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NUMERATION SYSTEMS AND MARKOV PARTITIONS
FROM SELF SIMILAR TILINGS

BRENDA PRAGGASTIS

Abstract. Using self similar tilings we represent the elements of Rn as digit
expansions with digits in Rn being operated on by powers of an expansive linear
map. We construct Markov partitions for hyperbolic toral automorphisms by
considering a special class of self similar tilings modulo the integer lattice.
We use the digit expansions inherited from these tilings to give a symbolic
representation for the toral automorphisms.

Fractals and fractal tilings have captured the imaginations of a wide spectrum of
disciplines. Computer generated images of fractal sets are displayed in public sci-
ence centers, museums, and on the covers of scientific journals. Fractal tilings which
have interesting properties are finding applications in many areas of mathematics.
For example, number theorists have linked fractal tilings of R2 with numeration
systems for R2 in complex bases [16], [8].

We will see that fractal self similar tilings of Rn provide natural building blocks
for numeration systems of Rn. These numeration systems generalize the 1-dimen-
sional cases in [14],[10],[11] as well as the 2-dimensional cases mentioned above.
Our motivation for studying fractal tilings comes from ergodic theory.

In [2] Adler and Weiss show that topological entropy is a complete invariant
for metric equivalence of continuous ergodic automorphisms of the two-dimensional
torus. Their method of proof is to construct a partition of the 2-torus which satisfies
certain properties. The partition is called a Markov partition. By assigning each
element of the partition a symbol, it is possible to assign each point in the 2-torus
a bi-infinite sequence of symbols which corresponds to the orbit of the point. The
objective is to represent the continuous dynamical system as a symbolic one in such
a way that periodicity and transitivity is preserved in the representation.

In [4] Bowen shows that every Anosov diffeomorphism has a Markov partition.
In particular every hyperbolic toral automorphism has a Markov partition. His
construction uses a recursive definition which deforms rectangles in the stable and
unstable directions. While existence is shown, the proof does not indicate an effi-
cient way to actually construct the partitions. In [5] Bowen shows that in the case
of the 3-torus the boundary sets of the Markov partition have fractional Hausdorff
dimension. In [3] Bedford constructs examples of Markov partitions for the 3-torus
and describes the sets as crinkly tin cans. In [6] Cawley generalizes Bowen’s results
to higher dimensional tori.

Since Markov partitions have properties which resemble those of self similar
tilings and the boundary sets of these partitions have fractional dimension, it is
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3316 BRENDA PRAGGASTIS

natural to suggest that an explicit finite construction of Markov partitions for hy-
perbolic toral automorphisms may be given using fractal self similar tilings. More-
over, there is a natural way to represent points in a tiled space using a symbolic
system. The representations correspond to digit expansions. The set of sequences
of digits used in these expansions will in turn generate a symbolic dynamical system
which is metrically similar to the continuous system defined by the corresponding
toral automorphism.

1. Subdividing and self similar tilings

In this first section we review the definition and properties of self similar tilings.
Much of this information may be found in [17] and [10]. We then indicate how a
self similar tiling of Rn provides a numeration system for Rn. Let X be a subset of
Rn which is the closure of its interior.

Definition. A collection T of compact subsets of X is a tiling if it satisfies the
following properties.

(1) The union of the sets in T is equal to X.
(2) Each set in T is the closure of its interior.
(3) Each compact set in X intersects a finite number of sets in T. (In this case

we say that T is locally finite.)
(4) The interiors of the sets in T are mutually disjoint.

The sets in T are called tiles.
Suppose G is a subgroup of Rn. A tiling T of X is G -finite if there exists a

finite partition {Tj}j∈J of T such that if T ∈ Tj, then

Tj ⊂ {T + g : g ∈ G}.
The collection {Tj}j∈J is a tile type partition for T.

Suppose T is a G-finite tiling of X with a tile type partition {Tj}j∈J . If T 1,
T 2 ∈ Tj for some j ∈ J , then we will say that T 1 and T 2 are of the same type.
This implies that there exists g ∈ G such that T 1 + g = T 2. We say that T 2 is a
G-translate of T 1. This does not mean that if T 1, T 2 ∈ T and g ∈ G such that
T 1 + g = T 2, then T 1 and T 2 are of the same type. We will see that there will
often exist tile type partitions which contain elements Tj1 and Tj2 such that every
tile in Tj1 is a G-translate of every tile in Tj2 . It follows that there are arbitrarily
many different ways to define a tile type partition for a G-finite tiling. For now, let
{Tj}j∈J define a tile type partition for T. Let P be the set of all finite unions of
tiles in T. Let B be the set of all bounded subsets of X. Note that P ⊂ B.

Definition. Let P 1; P 2 ∈ P, then there is a finite collection of tiles {T k}k∈K such
that P 1 =

⋃
k∈K T k. The sets P 1 and P 2 have the same pattern if there exists

g ∈ G such that P 1 + g =
⋃

k∈K T k + g = P 2 and for each k ∈ K, T k + g is a tile
in T of the same type as T k. In particular tiles of the same type have the same
pattern. If U ∈ B, then there is a finite union of tiles P ∈ P such that U ⊂ P .
If g ∈ G, then U and U + g have the same pattern if for some P ∈ P such that
U ⊂ P we have that P + g ∈ P and P + g and P have the same pattern. If V is
a subset of X and U ∈ B, then V contains the pattern of U if for some g ∈ G,
U + g ⊂ V and U + g has the same pattern as U .

Let φ be an expansive linear map on Rn such that φX = X . To be expansive
means that the eigenvalues for φ all have modulus greater than 1. We adapt a
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norm for Rn which reflects the expansiveness of φ as in [12]. More specifically, let
{λ i}l

i=1 be the eigenvalues of φ ordered so that

1 < |λ 1| ≤ |λ 2| ≤ · · · ≤ |λ l|.
Choose % such that 1 < % < |λ 1|. We choose a norm ‖ · ‖ so that for all x ∈ Rn

‖x‖ < %‖x‖ ≤ ‖φx‖ and

‖φ−1x‖ ≤ %−1‖x‖ < ‖x‖.
Definition. A G-finite tiling T with tile type partition {Tj}j∈J has a finite num-
ber of local patterns if, for each δ > 0 we have that the set

{P ∈ P : diameter(P ) < δ}
contains a finite number of distinct patterns.

A slightly stronger restriction on T is that T has only a finite number of local
patterns and these patterns are scattered uniformly throughout the tiling. Let
Br(x) denote the open ball of radius r about x.

Definition. A G-finite tiling T with tile type partition {Tj}j∈J is called quasi-
periodic if for each r > 0 there exists R = R(r) > 0 such that every open ball of
radius R contained in X contains the pattern of Br(x) ∩X for all x ∈ X .

Let G be a subgroup of Rn such that φG = G.

Definition. A G-finite tiling T of X with tile type partition {Tj}j∈J is subdivid-
ing with expansion map φ, if for each T ∈ T, φT is a finite union of tiles and if
T and T ′ are tiles of the same type, then φT and φT ′ have the same pattern. For
each T ∈ Tj we may think of the pattern of φT as defining a subdivision rule for
Tj. A quasi-periodic subdividing tiling of T of X with expansion map φ is called a
self similar tiling.

Example 1. Let φ be the expansive map on R given by multiplication by

λ =
1 +

√
5

2
.

Note that λ is a zero of x2 − x − 1. Let X+ = [0,∞). We construct a Z[λ ]-
finite subdividing tiling T of X+ with expansion map φ. Let TA = [0, 1] and
TB = [0, λ − 1]. We will partition T into two sets TA and TB. The tiles in TA

will be Z[λ ]-translates of TA and the tiles in TB will be Z[λ ]-translates of TB.
We define T by inductively defining TA and TB. Let TA ∈ TA. If x ∈ Z[λ ] and
TA + x ∈ TA, then

φ(TA + x) = [0, λ ] + λ x

= ([0, 1] + λx) ∪ ([1, λ ] + λx)
= (TA + λx) ∪ (TB + 1 + λ x).

Let TA + λx ∈ TA and let TB + 1 + λx ∈ TB. If y ∈ Z[λ ] and TB + y ∈ TB, then

φ(TB + y) = [0, λ 2 − λ ] + λ y

= [0, 1] + λ y

= TA + λ y.
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Let TA + λ y ∈ TA. The tiling T is a Z[λ ]-finite subdividing tiling of X+ with
expansion map φ and tile type partition {TA,TB}.

We can represent the subdivision rules for T in terms of a substitution map. Let
A represent a tile in TA and B represent a tile in TB. Define a substitution map θ
on the words in {A,B} by letting θ(A) = AB and letting θ(B) = A. We define θ
on each finite or infinite string of symbols in {A,B} by applying it to each symbol
in the string. We see that T is represented by the fixed word

w = ABAABABAABAAB . . . .

That is, θw = w.

Example 1 illustrates a subdividing tiling which is actually self similar. We will
prove this later. For now the main thing to note is that TA ⊂ φTA.

We now assume that T is a subdividing tiling of X with expansive map φ. Let
{Tj}j∈J be a tile type partition for T. For each tile T let ∂T denote the boundary
of T . Let ∂T =

⋃
T∈T ∂T be the boundary of T. Let µ be Lebesgue measure on

Rn.

Proposition 1.1. The Lebesgue measure of the boundary of T is 0.

Proof. Suppose µ(∂T ) 6= 0. Then since T is locally finite for some tile T , we have
µ(∂T ) 6= 0. Since T contains only a finite number of tile types, there exists

δ = max
{
µ(∂T )
µ(T )

: T ∈ T

}
< 1.

It follows that there exists a tile T0 such that µ(∂T0) = δµ(T0) , and for all T ′ ∈ T
we have µ(∂T ′) ≤ δµ(T ′).

Note that if T 1 and T 2 are two distinct tiles, then

µ(∂(T 1 ∪ T 2)) ≤ µ(∂T 1) + µ(∂T 2)− µ(∂T 1 ∩ ∂T 2)
≤ δµ(T 1) + δµ(T 2)− µ(∂T 1 ∩ ∂T 2)
= δ

(
µ(T 1 ∪ T 2) + µ(T 1 ∩ T 2)

)− µ(∂T 1 ∩ ∂T 2)

= δµ(T 1 ∪ T 2) + (δ − 1)µ(∂T 1 ∩ ∂T 2)
≤ δµ(T 1 ∪ T 2)

since T 1 ∩ T 2 = ∂T 1 ∩ ∂T 2. Applying induction we find for any finite collection of
distinct tiles {T k}L

k=1 that

µ(∂
L⋃

k=1

T k) ≤ δµ(
L⋃

k=1

T k).

Since φ is expansive we choose N0 such that for all N ≥ N0 we have Int(φNT0)
contains a tile. Let PN be the element of P consisting of just those tiles in φNT0

which intersect the set φN (∂T0). Since φ is a homeomorphism, φN (∂T0) is just
the set ∂(φNT0). We have µ(PN ) < µ(φNT0) for all N ≥ N0 since φNT0 contains
a tile which does not intersect its boundary. By the previous paragraph we have
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µ(∂φNT0) ≤ δµ(PN ) since ∂φNT0 ⊂ ∂PN . So

δ =
| detφN | · µ(∂T0)
| detφN | · µ(T0)

=
µ(φN∂T0)
µ(φNT0)

≤ δµ(PN )
µ(φNT0)

< δ.

The contradiction implies that µ(∂T ) = 0 for each tile T .

Definition. A G-finite subdividing tiling T with expansive map φ and tile type
partition {Tj}j∈J is mixing if for each T ∈ T and P ∈ P there exists N0 ≥ 0 such
that for all N ≥ N0 we have that φN (T ) contains the pattern of P .

The following fact was also noted by Kenyon in [9]. The proof may be found in
[15].

Proposition 1.2. Let T be a G-finite subdividing tiling of X with expansive map φ
and tile type partition {Tj}j∈J . Then T is quasi-periodic if and only if T is mixing
and has a finite number of local patterns.

Example 2. Let T be the subdividing tiling of X+ in Example 1. Let δ > 0.
There are only a finite number of ways to arrange almost disjoint Z[λ ]-translates
of TA and TB in X+ so that their union is connected and has diameter less than
δ. So T has a finite number of local patterns. Let P be a finite union of tiles in
T. For some N ≥ 0 we have P ⊂ φNTA. Hence for all T ∈ TA we have that φNT
contains the pattern of P . If T 1 ∈ T, then φT 1 contains a tile in TA so φN+1T 1

contains the pattern of P . It follows from Proposition 1.2 that T is self similar.

Since T has a finite number of tile types, we may record the subdivision rules
for T in a finite manner. We will use a graph to indicate the subdivision rules for
T. The generic definitions for graphs and the objects related to graphs given below
are adapted from [13].

A graph Γ consists of a finite set of vertices V together with a finite set of edges
E . The edge α has a source s(α) and a target t(α). If I is a set of consecutive
integers in Z, then a sequence (or finite sequence or bi-infinite sequence) of edges
{ηk}k∈I is called a path in Γ if for each k, k + 1 ∈ I we have t(ηk) = s(ηk+1). If
{ηk}∞k=−N is a path in Γ, then s(η−N ) is the source of the path. If {ηk}M

k=−∞
is a path in Γ, then t(ηM ) is the target of the path. A path {ηk}M

k=−N has both
a source s(η−N ) and a target t(ηM ). A path {ηk}k∈Z has neither a source nor a
target. If I is a finite set of consecutive integers, then the length of a path {ηk}k∈I

is |I|.
If η and ε are two paths in Γ, then we shall say that η equals ε if η = {ηk}k∈I

and ε = {εk}k∈I for some consecutive sequence of integers I and for each k ∈ I we
have ηk = εk. That is, the two paths must be indexed by the same set and each
pair of edges ηk and εk with the same index are actually the same edge. If η is not
equal to ε, then we shall say that the paths are distinct.

Definition. The subdivision graph Γ for T has a finite set of vertices V indexed
by J and edges E . If vj1 and vj2 are vertices in V , then there are exactly Mj1j2

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3320 BRENDA PRAGGASTIS

edges with source vj1 and target vj2 if and only if for each T ∈ Tj1
there are exactly

Mj1j2 distinct elements of Tj2 contained in φT . Since T is subdividing, the number
Mj1j2 is well-defined for each pair j1 and j2. The transition matrix M is given
by {Mj1,j2}(j1,j2)∈J×J . Note that if T is mixing, then M is aperiodic.

Let Γ be the subdivision graph for T. For each j1, j2 ∈ J let Ej2
j1

be the subset of
edges in E which have source vj1 and target vj2 . Let Ej1 be the subset of edges in
E which have source vj1 and let Ej2 be the subset of edges in E which have target
vj2 . We use the edges in Ej1

to index the tiles in φT for each T ∈ Tj1
. That is, we

write

φT =
⋃

α∈Ej1

Tα

for the unique finite union of tiles found in φT such that if t(α) = vkα , then
Tα ∈ Tkα

.
Let {Tj}j∈J be a representative set of tiles for {Tj}j∈J such that Tj ∈ Tj . Fix

a point xj ∈ Tj . For each Tj + g ∈ Tj define

d(Tj + g) = xj + g.

The point d(Tj + g) is called a positional point for Tj + g and d(T) is a set of
positional points for T. Suppose T 0 ∈ Tj0

and T 1 ∈ Tj1
such that T 1 ⊂ φT 0.

We record the relative position of T 1 in φT 0 by noting the difference

d(T 1)− φd(T 0).

Let T 2 ∈ Tj0
. Then there exists a unique T 3 ∈ Tj1

such that T 3 ⊂ φT 2 and

d(T 3)− φd(T 2) = d(T 1)− φd(T 0).

We have in this case

d(T 3) = φd(T 2) + (d(T 1)− φd(T 0)).

This is one way of saying that T 3 is in the same relative position in φT 2 as T 1 is
in φT 0.

Definition. The label map Ld assigns to each edge α ∈ E a vector in Rn. If
T ∈ Tj and {Tα}α∈Ej

is the unique set of tiles in T such that

φT =
⋃

α∈Ej

Tα,

then Ld(α) = d(Tα)− φd(T ) for each α ∈ Ej .
The pair (Γ, Ld) completely describes the subdivision rules for T. If T ∈ Tj,

then for each α ∈ Ek
j there is a unique tile T ′ ∈ Tk such that T ′ ⊂ φT and

d(T ′) = φd(T ) + Ld(α).

Example 3. Let T be the subdividing tiling of X+ = [0,∞) with expansive map
φ given in Example 1. For each T ∈ T let d(T ) be the left endpoint of T . The
subdivision graph for T is in Figure 1. Each edge α is labeled with Ld(α).

Definition. Let Θd : E → V × V × Rn such that for each α ∈ E we have

Θd(α) = (s(α), t(α), Ld(α)).
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Figure 1. The subdivision graph for Example 1

The map Θd is a one-one assignment. For suppose α, α′ are edges in Ek
j such

that Θd(α) = Θd(α′). Then for each T ∈ Tj there exists a unique Tα ∈ Tk such
that

d(Tα) = φd(T ) + Ld(α).

Similarly, there is a unique Tα′ ∈ Tk such that

d(Tα′) = φd(T ) + Ld(α′).

But Ld(α) = Ld(α′) and Tα, Tα′ ∈ Tk. So Tα = Tα′ . But edges in Ej refer to
distinct T tiles in φT so α = α′. We find for each triple (vj , vk, x) ∈ Θd(E) there is a
unique α ∈ E such that Θd(α) = (vj , vk, x). In this case we write Θ−1

d (vj , vk, x) = α.
In [17] and [10] the tiles in a self similar tiling are assigned control points. The

control points reflect the similarity properties of the tiling. By considering all φ-
preimages of control points one may recover the tiling. By studying the behavior
of control points under the map φ, Thurston and Kenyon are able to analyze the
expansive maps associated to self similar tilings in terms of their eigenvalues.

There are many ways to define control points. For the purpose of generality we
will want our definition to apply to any subdividing tiling. We begin by defining a
tile map for T.

Definition. A map γ : T → T is a tile map for T if for each T ∈ Tj, j ∈ J and
for each g ∈ G such that T + g ∈ Tj we have γ(T ) ⊂ φT and γ(T + g) = γ(T )+φg.

We construct a tile map for T by fixing one tile Tj ∈ Tj for each j ∈ J and
defining γ(Tj) to be some tile in T contained in φ(Tj). For each Tj + g ∈ Tj let
γ(Tj + g) = γ(Tj) + φg. Note that for each k ≥ 0

φ−kγk(T ) ⊂ T.

Since φ is expansive,
∞⋂

k=0

φ−kγk(T )

is a decreasing intersection of compact sets with diameters tending to 0. Hence
there exists a unique point c(T ) contained in this intersection. We call c(T ) a
control point for T and c(T) the set of control points for T induced by γ.
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Proposition 1.3. Let c : T → X be the map which assigns to each T ∈ T the
unique point

{c(T )} =
∞⋂

k=0

φ−kγk(T ).

(1) If T ∈ T, then φc(T ) = c(γ(T )).
(2) If T 1 ∈ Tj and T 2 ∈ Tj, then

T 1 + c(T 2)− c(T 1) = T 2.

Corollary 1.4. If T 1, T 2 ∈ Tj, then c(T 1) = c(T 2) if and only if T 1 = T 2.

Note that if T 1, T 2 ∈ Tj and T 1 + g = T 2, then c(T 1) + g = c(T 2). So c(T) is a
set of positional points for T. Since c depends only on γ, we call L = Lc the label
map induced by γ. Similarly, we let Θ = Θc be the one-one assignment

Θ(α) = (s(α), t(α), L(α))

for each edge α ∈ E . The vectors which label the edges in Γ according to the label
map L provide a set of digits for a numeration system of X . The balance of this
section demonstrates how this is done.

Let x ∈ T 0 ∈ Tj0 , j0 ∈ J . For each k ≥ 1 inductively define T k to be some tile
such that φkx ∈ T k ⊂ φT k−1. Then {φ−kT k}∞k=0 is a decreasing sequence of com-
pact subsets with diameters tending to 0 and x is the unique point in

⋂∞
k=0 φ

−kT k.
We say that {T k}∞k=0 converges to the point x.

Theorem 1.5. Let T be a subdividing tiling of X with expansion map φ and tile
type partition {Tj}j∈J . Let Γ be the subdivision graph for T and c(T) a set of
control points for T. For µ-almost every x ∈ X there is a unique sequence of tiles
converging to x. If T has a finite number of local patterns, then there is a uniform
bound on the number of sequences of tiles converging to x.

Suppose that {T k}∞k=0 is a sequence of tiles converging to x. Let jk be the element
of J such that T k ∈ Tjk

for each k ≥ 0. We have

x = c(T 0) +
∞∑

k=1

φ−k(c(T k)− φc(T k−1)).(1)

Moreover there exists a unique path {ηk}∞k=1 in Γ defined by

ηk = Θ−1(vjk−1 , vjk
, c(T k)− φc(T k−1))

and

x = c(T 0) +
∞∑

k=1

φ−kL(ηk).(2)

Conversely, suppose η = {ηk}∞k=1 is a path in Γ with source vj0 and x ∈ T 0 ∈ Tj0

such that

x = c(T 0) +
∞∑

k=1

φ−kL(ηk)

and for each k ≥ 1

Θ(ηk) = (vjk−1 , vjk
, L(ηk)).
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Then there is a unique sequence of tiles {T k}∞k=0 converging to x such that T k ∈ Tjk

and

c(T k) = φc(T k−1) + L(ηk)

for each k ≥ 1.

Proof. Let x ∈ X . By the above discussion we may inductively define some sequence
of tiles {T k}∞k=0 which converges to x. Suppose that {T k

1 }∞k=0 and {T k
2 }∞k=0 are two

distinct sequences of tiles which converge to x. For some minimal N ≥ 1 we have
φNx ∈ TN

1 ∩ TN
2 and TN

1 6= TN
2 . Since TN+k

i ⊂ φkTN
i , i ∈ {1, 2}, we have

TN+k
1 6= TN+k

2 for all k ≥ 0. Hence φN+kx ∈ ∂T for all k ≥ 0. By Proposition 1.1,
µ(∂T) = 0. Since φ is a linear map, µ(

⋃∞
k=0 φ

−k∂T) = 0. Hence for µ-almost every
x ∈ X there is a unique sequence of tiles converging to x. In any case the number
of distinct sequences of tiles converging to x is bounded by the number of tiles in
T which may share a point in common. If T has a finite number of local patterns,
then there exists a uniform bound on this number.

Suppose {T k}∞k=0 converges to x and T k ∈ Tjk
, jk ∈ J . Let D be the maximum

diameter of any tile. Since x ∈ T 0, we have

‖x− c(T 0)‖ ≤ D.

Similarly for each N ≥ 1, we have φNx ∈ TN so

‖φNx− φNc(T 0)−∑N
k=1 φ

N−k(c(T k)− φc(T k−1))‖ = ‖φNx− c(TN)‖ ≤ D.

Recall that, for each y ∈ Rn, we have ‖φ−Ny‖ ≤ %−N‖y‖, so

‖x− c(T 0)−
∞∑

k=1

φ−k(c(T k)− φc(T k−1))‖ ≤ %−ND.

Letting N tend to infinity we obtain Equation (1).
For each k ≥ 1 we have T k ⊂ φT k−1 so there exists an edge ηk ∈ Ejk

jk−1
such

that ηk = Θ−1(vjk−1 , vjk
, c(T k)− φc(T k−1)). Since t(ηk) = s(ηk+1) for each k ≥ 1,

the sequence {ηk}∞k=1 is a path in Γ with source s(η1) = vj0 . The map Θ−1

is well defined so {ηk}∞k=1 is uniquely defined by {T k}∞k=1. Finally, we replace
c(T k)− φc(T k−1) with L(ηk) in (1) to obtain (2).

Suppose now that η = {ηk}∞k=1 is a path in Γ with source vj0 and x ∈ T 0 such
that

x = c(T 0) +
∞∑

k=1

φ−kL(ηk)

and

Θ(ηk) = (vjk−1 , vjk
, L(ηk)).

We apply induction on k to construct {T k}∞k=1. Since Θ(η1) = (vj0 , vj1 , L(η1)),
there exists a unique tile T 1 ⊂ φT 0 such that T 1 ∈ Tj1 and

c(T 1) = φc(T 0) + L(η1).

Suppose that TN ⊂ φTN−1, TN ∈ TjN
and

c(TN) = φc(TN−1) + L(ηN ).
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Since Θ(ηN+1) = (vjN , vjN+1 , L(ηN+1)) there is a unique tile TN+1 ⊂ φTN such
that TN+1 ∈ TjN+1 and

c(TN+1) = φc(TN) + L(ηN+1).

In this way we construct a unique sequence of tiles {T k}∞k=1. Since
∞⋂

k=0

φ−kT k

is a decreasing intersection of compact sets with diameters tending to 0, there exists
a unique point y ∈ φ−kT k for all k ≥ 0 such that {T k}∞k=0 converges to y. By the
first part of the argument

y = c(T 0) +
∞∑

k=1

φ−k(c(T k)− φc(T k−1))

= c(T 0) +
∞∑

k=1

φ−kL(ηk) = x.

Corollary 1.6. Let j ∈ J and T ∈ Tj. Then

T − c(T ) = {
∞∑

k=1

φ−kL(ηk) : {ηk}∞k=1 is a path in Γ with source vj}.

Corollary 1.7. If T has a finite number of local patterns, then there exists a uni-
form bound on the number of paths {ηk}∞k=1 in Γ for which x =

∑∞
k=1 φ

−kL(ηk),
for all x ∈ X.

Corollary 1.8. Suppose η = {ηk}M
k=1 and ε = {εk}M

k=1 are two paths in Γ with the
same source vj0 and target vj1 . Then

M∑
k=1

φ−kL(ηk) =
M∑

k=1

φ−kL(εk)

if and only if ηk = εk for each 1 ≤ k ≤M .

Example 4. Let T be the tiling of X+ in Example 1. If x ∈ Z[λ ] and TA+x ∈ TA,
then

φ(TA + x) = (TA + λx) ∪ (TB + 1 + λ x).

Define γ(TA + x) = TA + λx. If y ∈ Z[λ ] and TB + y ∈ TB, then

φ(TB + y) = TA + λ y.

Define γ(TB + y) = TA + λ y. It follows that c(TA + x) = x and c(TB + y) = y. So
the set of left endpoints of the tiles in T form a set of control points. By examining
Figure 1 we see that every x ∈ TA has a representation of the form

x =
∞∑

k=1

λ−kL(ηk)

where L(ηk) ∈ {0, 1} and L(ηk) + L(ηk+1) ∈ {0, 1} for all k ≥ 1.

Definition. A generator for T is any tile which contains the origin.
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Theorem 1.5 says that every x ∈ X may be expressed as the sum of a control
point and a series in powers of φ. Let x ∈ X . Since φ is expansive, there exists N
sufficiently large so that φ−Nx belongs to a generator. Suppose φ−Nx ∈ T ∈ Tj,
for some generator T and j ∈ J . If c(T ) = 0, then there is a path {ηk}∞k=1 in Γ
with source vj such that

x =
∞∑

k=1

φN−kL(ηk).

Renumbering the path we have

x =
∞∑

k=1−N

φ−kL(ηk).

We call this expression a digit expansion for x in powers of φ (with digits labeling
a path in Γ). One can check that every x ∈ X has a digit expansion in powers of φ
if and only if every generator has 0 as its control point. In this case Corollary 1.4
says that distinct generators must have different tile types.

Conversely, suppose that distinct generators have different tile types. We define
a tile map which assigns each generator T the unique generator contained in its
image φT . Then the control point for each generator will be 0 and each x ∈ X will
have a digit expansion in powers of φ. We call a tile map which maps generators
to generators a generating tile map.

From the above discussion we see that the choice of tile type partition for T is
not an arbitrary one. If T is a subdividing tiling with certain properties, then if we
say that {Tj}j∈J is a tile type partition for T we implicitly mean that T has those
properties with the tile type partition {Tj}j∈J . Not every partition of T which
is consistent with the definition for G-finite tilings will preserve the subdividing
properties of T. Moreover, if we wish to use the tiling to express elements of
X using digit expansions, then we must choose a partition which assigns distinct
generators different tile types.

One way to construct a new tile type partition for T is to perform an insplitting
of its subdivision graph. This will define subdivision rules for T in terms of a new
tile type partition which gives T the same subdivision properties as it had with the
original partition. Insplitting as a technique used in symbolic dynamics is described
in [13]. We give a detailed description of its application to self similar tilings in the
Appendix. For now we will illustrate how it works with an example.

Example 5. Let X = R2 and I2 be the unit square in R2 with vertices (0, 0),
(1, 0), (1, 1), and (0, 1). Let

T = {I2 + z : z ∈ Z2};
then T is a Z2-finite tiling of X . Since every tile in T is a Z2-translate of I2, we let
T have one tile type T1. Let φ : R2 → R2 be dilation by a factor of 2. We see that

φ(I2) = I2 ∪ (I2 + (1, 0)) ∪ (I2 + (1, 1)) ∪ (I2 + (0, 1)).

So T is a subdividing tiling with expansion map φ and tile type partition {T1}.
Define γ : T → T by γ(I2) = I2. Then for all z ∈ Z2, γ(I2 + z) = I2 + φz. We find
c(I2 + z) = z. The subdivision graph Γ for T is in Figure 2. Each edge α is labeled
with L(α) where L is the label map induced by γ.
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(0,1)
(1,1)

(0,0)
(1,0)

v1

Figure 2. The subdivision graph for the tiling of the plane by unit squares.

Consider the tiling consisting of the tiles {φI2 +φz : z ∈ Z2}. Each tile φI2 +φz
is the union of four tiles of the form I2 + φz + (x, y) where (x, y) labels an edge of
the subdivision graph, Γ. Let

T̂1 = {I2 + (x, y) : x, y ∈ Z, and x+ y is even}
and

T̂2 = {I2 + (x, y) : x, y ∈ Z, and x+ y is odd}.
The collection {T̂1, T̂2} forms a tile type partition for T which preserves the subdi-
viding properties of T. The new subdivision graph for T is shown in Figure 3. Note
how the edges from the single vertex on the original graph split into two sets and
then are copied for each of the two new vertices. This is a single insplitting of the
graph. If we color the tiles in T̂1 white and the tiles in T̂2 red, then T looks like an
infinite checkerboard sitting on R2.

(1,0)

(0,1)

(1,0)

(0,1)

(0,0)

(1,1)(0,0)

(1,1)

v2v1

Figure 3. The subdivision graph for the checkerboard tiling of the plane.

Proposition 1.9. Let j ∈ J and let T1 and T2 be distinct tiles in Tj. There exists
a partition of Tj into two sets T̂j1 and T̂j2 such that

{Tk : k ∈ J − {j}} ∪ {T̂j1 , T̂j2}
is a tile type partition for T which preserves the subdividing properties of T. More-
over T1 ∈ T̂j1 and T2 ∈ T̂j2 .
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Proof. Please refer to the appendix.

By a finite number of applications of Proposition 1.9 we assume that the tile
type partition chosen for T assigns distinct generators different tile types and that
γ is a generating tile map. In particular we index the set of generators with a subset
J0 ⊂ J . That is, we let {Tj}j∈J0

be the set of generators for T, such that Tj ∈ Tj

for each j ∈ J0. It follows immediately from Theorem 1.5 that:

Proposition 1.10. For all x ∈ X there exists a path {ηk}∞k=−N with source in
{vj}j∈J0

such that L(η−N ) 6= 0 and

x =
∞∑

k=−N

φ−kL(ηk).

For Lebesgue almost every x ∈ X there is a unique such path. If T has a finite
number of local patterns, then for all x ∈ X there is a uniform bound on the
number of such paths which give this representation.

We will refer to this collection of representations as a numeration system for X
in powers of φ. Let c(Tj) denote the set of control points for tiles in Tj .

Corollary 1.11. For each j ∈ J ,

c(Tj) = {
0∑

k=−N

φ−kL(ηk) : {ηk}0
k=−N is a path in Γ

with source in {vk}k∈J0
and target vj}.

Proposition 1.12. If T is mixing, then there exists a generating tile map γ and
k0 ≥ 0 such that, for all k ≥ k0 and T ∈ T, the tile γk(T ) has the same tile type as
a generator and c(T ) ∈ G.

Proof. Suppose that T is mixing. Then for each j ∈ J there exists a minimal Nj

such that if T ∈ T, then φNjT contains a tile of the same type as a generator. Let
J1 ⊂ J−J0 such that for each j ∈ J1, Nj = 1. Inductively define JM ⊂ J−⋃M−1

i=0 Ji

such that for each j ∈ JM , Nj = M . Since J is a finite set, the number of nonempty
JM is finite. We define a generating tile map so that for each M if T ∈ Tj1 ,
j1 ∈ JM , then γ(T ) ∈ Tj2 , j2 ∈ JM−1. It follows that, for some k0 ≥ 0 and every
T ∈ T, γk(T ), k ≥ k0, is a tile of the same type as some generator T0. Moreover
c(γk(T )) = c(γk(T ))− c(T0) ∈ G, so c(T ) = φ−kc(γk(T )) ∈ φ−kG = G.

2. Periodic tilings of Rn

In this section we construct the n-dimensional crinkly tin cans which will ulti-
mately serve as building blocks for Markov partitions. Let φ be a hyperbolic linear
automorphism on Rn with matrix representation in GL(n,Z) and characteristic
polynomial χφ irreducible over Z. The map φ induces a hyperbolic automorphism
φ̂ on Rn mod Zn.

The irreducibility of χφ implies that χφ has no repeated zeroes and hence φ is
diagonalizable. Since φ is hyperbolic, we may order the eigenvalues for φ as {λ i}n

i=1

such that

|λ 1| ≤ |λ 2| ≤ · · · |λ l| < 1 < |λ l+1| ≤ · · · |λ n|.
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There is a φ-invariant decomposition of Rn into spaces Es and Eu such that the
eigenvalues for φ|Es are {λ i}l

i=1 and the eigenvalues for φ|Eu are {λ i}n
i=l+1. The

space Es is the stable eigenspace for φ and the space Eu is the unstable
eigenspace for φ. Note that φ|−1

Es
and φ|Eu are both expansive maps. Hence

as in Section 1 we adapt a norm for Rn which reflects the expansive properties of
φ|−1

Es
and φ|Eu .

Choose % and ζ so that

1 < % < min{|λ−1
l |, |λ l+1|} and ζ > max{|λ n|, |λ−1

1 |}.
As in [12] we define a norm ‖ · ‖ for Rn such that for each x ∈ Es we have

‖x‖ < %‖x‖ ≤ ‖φ−1x‖ ≤ ζ‖x‖
and

ζ−1‖x‖ ≤ ‖φx‖ ≤ %−1‖x‖ < ‖x‖.
Likewise if x ∈ Eu, then

‖x‖ < %‖x‖ ≤ ‖φx‖ ≤ ζ‖x‖
and

ζ−1‖x‖ ≤ ‖φ−1x‖ ≤ %−1‖x‖ < ‖x‖.
We give Rn, Es, and Eu the topologies induced by the norm ‖ · ‖.

Since χφ is irreducible over Z, there is no φ-invariant subspace of Rn which
intersects Zn−{0}. Let πs : Rn → Es be projection along Eu to Es. Let πu : Rn →
Eu be projection along Es to Eu. Then πs|Zn and πu|Zn are bijective Z-linear
maps. Let ζu : πu(Zn) → Zn by ζu(πu(z)) = z. Let ρs : πu(Zn) → πs(Zn) by
ρs(πu(z)) = −πs(z). We note that ζu and ρs are bijective Z-linear maps which are
related by

ρs(x) = x− ζu(x)

for each x ∈ πu(Zn).
Let Xu be a subset of Eu

∼= Rn−l which is the closure of its interior. We will
make the following assumptions about Xu.

• φXu = φ|EuXu = Xu.
• Xu mod Zn is dense in Rn mod Zn.

Suppose that T is a πu(Zn)-finite self similar tiling of Xu with expansive map φ
and tile type partition {Tj}j∈J . We assume that distinct generators have different
tile types. We apply Proposition 1.12 and let γ : T → T be a generating tile map
so that c(T) ⊂ πu(Zn). Let Γ be the subdivision graph for T with vertices indexed
by J and edge set E . Let {Tj}j∈J0

be the set of generators for T.
If j ∈ J0 and x ∈ Tj , then x has a digit expansion x =

∑∞
k=1 φ

−kL(ηk) for
some path {ηk}∞k=1 with source vj . There exists a unique generator Tj−1 such that
φ−1(x) ∈ φ−1(Tj) ⊂ Tj−1 , and Tj−1 ∈ Tj−1 . Inductively define for each N ≥ 1 the
generator Tj−N ∈ Tj−N to be the unique tile containing φ−N (Tj). For each k ≤ 0
define

ηk = Θ−1(vjk−1 , vjk
, 0).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NUMERATION SYSTEMS AND MARKOVKOV PARTITIONS 3329

Then {ηk}∞k=−∞ is a path in Γ for which

x =
∞∑

k=−∞
φ−kL(ηk).

Note that for every such path {ηk}∞k=1 the extension {ηk}∞k=−∞ is uniquely defined.

Definition. For each j ∈ J let

Sj = {η = {ηk}k∈Z: η is a path in Γ with t(η0) = vj and such that there

exists N ≥ 0 for which s(ηk) ∈ {vj}j∈J0 for all k ≤ −N }.
Proposition 2.1. For each j ∈ J and x ∈ Tj there exists a path η ∈ Sj such that
x =

∑
k∈Zφ

−kL(ηk). For Lebesgue almost every x there is a unique such path. For
all x ∈ Xu there is a uniform bound on the number of such paths.

Proof. This follows immediately from Proposition 1.10.

Corollary 2.2. For each j ∈ J

c(Tj) =

{
0∑

k=−∞
φ−kL(ηk) : {ηk}k∈Z∈ Sj

}
.

Definition. For each j ∈ J let Ωu,j be the subset of Rn given by

Ωu,j =
⋃

T∈Tj

(T − ζuc(T )).

Since ρs(c(T )) = c(T )− ζuc(T ), we have

T − ζuc(T ) = ρsc(T )⊕ (T − c(T ))

where ρsc(T ) ∈ Es and T − c(T ) ⊂ Eu. It follows from Corollary 2.2 that

Ωu,j =

{
0∑

k=−∞
φ−kρsL(ηk) +

∞∑
k=1

φ−kL(ηk) : {ηk}k∈Z∈ Sj

}
.

Since E is finite, if x ∈ Ωu,j and η ∈ Sj such that

x =
0∑

k=−∞
φ−kρsL(ηk) +

∞∑
k=1

φ−kL(ηk),

then

‖x‖ ≤
0∑

k=−∞
%k‖ρsL(ηk)‖+

∞∑
k=1

%−k‖L(ηk)‖

≤ 2
1 + %−1

max{‖ρsL(α)‖, ‖L(α)‖ : α ∈ E}.

So Ωu,j is bounded.

Definition. • For each j ∈ J , let Ωj = Clos(Ωu,j).
• Let Ωu =

⋃
j∈J Ωu,j .

• Let Ω = Clos(Ωu).
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Since Ωu is bounded, Ω is a compact set. Since Xu mod Zn = Ωu mod Zn and
Xu mod Zn is dense in Rn mod Zn, we have that

Ω mod Zn = Rn mod Zn.

Hence ⋃
z∈Zn

(Ω + z) = Rn.

It turns out that under special circumstances the collection

{Ω + z : z ∈ Zn}
forms a periodic tiling of Rn. This is the first step in constructing a Markov
partition for φ mod Zn.

We begin by taking advantage of a lot of foreknowledge and discuss the shift
of finite type which will eventually represent the hyperbolic toral automorphism
induced by φ.

Definition. If Γ is a graph with edge set E , then the graph shift ΣΓ is the shift
of finite type over the alphabet E specified by

ΣΓ =
{
η = {ηk}k∈Z∈ EZ: η is a path in Γ

}
.

The shift operator, σΓ : ΣΓ → ΣΓ, is defined for each η ∈ ΣΓ and k ∈ Z so that

σΓη
k = ηk+1.

We define a metric dΓ on ΣΓ such that if η, ε ∈ ΣΓ and k ∈ Z, then

dΓ(η, ε) =
1

1 + |k|
if |k| is minimal such that ηk 6= εk. We give ΣΓ the topology induced by the metric
dΓ. In this topology ΣΓ is compact and σΓ is a homeomorphism.

For each α ∈ E and i ∈ Z define

Ci(α) = {η ∈ ΣΓ : ηi = α}.
Note that Ci(α) = σΓ

−iC0(α). For each finite path {ηk}M
k=−N in Γ define

C0(η−Nη−N+1 . . . ηM ) =
N+M⋂
k=0

Ck(η−N+k)

and for each i ∈ Z
Ci(η−Nη−N+1 · · · ηM ) = σΓ

−iC0(η−Nη−N+1 · · · ηM ).

We call the set Ci(η−N . . . ηM ) a cylinder set in ΣΓ. The cylinder sets are both
open and compact in the topology of ΣΓ.

Let ΣΓ be the graph shift induced by the subdivision graph Γ for T. For each
j ∈ J let

S̄j = {η ∈ ΣΓ : t(η0) = vj}.
Note that

ΣΓ =
⋃
j∈J

S̄j

where this is a disjoint union and S̄j is compact in ΣΓ.
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Definition. Define ψ : ΣΓ → Rn for η ∈ ΣΓ by

ψ(η) =
0∑

k=−∞
φ−kρsL(ηk) +

∞∑
k=1

φ−kL(ηk).

One can check that ψ is well defined for each η ∈ ΣΓ.

Suppose η and ε are elements of ΣΓ and N ∈ Z such that

dΓ(η, ε) ≤ 1
1 + |N | ;

then

‖ψ(η)− ψ(ε)‖ ≤
−N∑

k=−∞
‖φ−kρs(L(ηk)− L(εk))‖ +

∞∑
k=N

‖φ−k(L(ηk)− L(εk))‖

≤ 2%−N

1 + %−1
max{‖ρsL(α)‖, ‖L(α)‖ : α ∈ E}.

Hence ψ is a uniformly continuous map from ΣΓ to Rn. Note that ψ(Sj) = Ωu,j .

Proposition 2.3. For each j ∈ J , Sj is dense in S̄j and ψ(S̄j) = Ωj.

Proof. Let j ∈ J and η ∈ S̄j . For each k ∈ Z suppose

Θ(ηk) = (vjk−1 , vjk
, L(ηk)).

For each N > 0 fix εN ∈ Sj−N and for each k ∈ Z define ηk−N
N = εkN for k ≤ 0, and

ηk−N
N = ηk−N for k > 0. Then ηN = {ηk

N}k∈Z∈ Sj and

dΓ(ηN , η) ≤
1

1 +N
.

It follows that S̄j = Clos(Sj).
Since S̄j is compact in ΣΓ and ψ is continuous, ψ(S̄j) is a compact subset of Rn.

Since Sj is dense in S̄j , Ωu,j = ψ(Sj) is dense in ψ(S̄j). Hence Ωj = ψ(S̄j).

Corollary 2.4. The set
⋃

j∈J Sj is dense in ΣΓ and

ψ(ΣΓ) = Ω.

Proposition 2.5. For all η ∈ ΣΓ and N ≥ 0 we have

ψ(σΓ
Nη) = φNψ(η)− φN

N∑
k=1

φ−kζuL(ηk)

and

ψ(σΓ
−Nη) = φ−Nψ(η) + φ−N

0∑
k=1−N

φ−kζuL(ηk).

Proof. This follows from the definitions and lots of reindexing.

Proposition 2.6. (1) For each η ∈ S̄j there exists η̄ ∈ S̄j such that πsψ(η) =
ψ(η̄) ∈ Ωj ∩ Es and L(η̄k) = 0 for k ≥ 1.

(2) φπsΩ ⊂ πsΩ = Ω ∩ Es.

Proof. To prove (1) just note that every vertex is the source of a path labeled only
with 0. Part (2) follows from (1).
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Proposition 2.7. The map ψ is boundedly finite to one.

Proof. Let x ∈ Ω and {ηi}i∈I ⊂ ψ−1(x) for some finite indexing set I. Without
loss of generality we may assume that the paths ηi and ηi′ are distinct for each pair
of distinct i, i′ ∈ I. Hence there exists N ≥ 0 such that the paths

{ηk
i }∞k=−N and {ηk

i′}∞k=−N

are distinct for all i 6= i′.
Since Ω is compact in Rn, there exists a finite collection of z ∈ Zn such that

Ω ∩ (Ω + z) 6= ∅.
Hence there exists a bound b1 such that for all y ∈ Ω the number of points in y+Zn

belonging to Ω is less than or equal to b1. By Proposition 2.5 for each i ∈ I

φ−N−1x+ φ−N−1
0∑

k=−N

φ−kζuL(ηk
i ) = ψ(σΓ

−N−1ηi) ∈ Ω.

So for each i 6= i′ in I there exists z ∈ Zn such that

ψ(σΓ
−N−1ηi) = ψ(σΓ

−N−1ηi′) + z.

Hence the number of distinct points in {ψ(σΓ
−N−1ηi)}i∈I is less than or equal to

b1. Let y ∈ {ψ(σΓ
N−1ηi)}i∈I . Then for some i

πu(y) =
∞∑

k=1

φ−kL(σΓ
−N−1ηk

i ).

By Corollary 1.7 there is a bound b̄ on the number of paths which give a representa-
tion for πu(y). Hence the number of elements of {σΓ

−N−1ηi}i∈I which are mapped
by ψ to the same point is less than or equal to b̄. It follows that |I| ≤ b1b̄. Since
{ηi}i∈I was an arbitrary finite subset of ψ−1(x) and since x was arbitrary in Ω, we
have that |ψ−1(x)| ≤ b1b̄ for all x ∈ Ω.

If {Ω + z : z ∈ Zn} is a tiling of Rn, then we will think of Ω as representing the
n-dimensional torus. We let Π be the quotient map from Rn to Rn mod Zn and
study the map

Π ◦ ψ : (ΣΓ, σΓ) → (ΠΩ,Π ◦ φ).

The goal of the remainder of this section is to demonstrate what is needed to check
in order to determine if {Ω + z : z ∈ Zn} is indeed a tiling of Rn.

Definition. A finite collection of compact sets {C1, C2, . . . , Ck} in Rn induces a
periodic tiling of Rn mod Zn if

(1) (
⋃k

i=1 Ci) mod Zn = Rn mod Zn,
(2) each Ci is the closure of its interior, and
(3) for all z ∈ Zn if

(Ci + z) ∩ Int(Cj) 6= ∅,
then z = 0 and i = j.

Proposition 2.8. (1) For each j ∈ J , πs(Ωj) is the closure of its interior.
(2) For each j ∈ J , Ωj is the closure of its interior.
(3) Ω is the closure of its interior and πs(Ω) is the closure of its interior.
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Proof. Since ⋃
z∈Zn

(∪j∈J (Ωj + z)) = Rn

we apply the Baire category theorem. That is, for some j ∈ J we have that Ωj has
non-empty interior. But

Ωj = πs(Ωj)⊕ (T − c(T ))

for any T ∈ Tj , so Ωj has non-empty interior if and only if πs(Ωj) has non-empty
interior. It follows that by showing (1) we immediately get (2). For each j′ ∈ J ,
let Uj′ = Int(πsΩj′). By the above remarks Uj 6= ∅. By Proposition 2.6 for each
x ∈ Uj there exists ηx ∈ S̄j such that ψ(ηx) = x and L(ηk

x) = 0 for k ≥ 1. Since T

is mixing, for each j′ ∈ J there exists a path {εk}N
k=1 in Γ such that s(ε1) = j and

t(εN ) = j′. Let ε̄ ∈ S̄j be defined so that

ε̄k = ηk
x for k ≤ 0,

ε̄k = εk for 1 ≤ k ≤ N , and
L(ε̄k) = 0 for k > N .

Then

φN (ψ(ε̄))− φN
N∑

k=1

φ−kζuL(ε̄k) = ψ(σΓ
N ε̄)

=
0∑

k=−∞
φ−kρsL(ε̄k+N ) +

∞∑
k=1

φ−kL(ε̄k+N )

=
−N∑

k=−∞
φ−kρsL(ηk+N

x ) +
0∑

k=1−N

φ−kρsL(εk+N )

= φNψ(ηx) +
0∑

k=1−N

φ−kρsL(εk+N ).

Since t(εN ) = vj′ , we have ψ(σΓ
N ε̄) ∈ πsΩj′ . Since x was arbitrary in Uj,

φNUj +
0∑

k=1−N

φ−kρsL(εk+N ) ⊂ Uj′ .

So Uj′ 6= ∅ for all j′ ∈ J .
Let Tj0 be a generator for T. Then there is a unique generator Tj1 for T such

that

Tj0 = γ(Tj1).

For each N let TjN be the unique generator for T such that

Tj0 = γN (TjN ).

Then for T ∈ TjN , we have that φNc(T ) = c(γNT ) ∈ c(Tj0). Hence
∞⋃

N=0

φNUjN ⊂ Uj0 .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3334 BRENDA PRAGGASTIS

Since φ|−1
Es

is expansive, 0 belongs to the closure of Uj0 . Since Tj0 was an arbitrary
generator for T, for all generators Tj ∈ Tj , we have that 0 belongs to the closure
of Uj .

Let j ∈ J and T ∈ Tj . Then for some generator Tj0 there exists an N ≥ 0 such
that T ⊂ φNTj0 in which case

c(T ) = φNc(Tj0) + c(T ).

So for all T ′ ∈ Tj0 ,

φNc(T ′) + c(T ) ∈ c(Tj).

Hence φNUj0 + ρsc(T ) ⊂ Uj. Since 0 belongs to the closure of φNUj0 we have that
ρsc(T ) belongs to the closure of Uj. But T was arbitrary in Tj and

πsΩj = Clos{ρsc(T ) : T ∈ Tj}.
Hence πsΩj ⊂ Clos(Uj). This proves (1) and (2).

Finally we note that Ω =
⋃

j∈J Ωj and πsΩ =
⋃

j∈J πsΩj. Since both unions are
finite, we obtain (3).

Theorem 2.9. The collection {Ωj}j∈J induces a periodic tiling of Rn mod Zn if
and only if for all z ∈ Zn and j ∈ J such that Xu − z ∩ Int(Ωj) 6= ∅ we have that
z ∈ ζuc(Tj).

Proof. Suppose the sets Ωj do induce a periodic tiling of Rn mod Zn. Let z ∈ Zn

and suppose Xu − z ∩ Int(Ωj) 6= ∅ for some j ∈ J . Then for some j′ ∈ J and T in
Tj′ we have that

(T − z) ∩ Int(Ωj) 6= ∅.
Since T ∈ Tj′ , we have that

(T − ζuc(T )) ⊂ Ωj′ .

Moreover,

(T − ζuc(T ) + (ζuc(T )− z)) ∩ Int(Ωj) 6= ∅
so

(Ωj′ + (ζuc(T )− z)) ∩ Int(Ωj) 6= ∅.
By our hypothesis we have ζuc(T ) = z and j = j′. Hence z ∈ ζuc(Tj).

Conversely, suppose Xu − z ∩ Int(Ωj) 6= ∅ implies that z ∈ ζuc(Tj). Let z ∈ Zn

and j, k ∈ J and suppose that

(Ωj + z) ∩ Int(Ωk) 6= ∅.
Since Ωu,j is dense in Ωj for some T ∈ Tj , we have that

(T − ζuc(T ) + z) ∩ Int(Ωk) 6= ∅.
Since T is the closure of its interior, we have

(Int(T )− ζuc(T ) + z) ∩ Int(Ωk) 6= ∅.
By the hypothesis ζuc(T )− z ∈ ζuc(Tk). Hence for some T ′ ∈ Tk we have

ζuc(T ′) = ζuc(T )− z.

Moreover,

(Int(T )− ζuc(T ) + z) ∩ (T ′ − ζuc(T ′)) 6= ∅.
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Hence Int(T ) ∩ T ′ 6= ∅. So T = T ′ and ζuc(T ) = ζuc(T ′). It follows that j = k and
z = 0.

In general Theorem 2.9 may or may not be useful to check if we have a periodic
tiling of Rn mod Zn. The set Xu may not be connected so just checking if

Xu − z ∩ Int(Ωj) 6= ∅
may be difficult. Fortunately, the tilings that we will be interested in have a bit
more structure.

Definition. If {Ωj}j∈J yields a periodic tiling of Rn mod Zn, then we will call T
a Markov tiling.

The self similar tilings that we will be using to construct Markov partitions will
be Markov tilings. In general the tiled space Xu will be a semigroup. When Xu is
a semigroup, we can determine if {Ωj}j∈J induces a periodic tiling by considering
the lattice points in Zn which are close to Xu.

Definition. Let P0 be the union of the generators for T. Let [P0] be the set of
πu(Zn)-translates of P0 which have the same pattern as P0.

If P0 + g ∈ [P0], then each tile in P0 + g is of the same type as a generator.
Moreover each tile in P0 + g has g as its control point. For each P ∈ [P0] let c(P )
denote this control point, so that P0 + c(P ) = P . Let c[P0] denote the set of all
such control points. It turns out that if the elements of Zn which project onto c[P0]
include all the elements of Zn within a certain bounded region of Xu, then we have
a periodic tiling.

Definition. Let

Xs =
∞⋃

k=0

φ−kπsΩ.

Since πsΩ = {∑0
k=−∞ φ−kρsL(ηk) : η ∈ ΣΓ}, we have

Xs =

{
M∑

k=−∞
φ−kρsL(ηk) : η ∈ ΣΓ, M ∈ Z

}
.

Note that φXs = Xs and Xs is the closure of its interior.

Lemma 2.10. For every M ∈ Z there exists N ∈ Z such that if η ∈ ΣΓ, M ′ ∈ Z,
and

M ′∑
k=−∞

φ−kρsL(ηk) ∈ φNπsΩ,

then M ′ ≤M .

Proof. Let η ∈ ΣΓ and M ′ ∈ Z. Suppose

x =
M ′∑

k=−∞
φ−kρsL(ηk) ∈ πsΩ.
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We wish to find a bound M independent of x such that M ′ ≤M . Clearly M ≥ 0.
Assume that M ′ > 0 and let z =

∑M ′

k=1 φ
−kζuL(ηk), then

x =
0∑

k=−∞
φ−kρsL(ηk) +

M ′∑
k=1

φ−kρsL(ηk) ∈ Ω− z.

By an application of Corollary 1.10 there is a bound on the number of finite paths
in Γ given by {ηk}k∈I such that πu(z) =

∑
k∈I φ

−kL(ηk). Let Mz = maxI{i ∈ I}.
Since Ω is compact, there are at most a finite number of lattice points z ∈ Zn such
that

(Ω− z) ∩ πsΩ 6= ∅.
Let M0 = max{Mz : z ∈ Zn, (Ω − z) ∩ πsΩ 6= ∅}; then M ′ ≤ M0 and M0 is
independent of x. We find for all N ∈ Z if x ∈ φNπsΩ, then M ′ ≤ M0 − N . Let
N = M0 −M .

Lemma 2.11. For each N ≥ 0, φNc[P0] ⊂ c[P0].

Theorem 2.12. Suppose that Xu is a semigroup and for all

z ∈ −Xs ⊕Xu ∩ Zn

there exists N ≥ 0 such that φNz ∈ ζuc[P0]. Then T is a Markov tiling.

What this theorem essentially says is that if every translate of Ω by a lattice
point in Zn which is close to Xu intersects Xu in a set with the same pattern as
P0, then we have a periodic tiling of Rn mod Zn. It turns out that many tilings
are constructed with this property built in. So checking if we have a Markov tiling
becomes trivial. We will prove Theorem 2.12 at the end of this section.

Corollary 2.13. Suppose that Xu is a semigroup and T has only one generator.
If for all z ∈ −Xs ⊕ Xu ∩ Zn we have z ∈ ⋃∞k=0 φ

−kζuc(T), then T is a Markov
tiling.

Good examples of Markov tilings may be found by studying the β-shift, for β a
Pisot number. We say that β is a Pisot number if β is an algebraic integer greater
than 1 with Galois conjugates all having modulus less than 1. It is well known that
there is a one-sided shift space which behaves like multiplication times β mod 1.
Define Tβ : [0, 1) → [0, 1) by

Tβ(x) = βx− [βx],

where [βx] denotes the greatest integer less than or equal to βx. For each x ∈ [0, 1)
there is a well defined digit representation

x =
∞∑

k=1

β−kbk

where

bk = [βTβ
k−1x].

We call this the β-expansion of x. Moreover there is a sequence denoted by
carry(β) = a1a2a3 . . . such that for all x the corresponding sequence b1b2b3 . . .
is lexicographically less than a1a2a3 . . . . We say {bk}∞k=1 is lexicographically less
than {ak}∞k=1 if for some N ≥ 0 we have bk = ak for all k < N and bN < aN . (If
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N = 0, then b1 < a1.) We call carry(β) the carry sequence for β as in [17] and note
that carry(β) works for numbers in base β just as the sequence 999999 · · · works
for numbers in base 10. In particular

1 =
∞∑

k=1

β−kak.

To find carry(β) we let a1 be the greatest integer strictly less than β. Let a2 be the
greatest integer strictly less than β(β − a1). Let ai be the greatest integer strictly
less than βi −∑i−1

k=1 β
i−kak. Since β is Pisot, carry(β) is an eventually repeating

sequence which has an infinite number of non-zero entries.
The β-shift Σβ is the set of sequences in {0, 1, . . . , [β]} which are lexicographically

less than or equal to carry(β). The shift operator is the one-sided shift σβ such
that

σβ(b1b2b3 . . . ) = b2b3b4 . . . .

Let x ∈ [0, 1) and let {bk}∞k=1 ∈ Σβ such that

x =
∞∑

k=1

β−kbk.

Then

βx = b1 +
∞∑

k=1

β−kbk+1.

If {bk+1}∞k=1 is lexicographically less than carry(β), then we have

Tβx =
∞∑

k=1

β−kbk+1.

Otherwise we have
∑∞

k=1 β
−kbk+1 = 1 and βx = b1 + 1. In this case Tβx = 0.

Suppose β is a Pisot unit. That is, the product of β and its Galois conjugates is
1. Suppose Z[β] has dimension n. Let φ ∈ GL(n,Z) be the companion matrix with
characteristic polynomial equal to the minimal polynomial for β. Then φ induces
a hyperbolic automorphism of Rn mod Zn. Let e be a unit vector in Zn. Then
Z[φ]e = Zn. Let eu = πue; then Eu = Reu. We construct a self similar tiling T of
Xu = [0,∞)eu. If

carry(β) = a1a2 . . . aq(aq+1 . . . aq+p)

(where (aq+1 . . . aq+p) is the repeating part), then T will have q + p sets in the tile
type partition denoted by Tj, j ∈ {1, 2, 3, . . . , q + p}. Let T1 be the line segment
of Eu with endpoints 0 and eu. Let T1 ∈ T1. Then φT1 = βT1 has endpoints 0
and βeu. Let T1 + keu ∈ T1 for k ∈ {0, 1, 2, 3, . . . , a1 − 1}. Let [a1, β]eu ∈ T2. Let
T2 = [0, β−a1]eu. Then T2+a1 ∈ T2. We have φ(T2+a1) = βT2+βa1 = [a1β, β

2]eu.
Since a2 is the greatest integer less than β2 − βa1, we let

T1 + (a1β + k)eu ∈ T1 for each k ∈ {0, . . . , a2 − 1}.
We let [a1β+a2, β

2]eu ∈ T3. Let T3 = [0, β2−a1β−a2]eu. We repeat this procedure
for j ∈ {3, 4, . . . , q + p}. Since carry(β) is eventually repeating, we see that

βq+p − βq+p−1a1 − · · · − aq+p = βq − a1β
q−1 − · · · − aq.
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Note

Tq+p = [0, βq+p−1 −
q+p−1∑

k=1

βq+p−1−kak]eu

and

β(βq+p−1 −
q+p−1∑

k=1

βq+p−1−kak) = βq+p −
q+p−1∑

k=1

βq+p−kak

= aq+p + βq −
q−1∑
k=1

βq−1−kak.

So if T = [x, y]eu ∈ Tq+p, then φT is subdivided into aq+p tiles in T1 and 1 tile in
Tq+1. That is, T1+(φx+k)eu ∈ T1 for k ∈ {0, . . . , aq+p−1} and Tq+1+(φx+aq+p) ∈
Tq+1.

This defines the subdivision rules for T and the tile types. Since carry(β) has
an infinite number of nonzero terms, every tile in T has an eventual image which
contains a tile in T1. Since T1 is the only generator for T, we have that T is mixing.
Since there are a finite number of tile types and line segments may be arranged
in only a finite number of ways in a bounded region of Xu, T has a finite number
of local patterns. Moreover, the endpoints of tiles in T lie in Z[β]eu. Hence the
endpoints are the projection of points in Z[φ]e = Zn. So T is a πu(Zn)-finite self
similar tiling of Xu with expansion map φ. Let γ be a generating tile map such
that the left endpoint for each tile is its control point. Then c(T) ⊂ πu(Zn). The
subdivision graph is given in Figure 4. Each edge α is labeled with L(α). Multiple
edges from vj to v0 are indicated with a thick arrow and the range of the labels
is given. Since every infinite path in the graph corresponds to an element of the
β-shift, we’ll call this the subdivision graph for the β-shift.

We are interested to know when T is a Markov tiling. We note that T is certainly
a Markov tiling if every element of Zn which projects to Xu has an eventual image
which projects to a control point for T or, equivalently, if every nonnegative element
of Z[β] has a finite β-expansion.

Frougny and Solomyak have given sufficient conditions for the nonnegative ele-
ments of Z[β] to have finite β-expansions [7]. Let

xn − d1x
n−1 − · · · − dn−1x− dn

be the minimal polynomial for β. If

d1 ≥ d2 ≥ · · · ≥ dn−1 ≥ dn = 1,

then every nonnegative element of Z[β] has a finite β-expansion. So T is a Markov
tiling. In this case we will show that the two sided extension of the β-shift is a
symbolic representation for φ mod Zn.

Let φ ∈ GL(n,Z) be a hyperbolic automorphism of Rn with characteristic poly-
nomial χφ. Suppose χφ is the minimal polynomial for a Pisot number β. We apply
the above construction to tile Xu = [0,∞)eu, for eu = πue. The tiling T is a
πu(Zn)-finite self similar tiling of Xu with expansion map φ. If Z[φ]e = Zn and
every non-negative element of Z[β] has a finite β-expansion, then T is a Markov
tiling. If every nonnegative element of Z[β] has a finite β-expansion but Z[φ]e 6= Zn,
then T induces a periodic tiling of Rn mod Z[φ]e.
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Figure 4. The subdivision graph for the β-shift.

Example 6. Let

φ =

 1 1 1
1 0 0
0 1 0

 .

Then φ has characteristic polynomial x3−x2−x−1. The eigenvalues for φ are λ 1,
λ 2, λ 3 where λ 1 > 1 and λ 2 = λ 3 has modulus less than 1. Note that x3−x2−x−1
satisfies the conditions of Frougny and Solomyak’s theorem. Moreover Z[φ]e = Zn.
So the corresponding self similar tiling is a Markov tiling. The carry sequence for
λ 1 is (110). The subdivision graph is given in Figure 5. Each edge α is labeled
with L(α).

The sets πs(Ω1), πs(Ω2), πs(Ω3) which arise out of this tiling coincide with
the basic tiles found by Rauzy in [16]. Also note that πs(Ω1), πs(Ω2), πs(Ω3)
are translates of the three basic tiles used in Bedford’s construction (see [3]). A
sketch of the sets Ω1, Ω2, Ω3 is in Figure 6. The angles between the eigenvectors
are distorted so that it is possible to see the rectangles. The bold lines indicate
surfaces in front while the dotted lines indicate surfaces behind. Note that these
really do look like crinkly tin cans.

Suppose now that Z[φ]e is not equal to Zn or that the nonnegative elements of
Z[β] do not always have finite β-expansions. Then we must look for a self similar
tiling different from the tiling given by the β-shift to construct a Markov partition
for φ mod Rn. One such construction may be found in [15].

At this point we would like to say that every Markov partition consisting of rect-
angles which one finds in the literature may be constructed using self similar tilings.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3340 BRENDA PRAGGASTIS
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1
e

e
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Figure 5. The subdivision graph for Example 5.3.

(0,0,1)

(0,1,0)

(1,0,0)

E

Es

0

Figure 6. The periodic tiling in Example 5.3.

Unfortunately, things are never as simple as we would like and a more general con-
struction using periodic self similar tilings is required. A complete treatment of the
general case is found in [15].

We will end this section by proving Theorem 2.12.

Proof of Theorem 2.12. Suppose that Xu is a semigroup and for all z ∈ (−Xs ⊕
Xu) ∩ Zn there exists N ≥ 0 such that φNz ∈ ζu(c[P0]). We will show that T is a
Markov tiling.
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The first step is to construct an open subset U of Xs which contains 0 in its
closure such that φU ⊂ U and if z ∈ (−U ⊕Xu) ∩ Zn, then z ∈ ζuc[P0]. Suppose
z ∈ (−Xs ⊕ Xu) ∩ Zn. By hypothesis πu(z) is the preimage of a control point.
Hence there is a finite path {ηk}M

k=−N in Γ with source in {vj}j∈J0 such that z =∑M
k=−N φ−kL(ηk). By Lemma 2.10 there exists N1 such that if −πsz ∈ φN1πsΩ,

then M ≤ 0 and z ∈ ζuc(T ). Let T ∈ T. By hypothesis there exists N2 such that
φN2c(T ) ∈ c[P0]. Since T has a finite number of local patterns, we may choose N2

so that for all T ∈ T we have φN2c(T ) ∈ c[P0]. Hence if −πs(z) ∈ φN1+N2πsΩ, then
z ∈ ζuc[P0]. Let U = φN1+N2πsΩ.

The second step is to compensate for the possibility that Xu may not be con-
nected. Since φ|Eu is expansive, Xu contains arbitrarily large connected compo-
nents. If T is a tile, then choose N sufficiently large so that T ⊂ φNP0. Then for
all P ∈ [P0], T + φNc(P ) is a tile of the same type as T . Moreover T + φk+N c(P )
is a tile of the same type as T , for all k ≥ 0. By the quasi-periodicity of T, each
sufficiently large connected component of Xu contains the pattern of φNP0 well
within its interior. If C is a connected component of Xu which contains φNP , then
φkC is a connected component of Xu which contains φk+NP . Note that

c(T + φk+N c(P )) = c(T ) + φk+N c(P ).

It follows that

‖ρsc(T + φk+N c(P ))− ρsc(T )‖ ≤ %−k−N‖ρsc(P )‖.
Hence for every tile T there exists a tile T ′ of the same type as T and contained in
an arbitrarily large connected component of Xu. Moreover, by fixing P and letting
k get arbitrarily large, for any δ > 0, we may choose T ′ so that

‖ρsc(T ′)− ρsc(T )‖ < δ.

If V is a bounded neighborhood of Ω, then we choose T ′ so that

(Xu − ζuc(T ′)) ∩ V = (Eu − ζuc(T ′)) ∩ V.
Finally we suppose that T is not a Markov tiling. The basic idea is to show that

if for some distinct pair j, k ∈ J and z ∈ Zn − {0} we have

Int(Ωj) ∩ Int(Ωk) + z 6= ∅,
then there exists z′ ∈ Zn such that

Xu − z′ ∩ Int(πs(Ωj)) 6= ∅
and z′ /∈ ζuc(Tj). We construct a nonempty subset of (− Int(πs(Ωj)) ⊕Xu) ∩ Zn

in which every point is not in ζuc(Tj). We then use the hypothesis of the theorem
to show that such a set cannot exist.

So suppose for some distinct pair j, k ∈ J and z ∈ Zn − {0} we have

(Int(Ωj) + z) ∩ Int(Ωk) 6= ∅.
Then for some T ∈ Tk we have

(T − ζuc(T )) ∩ ( Int(Ωj) + z) 6= ∅.
By the above remarks we may choose T so that

(Xu − ζuc(T )) ∩ (Ωj + z) = (Eu − ζuc(T )) ∩ (Ωj + z).
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So

(Xu − ζuc(T )− z) ∩ πs(Ωj) = {πs(−ζuc(T )− z)}.
Since

(Xu − ζuc(T )− z) ∩ Int(Ωj) 6= ∅
and Ωj is a rectangle,

πs(−ζuc(T )− z) ∈ Int(πs(Ωj)) ⊂ Xs.

Moreover z is within a bounded region of 0. By choosing T so that it lies well within
a large connected ball in Xu we have c(T )+πu(z) ∈ Xu. Also c(T )+πu(z) /∈ c(Tj).
For if not, then c(T ) + πu(z) = c(T ′) for some T ′ ∈ Tj and

(Xu − ζuc(T )− z) ∩ Int(Ωj) = Int(T ′)− ζuc(T ′).

Hence

(T − ζuc(T )− z) ∩ (Int(T ′)− ζuc(T ′)) 6= ∅
and T ∩ Int(T ′) 6= ∅. So T = T ′. But then z = 0 and j = k.

It follows that if T is not a Markov tiling, then there exist j ∈ J and z ∈
(−Xs ⊕Xu) ∩ Zn such that

(Xu − z) ∩ Int(πs(Ωj)) 6= ∅
and z /∈ ζuc(Tj).

Choose M1 sufficiently large so that πu(z) ∈ Int(φM1P0). Then for all P ∈ [P0]
we have ζuφM1c(P )+ z /∈ ζuc(Tj). Hence for all w ∈ (−φM1U ⊕Xu)∩Zn, we have
w + z /∈ ζuc(Tj) and

((−φM1U ⊕Xu) + z) ∩ ζuc(Tj) = ∅.(3)

Since −πs(z) ∈ Int(πsΩj) and 0 ∈ Clos(φM1U), there exists T ′′ ∈ Tj such that

ρsc(T ′′) ∈ −πs(z) + φM1U.

Choose M2 sufficiently large so that

T ′′ ⊂ φM2P0,

and so that, for all P ∈ [P0], φM2c(P0) + c(T ′′) ∈ c(Tj) and

ρs(φM2c(P ) + c(T ′′)) ∈
(
(φM1U − πs(z)) ∩ ρsc(Tj)

)
.

Since Xu is a semigroup, and πu(z) ∈ Xu, we have

Xu + πu(z) ⊂ Xu.

Since T is quasi-periodic, there exists P ∈ [P0] such that

φM2P ⊂ Xu + πu(z).

Hence φM2c(P ) + c(T ′′) ∈ Xu + πu(z). So

ζuφ
M2c(P ) + ζuc(T ′′) ∈

(
(−φM1U ⊕Xu) + z

)
∩ ζuc(Tj)

contradicting equation (3). It follows that z ∈ ζuc(Tj) and T is a Markov tiling.
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3. Symbolic representations

We have seen that if T is a Markov tiling with expansion map φ, then we can
wrap T inside Rn mod Zn in such a way that the tiles of the same type form almost
disjoint rectangles {Ωj}j∈J . This is the first step to construct a Markov partition
for φ mod Zn. Once we have a Markov partition we will be able to represent the
dynamical system (Rn mod Zn, φ mod Zn) as a shift of finite type. In [1] Adler
and Marcus outline the essential requirements for a symbolic system to represent
an abstract dynamical system. In this final section we review these ideas . We
show that if T is a Markov tiling, then ψ may be extended to a map from ΣΓ to
Rn mod Zn in such a way that this extension meets the requirements for a symbolic
representation. The following definitions come from [1, pp. 5–6]. We omit most
proofs. Detailed proofs may be found in [15].

Definition. A dynamical system (X, f) is said to be ergodically supported if
there exists an ergodic f -invariant probability measure µx which is positive on open
sets. Such measures are called ergodically supporting. A subset N ⊂ X is called
universally null if it has measure zero with respect to all ergodically supporting
measures.

Definition. If (X, f) and (Y, h) are ergodically supported systems and π is a map
from Y into X , then π is called an almost homeomorphic factor map of Y into
X if

(1) π is onto,
(2) π is boundedly finite to one,
(3) π is continuous,
(4) f ◦ π = π ◦ h, and
(5) π maps Y − π−1(N) one to one onto X −N for some f invariant universally

null set N .
From now on we assume that T is a Markov tiling of Xu. Define Π: Rn →

Rn mod Zn to be the quotient map which identifies points in Rn modulo the integer
lattice. Since Ω is a fundamental region for a periodic tiling of Rn mod Zn, a set
U ⊂ ΠΩ is open if and only if Π−1U ∩Ω is open in the relative topology of Ω. Let
φ̂ : ΠΩ → ΠΩ by φ̂(Πx) = Π(φx). Let ψ̂ : ΣΓ → ΠΩ by ψ̂(η) = Πψ(η).

Theorem 3.1. The map ψ̂ is an almost homeomorphic factor map from (ΣΓ, σΓ)
to (ΠΩ, φ̂).

To prove this we note that the non-doubly transitive points in (ΠΩ, φ̂) form a
universally null set. We construct a partition for ΠΩ which will yield a generating
set for a sigma-algebra on ΠΩ which is metrically equivalent to the Borel sigma
algebra. We show that every point whose orbit misses the boundary of this partition
has a unique preimage in ΣΓ. Finally we show that the doubly transitive points
have orbits which miss the boundary of the partition. We call this partition a
Markov partition.

Recall from the last section that ψ is a continuous surjection from ΣΓ to Ω.
Hence Π ◦ ψ is a continous surjection from ΣΓ to ΠΩ.

Lemma 3.2. For all k ∈ Z

φ̂
k ◦ ψ̂ = ψ̂ ◦ σΓ

k.
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Proof. This follows from Proposition 2.5.

Lemma 3.3. ψ̂ is boundedly finite to one.

Proof. This follows from Proposition 2.7.

Proposition 3.4. Suppose N , M ≥ 0 and {ηk}M
k=−N is a path in Γ with source

vj0 and target vj1 . Then

ψ(C−N (η−N · · · ηM ))

=

(
φN+1Ωj0 −

0∑
k=−N

φ−kζuL(ηk)

)
∩
(
φ−MΩj1 +

M∑
k=1

φ−kζuL(ηk)

)

=

(
πsφ

N+1Ωj0 +
0∑

k=−N

φ−kρsL(ηk)

)
⊕
(
πuφ

−MΩj1 +
M∑

k=1

φ−kL(ηk)

)
,

and ψ(C−N (η−N · · · ηM )) is the closure of its interior.

Proof. This follows from repeated applications of Proposition 2.5.

This proposition tells us all that we need to know about the ψ-images of the
cylinder sets. By taking unions of sets of the form C−N (η−N · · · ηM ) we may find
the ψ-image of any cylinder set.

Definition. For each α ∈ E let Rα = ψC0(α). Let R = {Rα : α ∈ E}, and
ΠR = {ΠRα : α ∈ E}.

By Proposition 3.4, if α ∈ E and Θ(α) = (vj0 , vj1 , L(α)), then

Rα = (φΩj0 − ζuL(α)) ∩ Ωj1

= (πsφΩj0 + ρsL(α))⊕ πuΩj1 .

Proposition 3.5. (1) For each α ∈ E the set Π(Int(Rα)) is dense in Int(ΠRα)
and

ΠRα = Clos (Π(Int(Rα)))
= Clos(Int(ΠRα)).

(2) ΠR forms an almost disjoint cover of ΠΩ.
(3) For each α ∈ E and η ∈ ΣΓ we have ψ̂(η) ∈ Int(ΠRα) only if η0 = α.
Hence if ψ̂(η) ∈ Π(Int(Rα)), then η0 = α.

It follows from (3) above that if x ∈ Ω such that, for all k ∈ Z, Πφkx ∈
Π(Int(Rα)) for some α ∈ E , then Πx has a unique ψ̂ preimage in ΣΓ. We will
show that the orbit of a doubly transitive point lies in⋃

α∈E
Π(Int(Rα)).

The natural way to approach this is to consider the boundary of Rα .

Definition. If α ∈ E and Θ(α) = (vj0 , vj1 , L(α)), then the stable boundary of
Rα is

∂sRα = (πsφΩj0 + ρsL(α))⊕ ∂πuΩj1

and the unstable boundary of Rα is

∂uRα = (∂πsφΩj0 + ρsL(α))⊕ πuΩj1 .
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If x ∈ Rα = (πsφΩj0 + ρsL(α))⊕ πuΩj1 but x /∈ ∂sRα ∪ ∂uRα , then

πs(x) ∈ Int(πsφΩj0) + ρsL(α)

and

πu(x) ∈ Int(πuΩj1).

Hence x ∈ Int(Rα). So ∂Rα = ∂sRα ∪ ∂uRα . Let ∂sR =
⋃

α∈ E ∂
sRα and

∂uR =
⋃

α∈E ∂
uRα . Then ∂R =

⋃
α∈E ∂Rα = ∂sR ∪ ∂uR. It follows from

the definitions that:

Proposition 3.6. For each α ∈ E
(1) Πφ∂sRα ⊂ Π∂sR and
(2) Πφ−1∂uRα ⊂ Π∂uR.

Corollary 3.7. Let α ∈ E and Θ(α) = (vj0 , vj1 , L(α)). Then
(1) φRα ⊂ ⋃α′∈Ej1

(Rα′ + ζuL(α′)),

(2) φ−1Rα ⊂ ⋃α′∈Ej0 Rα′ − ζuφ
−1L(α),

(3) φ−1πsRα =
⋃

α′∈Ej0 πsRα′ + ρsφ
−1L(α),

(4) φπuRα =
⋃

α′∈Ej1
(πuRα′ + L(α′))

where these are almost disjoint unions.

Proof of Theorem 3.1.
Let N = Π(

⋃
k∈Zφ

−k∂R) =
⋃

k∈Zφ̂
−k

Π∂R. If x ∈ Ω and Πx ∈ ΠΩ −N, then
for all k ∈ Z

φ̂
k
Πx /∈ Π∂R.

Hence if yk ∈ Ω such that Πyk = φ̂
k
Πx, then yk /∈ ∂R. So for all k ∈ Z there exists

ηk ∈ E such that

φ̂
k
Πx = Πyk ∈ Π(Int(Rηk )).

By Proposition 3.5 Πx has a unique ψ̂ preimage {ηk}k∈Z.

Suppose Πx is doubly transitive. If for some N ∈ Z we have φ̂
N

Πx ∈ Π∂R, then
φ̂

N
Πx ∈ Π(∂sR ∪ ∂uR). Hence by Proposition 3.6 Πx is not doubly transitive. It

follows that the doubly transitive points lie in ΠΩ −N and therefore have unique
preimages. Since almost every point is doubly transitive N is a universally null set.
Since ψ̂ is a continuous surjection, with Lemmas 3.2 and 3.3 we have shown that ψ̂
satisfies the conditions for an almost homeomorphic factor map.

Appendix: Insplitting the tile types

Insplitting is a procedure which takes a graph Γ and generates a new graph Γ̂
by splitting one set of edges sharing a common target into multiple sets and giving
each of these sets a distinct target. In terms of the tiling, we will split a tile type
into two or more sets and call each of these new sets a tile type.

If T ∈ T, then there is a unique T ′ ∈ T such that φ−1(T ) ⊂ T ′. If T ∈ Tj and
T ′ ∈ Tk, then there is a unique edge α(T ) ∈ E such that

α(T ) = Θ−1(vk, vj , d(T )− φd(T ′)).

Note that T ∈ Tj if and only if α(T ) ∈ Ej .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3346 BRENDA PRAGGASTIS

Let j0 ∈ J and split Ej0 into two sets Ej1
0 and Ej2

0 . Let Ĵ = J − {j0} ∪ {j10 , j20}.
Let Γ̂ be the graph with vertex set V̂ indexed by Ĵ and edge set Ê defined as follows.
Suppose α is an edge in E , i ∈ {1, 2}, and j, k ∈ J .

• If α ∈ Eji
0 and s(α) = vj0 , then let α̂1, α̂2 ∈ Ê such that

α̂1 ∈ Êji
0

j1
0

and α̂2 ∈ Êji
0

j2
0
.

• If α∈ Eji
0 and s(α) = vk for some k 6= j0, then let

α̂ ∈ Êji
0

k .

• If α ∈ Ek
j0

for some k 6= j0, then let α̂1, α̂2 ∈ Ê such that

α̂1 ∈ Êk
j1
0

and α̂2 ∈ Êk
j2
0
.

• If α ∈ Ek
j for some j, k 6= j0, then let

α̂ ∈ Êk
j .

This procedure is called a single insplitting of Γ induced by the partition
{Ej1

0 , Ej2
0}. From the above construction we may compute a transition matrix for

Γ̂, indexed by Ĵ × Ĵ given by {
|Êj2

j1
|
}

j1,j2∈Ĵ
.

Let i ∈ {1, 2}.
• If j1 ∈ {j10 , j20} and j2 = ji

0, then

|Êj2
j1
| = |Ej0 ∩ Eji

0 |.
• If j1 ∈ J − {j0} and j2 = ji

0, then

|Êj2
j1
| = |Ej1

∩ Ej0 i|.
• If j1 ∈ {j10 , j20} and j2 ∈ J − {j0}, then

|Êj2
j1
| = |Ej2

j0
|.

• If j1, j2 ∈ J − {j0}, then

|Êj2
j1
| = |Ej2

j1
|.

It follows that if {T̂j}j∈Ĵ is a tile type partition for T which induces a transi-

tion matrix equal to the transition matrix for Γ̂, then Γ̂ is the subdivision graph
corresponding to T with the partition {T̂j}j∈Ĵ .

Suppose T 1 and T 2 are distinct tiles in Tj0 such that α(T 1) 6= α(T 2). There
exists a partition of Ej0 into two sets Ej1

0 and Ej2
0 such that α(T 1) ∈ Ej1

0 and
α(T 2) ∈ Ej2

0 . Let Γ̂ be the graph obtained for Γ by applying the insplitting rule
using this partition. Let Ê be the new edge set and Ĵ = J − {j0} ∪ {j10 , j20} index
the new vertex set as in the rule.

For each α ∈ E there exists a corresponding edge or pair of edges in Ê . If α ∈ Ek
j

and k 6= j0, then the corresponding edges in Ê have target vk. If α ∈ Ej1
0 , then the
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corresponding edge or edges in Ê have target vj1
0
. If α ∈ Ej2

0 , then the corresponding
edges in Ê have target vj2

0
. For each j ∈ J − {j0} let

T̂j = {T ∈ T : α(T ) ∈ Ej} = Tj .

Let

T̂
j1
0

= {T ∈ T : α(T ) ∈ Ej1
0}

and

T̂
j2
0

= {T ∈ T : α(T ) ∈ Ej2
0 }.

Then {T̂j1
0
, T̂j2

0
} is just a partition of Tj0 and T is a G-finite tiling with respect to

the partition {T̂j}j∈Ĵ
.

Suppose that T ∈ T̂j ⊂ Tk. Let {T α̂}
α̂∈ Êk

be the unique set of tiles such that

φT =
⋃

α̂∈ Êk

T α̂,

and T α̂ ∈ T̂kα̂
if and only if t(α̂) = vkα̂

in Γ̂.
For each α̂ ∈ Êj there is a corresponding α ∈ Ek. The target of α̂ depends upon

the target of α. Hence the new tile type of T α̂ depends on the target of α. So the
new pattern of φT is determined by the original tile type of T . In particular, the
image of every tile in Tk has the same pattern in the new tile type partition. It
follows that if P is a finite union of tiles in T, then the pattern of P with respect
to the partition {T̂j}j∈Ĵ

depends only on the pattern of φ−1P with respect to the
partition {Tj}j∈J . Hence any subdividing properties that applied to T using the
original partition still apply using the new partition. Moreover, by the construction
we see that the transition matrix corresponding to the new partition is the same as
the transition matrix for Γ̂. Hence Γ̂ is the subdivision graph for T with tile type
partition {T̂j}j∈Ĵ . Finally, we note that T 1 and T 2 have different tile types in this
new tile type partition.

Proposition 1.9. Let j ∈ J , let T1 and T2 be distinct tiles in Tj. There exists a
partition of Tj into two sets T̂j1 and T̂j2 such that

{Tk : k ∈ J − {j}} ∪ {T̂j1 , T̂j2}
is a tile type partition for T which preserves the subdividing properties of T. More-
over T1 ∈ T̂j1 and T2 ∈ T̂j2 .

Proof. If α(T1) 6= α(T2), then we are done by the preceding remarks. We suppose
now that α(T1) = α(T2).

There exist a unique sequence of tiles {T k
1 }∞k=0 such that φ−kT1 ⊂ T k

1 and a
unique sequence of tiles {T k

2 }∞k=0 such that φ−kT2 ⊂ T k
2 . Since φ is expansive, for

some M0 ≥ 0 we have 0 ∈ TN
1 ∩ TN

2 for all N ≥ M0. We claim for some minimal
K0 ≥ 1 we have

α(TK0
1 ) 6= α(TK0

2 ).
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Suppose for a moment this is true. Then the tile type of TK0
1 is the same as the tile

type of TK0
2 . Otherwise the source of α(TK0−1

1 ) would be different from the source
of α(TK0−1

2 ) and

α(TK0−1
1 ) 6= α(TK0−1

2 )

contradicting the minimality of K0.
By the remarks preceding this proposition we may construct a single insplitting

of Γ to form Γ̂
1

and the resulting tile type partition for T will give TK0
1 and TK0

2

different tile types.
The control points for T are positional points for T so we may define a label map

for Γ̂
1

in terms of the controls points. We define an edge assignment α1 : T → Ê1

in terms of the label map for Γ̂. Since TK0
1 and TK0

2 have different tile types, there
exists a minimal K1 < K0 such that

α1(TK1
1 ) 6= α1(TK1

2 ).

By applying induction we construct a finite sequence of insplittings to form Γ̂
N

with edge assignment αN : T → EN . It follows that there is a decreasing sequence

0 < KN < KN−1 < · · · < K1 < K0

such that αN (TKN
1 ) 6= αN (TKN

2 ). Hence for some N ≥ 1 we have

αN (T1) 6= αN (T2).

So we are in a position to define a tile type partition for T which will force T1 and
T2 to have different tile types in their respective tilings.

Why does K0 exist? Suppose for all k ≥ 1 we have

α(T k
1 ) = α(T k

2 ).

Then for all N ≥ 1 we have TN
1 6= TN

2 . Otherwise for some minimal N0 > 0
we have TN0

1 = TN0
2 . Suppose this is the case and TN0

1 and TN0
2 are in Tj . Let

x1 = φ−N0c(T1) and x2 = φ−N0c(T2). We apply the proof for Theorem 1.5 and find

x1 = c(TN0
1 ) +

N0∑
i=1

φ−iL(α(TN0−i
1 ))

= c(TN0
2 ) +

N0∑
i=1

φ−iL(α(TN0−i
2 ))

= x2.

So c(T1) = c(T2). By Corollary 1.4 we have T1 = T2. But we assumed that T1 6= T2.
So {T k

1 }∞k=0 and {T k
2 }∞k=0 are distinct sequences for which T k

1 6= T k
2 for any k ≥ 1.

Since α(T k−1
1 ) = α(T k−1

2 ), we have

c(T k−1
1 )− φc(T k

1 ) = c(T k−1
2 )− φc(T k

2 ).

So

c(T k−1
1 )− c(T k−1

2 ) = φ(c(T k
1 )− c(T k

2 ))

for all k ≥ 0. Hence

c(T k
1 )− c(T k

2 ) = φ−k(c(T1)− c(T2))
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for all k ≥ 0. Since T1 6= T2, we have c(T1) 6= c(T2). Since φ is a homeomorphism,

{φ−k(c(T1)− c(T2))}∞k=1

is a sequence of distinct points converging to 0. But T is locally finite and for allN ≥
M0 we have TN

1 and TN
2 contain 0. So {c(T k

1 )−c(T k
2 )}k≥M0 contains a finite number

of distinct differences and these are bounded away from zero. The contradiction
implies for some K0, α(TK0

1 ) 6= α(TK0
2 ). This proves the proposition.
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