canonical model really satisfies the constraint sy-
stem is also similar to the one given there. Note
that our notion of an ~-successor of a complex
role 7~ in a constraint system was defined such

.

.

that it coincides with the notion of an 7~-successor
in the canonical model I induced by the con-
straint system.

The proof that a constraint system containing a
clash is unsatisfiable is the same as the one gi-
ven above. Note that this depends on the fact
that role successors in a constraint system are also
role successors in every model of the constraint
system.

The proof of termination is also very similar to
the one given above. The definition of the depth
of a concept is extended in the obvious way to
concepts with number restrictions on complex ro-

les:

depth(>_nRlo...oRmf7Slo...OSm) := m,

depth(>nRlo...oRmUSlo...OSm) :--- m,

depth(<nRlo...oRmNSlo...oSm) := m,

depth(<nRlO...oRmUSlo...oSm) := m.

Because the role chains in complex roles are of the
same length, it is easy to see that Lemma 6 still

holds. Thus, we can define the same measure a(S)
as above for all constraint systems obtained by ap-
plying the extended completion rules to {xo : C0}.
It is easy to see that the proof that S --+ S’ implies

to(S) ~- ~(S’) can be extended to the new rules.
It should be noted that the proof given above was
already formulated in a more general way than ne-
cessary for the language considered there. In fact,
we have only used that all role chains connecting
two individuals have the same length (which is
still satisfied for the extended language), and not

- 10-



that these role chains also have the same name
(which is only satisfied for AEgAf(o)).

The following theorem is an immediate consequence of
these observations:

Theorem 7 Subsumption and satisfiability is decida-

ble for the language that extends AECAf (o) by number
restrictions on union and intersection of role chains of
the same length.

4 Undecidability results

We will use a reduction of the domino problem--
a well-known undecidable problem [Knuth,1968;
Berger,1966] often used in undecidability proofs in
logic--to show that concept satisfiability is undeci-
dable for three extensions of the decidable language
ALUAf(o) considered in the previous section.

Definition 8 A tiling system 7) = (D, H, V) is 
ven by a non-empty set D = {D1,... ,D~} of domino
types, and by horizontal and vertical matching pairs
H C_ D x D, V C_ D × D. The domino problem asks
for a compatible tiling of the first quadrant IN x IN of
the plane, i.e., a mapping t : IN x IN --+ D such that
for all m, n E IN:

(t(m, n), t(m 1,n)) ¯ H (t (m, n), t( m, n1)) ¯

In order to reduce the domino problem to satisfiability

of concepts, we must show how a given tiling system
7) can be translated into a concept E~ (of the lan-
guage under consideration) such that Ez) is satisfiable
iff 7) allows for a compatible tiling. This task can be
split into three subtasks, which we will first explain
on an intuitive level, before showing how they can be
achieved for the three concept languages under consi-
deration.

Task 1: It must be possible to represent a single
"square" of IN x IN, which consists of points

(n, m), (n, m + 1), (n + 1, m), and (n + 1, 
The idea is to introduce roles X, Y, where X goes
one step into the horizontal (i.e. x-) direction, and
Y goes one step into the vertical (i.e. y-) direction.
The concept language must be expressive enough
to describe that an individual (a point (n, m)) 
exactly one X-successor (the point (n + 1,m)),
exactly one Y-successor (the point (n,m ÷ 1)),

and that the X o Y-successor coincides with the
YoX-suceessor (the point (n + 1,m + 1)).

Task 2: It must be possible to express that a tiling is
locally correct, i.e., that the X- and Y-successors
of a point have an admissible domino type. The
idea is to associate each domino type Di with an
atomic concept Di, and to express the horizontal
and vertical matching conditions via value restric-

tions on the roles X, Y.

Task 3: It must be possible to impose the above lo-

cal conditions on all points in IN x IN. This can
be achieved by constructing a "universal" role U
and a "start" individual such that every point is

a U-successor of this start individual. The local
conditions can then be imposed on all points via
value restrictions on U for the start individual.

Task 2 is rather easy, and can be realized using the
Af_C-concept Cz) given in Figure 3. The first con-
junct expresses that every point has exactly one do-
mino type, and the value restrictions in the second
conjunct express the horizontal and vertical matching
conditions.

Task 1 can be achieved in any extension of Af_CAf(o)
with either union or intersection of roles in number
restrictions: see the concepts Cu and Cn in Figure 3.

Task 3 is easy for languages that extend Af~+ and
more difficult for languages without transitive closure.
The general idea is that the start individual s is an
instance of the concept Ez) to be constructed. From
this individual, one can reach via U the origin (0, 0)
of IN × IN, and all points that are connected with the

origin via arbitrary X- and Y-chains.

(1) In extensions of AEC+ we can use an atomic role R
to reach the origin, and the complex role R U (Ro(X 
Y)+) to reach every point. Thus, the tiling system 
can be translated into the Af~+Af(o, U)-concept

E(~) := (= 1 R) R (V(R (Ro(X U Y)+)).(Cu [7 Co)

We can even restrict the complex role in the value
restriction to a simple transitive closure of an atomic

role. To achieve this, we make sure that the X- and
the Y-successors of a point are also R-successors of this
point. This allows us to use R+ in place of R U (Ro

(X u Y)+) as "universal" role: see the concept ’)

in Figure 3.

(2) In A£gAf(o, -1 ), we explicitly int roduce a r ol

name U for the "universal" role, and use number re-
strictions involving composition, union, and inversion
of roles to make sure that the start individual is direc-
tly connected via U with every point: see the concept

E(v2) in Figure 3. The number restrictions inside the
value restriction make sure that every point p that is

reached via U from the start individual satisfies the fol-
lowing: Its X-successor and its Y-successor each have
exactly one U-predecessor, which coincides with the
(unique) U-predecessor of p, i.e., the start individual.
Thus, the X-successor and the Y-successor of p are
also U-successors of the start individual.

(3) For AECAf(o, [7), a similar construction is possible 
we introduce role names R and T. The intuition is that
T plays the r61e of the inverse of R (except for one in-
dividual), and the "universal" role corresponds to the
composition RoToR: The start individual s (which
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CD :~

Cu :=

Cn :=

Uz<i<m(D~ Iq (R,<j<,,, -,Dj)) rq [-]l<i<m(Di ~ ((VX.(U(D,,Dj)eH Dj)) Iq (VY.(U(D,,Dj)eV Dj)))),
i#j

(= 1 X) FI (= 1 Y) FI (= XoY) F1(= 1 YoX) Iq (= 1 YoXLJ XoY)

(= i x) n (= 1 Y) n (= i Xor) n (= 1 YoX) YoX nXoY),

’) := (= 1 R) n (VR+.(C. n n (> 2 R) n (_< 2 R u X 

E.-~) := (_> 1 U) FI (VU.(Cu FI C~ n (= XoU-’) rl (= 1 YoU-1) J-] (__~1 U-1 U YoU- 1 U XoU-1))).

E~) := (=lRnRoToR) 

(VR.VT.VR. (Ca Iq C~ lq (_< 1 T) I"1 (VY.(_< 1 T)) lq (VX.(_< 

(= 1 T rq ZoTD YoT) rq (-- 1 Z ~ XoToR) rq (= 1 Y ~ YoToR)))

where A =~ B is an abbreviation for -~A LJ B and (= n R) is an abbreviation for (>_ n R) lq (< 

Figure 3: Concepts used in the undecidability proofs

is an instance of E(~)), has exactly one R-successor

P(0,0), which coincides with its RoToR-successor. The
individual P(0,0) corresponds to the origin of 1N x 1~.

Let s~ be the RoT-successor of s. The number restric-

tions of E~) make sure that P(o,0) satisfies the follo-
wing: It has exactly one T-successor, namely s~, which
coincides with the (unique) T-successors of its X- and
Y-successors. In addition, the (unique) X-successor 

P(o,o) is also an XoToR-successor of p(0,0), which makes
sure that the X-successor of P(0,o) is an R-successor 

s~, and thus an RoToR-successor of s. The same holds
for the Y-successor. One can now continue the argu-
ment with the X-successor (resp. Y-successor) ofp(o,0)
in place of P(0,o).

With the intuition given above, it is not hard to show
for all i, 1 < i < 3, that a tiling system :D has a com-

patible tiling iff E(~) is satisfiable.

Theorem 9 Satisfiability (and thus also subsump-

tion) o/ concepts is undecidable for /If.U+Af(o, II),
Al~Af ( o, t J,-1 ), and .4£CAf ( o, [q).

The concept E~’) shows that the undecidability result
for ASg+Af(o, L0-concepts also hold if only transitive

closure of atomic roles is allowed.

5 Related work and open problems

Propositional dynamic logic (PDL), which corresponds

to our language AC-.C+ has been shown to be decidable
in [Fischer&: Ladner,1979], and decidability of its ex-

tension by deterministic programs, DPDL, is shown in
[Ben-Ari et al.,1982]. In principle, the use of determi-

nistic programs corresponds to introducing a restric-
ted form of number-restrictions, namely (< 1 R) for
atomic roles R. Adding inversion (of atomic roles) 

DPDL has a drastic consequence: the finite model pro-
perty is lost, i.e., there are satisfiable formulae (con-
cepts) that do not have a finite model. Nevertheless,
satisfiability is still decidable [Vardi,1985] (EXPTIME
complete, like all the other decision problems for PDL

and its extensions mentioned until now). It should
be noted, however, that in these languages inversion
does not occur in the number-restrictions, since only
atomic programs are asserted to be deterministic. In
[De Giacomo,1995], general number restrictions and
Boolean operators for roles are added to PDL with
inversion, and (ExPTIME) decidability is shown by a
rather ingeneous reduction to the decision problem for
PDL. In this work, atomic roles and their inverse my
occur in number restrictions, but not more complex
roles. In addition, the complement of roles is built
relative to a fixed role any, which need not be inter-
preted as the universal role. Thus, it does not yield
the classical negation of roles. If one adds number
restrictions on atomic roles and their intersections to
Af_d, satisfiability for the obtained language is still de-
cidable with a PSPACS-algorithm [Donini et a/.,1991a].
Certain modal logics and concept description langua-
ges (e.g., AC__C) can be translated into first-order logic
such that only two different variable names occur in
the formulae obtained by this translation (see, e.g.,
[Borgida,1996]). Thus, decidability of subsumption

and other inference problems for these languages fol-
lows from the known decidability result for Z:~, i.e.,

first-order logic with two variables and without func-
tion symbols [Mortimer,1975]. Recently, this decida-
bility result has been extended to C2, i.e., predicate
logic with 2 variables and counting quantifiers [Griidel
et al.,]. As an immediate consequence, satisfiability
and subsumption for A52Af(I l, I-1, .%-1 ), the extension
of ACC by number restrictions with inversion and Boo-
lean operators on roles, is still decidable. It should be
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noted, however, that expressing composition of roles
in predicate logic requires more than two variables.

In this paper, we have shown that the language

AECA/’(o), which adds number restrictions on roles
with composition to AOT, is still decidable. It is not
clear, however, whether there exists a PSPACE algo-
rithm for the problem. The one presented above is
EXPTIME, and since different role paths need to be joi-
ned together, the trace method developed in [Schmidt-
Schaut] & Smolka,1991] cannot directly be applied. Al-
most all extensions of AO2Af(o) by union, intersec-

tion, and inversion of roles were shown to be unde-
cidable (unless restricted to role chains of the same
length). Only decidability for Af__CAf(o, t_}) is still open.
For Aft7+ however, the extension by composition and

union could already be shown to be undecidable.

As related undecidability results, one can mention un-
decidability of the extension of DPDL by intersection

of roles (which does not occur in the number restric-
tions, however) [Harel,1984]. In [Hanschke,1992], an
extension of Ag_C by so-called existential and univer-
sal agreements on role chains is shown to be unde-
cidable. It is easy to see that existential (universal)
agreements can be simulated by number restrictions
involving composition and intersection (union).
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