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NUMERIC AND DYNAMIC B-STABILITY, EXACT-MONOTONE

AND ASYMPTOTIC TWO-POINT BEHAVIOR OF THETA

METHODS FOR STOCHASTIC DIFFERENTIAL EQUATIONS

HENRI SCHURZ*

Abstract. This paper is devoted to moment stability analysis of the two-
point motion of drift-implicit θ-methods for (nonlinear) stochastic differen-

tial equations (SDEs) in Itô sense. Two concepts of numeric and dynamic
B-stability are presented. Under appropriate conditions, it is shown that the
drift-implicit θ-methods with θ ≥ 0.5 are mean-square B-stable for all SDEs
with mean square dissipative perturbations. Moreover, exponential mean

square B-stability for those schemes can be verified for sufficiently small step
sizes. A general mean square identity for the two-point motion of numerical
methods may explain why symmetric methods such as midpoint-type meth-
ods are preferable ones in both deterministic and stochastic settings in order

to replicate the qualitative behavior of underlying continuous time SDEs in
an adequate manner. Indeed, midpoint-type methods (i.e. θ = 0.5) are
contraction-exact methods (i.e. exact-monotone). Asymptotic almost sure
and asymptotic mean square B-stability are verified by a discrete invariance

principle.

1. Introduction to Numeric Moment B-stability

Stability investigations are as important as convergence ones. This fact is known
for a long time. It is also true for stochastic numerical analysis, i.e. numerical
analysis for stochastic differential equations (SDEs)

dX(t) = a(t,X(t))dt+

m∑
j=1

bj(t,X(t))dWj(t) (1.1)

driven by standard independent Wiener processes Wj , where a and bj are Borel-

measurable real-valued vector functions in IRd. Very seldom such equations are
explicitly solvable, and most often one has to resort to numerical methods for
approximating SDEs (1.1). A comprehensive introduction to numerical methods
for ordinary stochastic differential equations is given in the books and review pa-
pers by Allen [1], Artemiev and Averina [3], Bouleau and Lepingle [5], Kanagawa
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and Ogawa [11], Milstein [14], Pardoux and Talay [17], Schurz [21], [22], [23], and
Talay [26]. Theory of stochastic ODEs is explained in Arnold [2], Dynkin [7], Fried-
man [8], Gard [9], Gikhman and Skorochod [10], Khasminskij [13], Karatzas and
Shreve [12], Oksendal [16], Protter [18], just to name a few traditional textbooks.

After comprehensive studies of convergence (more precisely, local consistency),
we focus our main emphasis on the replication of qualitative features of SDEs
under discretization. At first, we studied the feature of linear and nonlinear A-
stability. As one of the first, mean square stability of implicit Euler-Maruyama
method

Yn+1 = Yn + a(tn+1, Yn+1)hn +

m∑
j=1

bj(tn, Yn)∆W j
n (1.2)

driven by independent random variables ∆W j
n with

IE ∆W j
n = 0, IE [∆W j

n]
2 = hn

is discussed in Mitsui and Saito [15], Artemiev and Averina [3] and Schurz [19].
In 1996-1997 [19], [20] establish mean square A-stability of those methods when
applied to mean square stable bilinear or nonlinear systems of SDEs in any dimen-
sion. Recall that SDE (1.1) with a(t, 0) = bj(t, 0) = 0 has a mean square stable
null solution X ≡ 0 if ∃KOB ≤ 0 (a real constant) such that

∀(t, x) ∈ IRd+1 : 2⟨x, a(t, x)⟩d +
m∑
j=1

||bj(t, x)||2d ≤ KOB ||x||2d. (1.3)

Moreover, the trivial solution X ≡ 0 is exponentially mean square stable if KOB <
0. Several stability and implementation issues of one-point motion process Y =
(Yn)n∈IN are also discussed in Burrage and Mitsui [6]. At the first glance, classic
stability investigations of numerical methods usually center around the behavior of
the one-point motion process related to them. Digging into that topic more deeply,
investigators study the two-point motion process Xn − Yn of two identical copies
of one and the same numerical method, but started at different initial values X0

and Y0. That process is important for the propagation and control of initial value
perturbations during the course of numerical integration. The standard concept of
B-stability is known from deterministic numerical analysis and aiming at gaining
control on the numerical two-point motion process.

The second most interesting question on numerical stability (after A-stability)
is whether there are mean square B-stable numerical methods for SDEs. For the
first time, this has been positively answered in [20] by the verification of that
property for fully drift-implicit Euler methods (1.2). In contrast to A-stability
which describes the behavior of the one-point motion, B-stability is a requirement
on the two-point motion process. The two-point motion process determines the
perturbative behavior of numerical methods. It analyzes the temporal evolution of
growth or decay of initial perturbations during the course of numerical integration.
It is very important to know whether initial perturbations accumulate to essential
errors at later times or whether a perturbation in initial errors is under control
during numerical integration (cf. axiomatic approach to numerical analysis in [22]
and its requirement of control on nonexpansive perturbations on Hilbert spaces).
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So, for the same numerical method with distinct initial data X0 and Y0, we rather
look here at the evolution of

||Xn − Yn||d
as time n → +∞ (i.e. tn → +∞). For this purpose, consider the following
naturally induced stochastic counterpart of moment B-stability: Let p ̸= 0 be a
real constant.

Definition 1.1 (Numerical B-Stability). A numerical method with the scheme
Yn+1 = Yn +Φn(Y ) is called (globally) numerically p-th moment B-stable iff

∀n ∈ IN IE ||Xn+1 − Yn+1||pd ≤ IE ||Xn − Yn||pd (1.4)

for F0-adapted initial data with IE ||X0 − Y0||pd < +∞. If p = 2, we additionally
speak of (numerical) mean square B-stability. A numerical method with scheme
Yn+1 = Yn +Φn(Y ) is called (numerically) exponentially p-th moment B-stable iff

∀n ∈ IN ∃αn > 0 IE ||Xn+1 − Yn+1||pd ≤ exp(−αnhn)IE ||Xn − Yn||pd (1.5)

for F0-adapted initial data with IE ||X0 − Y0||pd < +∞ and

∞∑
n=0

αnhn = +∞

with any nonrandom step sizes hn with supn∈IN hn < +∞.

The aim of this paper is to verify mean square B-stability and asymptotic
behavior of two-point motion process of drift-implicit Theta methods with θn ≥
0.5, i.e. for the scheme

Yn+1 = Yn+
[
θna(tn+1, Yn+1)+(1−θn)a(tn, Yn)

]
hn+

m∑
j=1

bj(tn, Yn)∆W j
n(1.6)

whenever the underlying SDE has mean square contractive perturbations. More-
over, we shall establish exponential mean square and almost sure asymptotic B-
stability of those methods. Some key general identities for the mean square per-
turbative behavior of numerical methods and a more general invariance principle
leading to the concept of V-stability along Lyapunov-type functionals for the two-
point motion will serve us to reach that goal. Furthermore, a special role of
midpoint-type and monotone methods is to be revealed (i.e. their superiority with
respect to adequate contraction-monotonicity). In contrast to many other treat-
ments, we shall not confine ourselves to the case of equidistant partitions with
uniform mesh size h. All our results will be still valid for this case as we may
obviously treat it as a very special case of possibly variable and adapted step sizes
hn.

The paper is organized as follows. In Section 2 we establish a mean square iden-
tity for numerical perturbations. This answers the question on the existence of
contraction-exact numerical methods constructively (by midpoint-type methods).
Section 3 shows exponential mean square B-stability of both backward Euler meth-
ods with all θn = 1 and drift-implicit Theta methods with 0 ≤ θn ≤ 1 while using
sufficiently small step sizes hn. Section 4 proves V-stability along Lyapunov-type
functionals V of the two-point motion process under appropriate conditions. We
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establish asymptotic mean square and a.s. B-stability of Theta methods with all
θn ≥ 0.5 as a by-product of a more general invariance principle (cf. appendix).
Section 5 discusses the applicability of some findings with a series of linear and
nonlinear test examples. Finally, Section 6 briefly summarizes our major results.
In the appendix, a discrete invariance principle (DIP) for the verification of B-
stability is formulated and proved.

Some standard notations: Assume that (Ω,F , {Ft}t≥0,P) is a complete
probability space with a filtration {Ft}t≥0 satisfying the usual conditions (that
is, it is increasing and right-continuous, and F0 contains all P-null sets). The
process W = (W1(t), . . . ,Wm(t))Tt≥0 is supposed to be a standard m-dimensional

Wiener process defined on the probability space (Ω,F , {Ft}t≥0,P) with mutually
independent coordinates Wi throughout the paper. Furthermore, let 0 ≤ t0 < T <
∞, B(S) be the Borel σ-algebra of subsets of set S. ||.||d and ⟨., .⟩d denote the

Euclidean vector norm and scalar product in IRd. ||.||L2 represents the naturally
induced norm of the Hilbert space L2(Ω,F , IP). [a]+ is the nonnegative part of a.

2. Contraction Identity, Contractivity and Exact Monotone of NMs

2.1. Two-point motion process and general contraction-identity. One is
able to establish a general contraction identity for numerical methods. This will
show that midpoint-type and more general exact monotone methods are designed
to adequately replicate the increasing or decreasing evolution of perturbations for
random initial data. Recall that any one-step difference method for the approxi-
mation of any (explicit) differential equation is constructed from general scheme-
structure

Xn+1 = Xn +Φn(X) (2.1)

with Φn(X) representing the increment functional of related numerical method.
Recall X̄n = (Xn+1 + Xn)/2. Let X and Y denote the stochastic processes be-

longing to the same numerical scheme (2.1) and started at X0 ∈ IRd and Y0 ∈ IRd,
respectively. We shall study the dynamic behavior of the two-point motion
process (X,Y ) along the same numerical method governed by the schemes

Xn+1 = Xn +Φn(X)

Yn+1 = Yn +Φn(Y )

with one and the same increment functional Φn along one and the same partition
(tn)n∈IN. Recall that ||.|| denotes the Euclidean vector norm in IRd and ⟨., .⟩d the

Euclidean scalar product in IRd.

Theorem 2.1 (General Contraction Identity). For all numerical methods in IRd

satisfying (2.1) with increment functional Φn, we have

||Xn+1 − Yn+1||2 = ||Xn − Yn||2 + 2⟨X̄n − Ȳn,Φn(X)− Φn(Y )⟩d (2.2)

where ||.|| is the Euclidean norm in IRd and ⟨., .⟩d the Euclidean scalar product.

Proof. First, for the Euclidean norm ||.|| and scalar product ⟨., .⟩d, recall the iden-
tity ||u + v||2 = ||u||2 + 2⟨u, v⟩d + ||v||2 for all vectors u, v ∈ IRd. Note that, for
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numerical methods (2.1) with increment functional Φn, we have

Φn(X) = Xn+1 −Xn.

Second, analyzing the Euclidean norm of the two-point motion process gives the
chain of identities

||Xn+1 − Yn+1||2 = ||Xn − Yn +Φn(X)− Φn(Y )||2

= ||Xn − Yn||2 + 2⟨Xn − Yn,Φn(X)− Φn(Y )⟩d + ||Φn(X)− Φn(Y )||2

= ||Xn − Yn||2 + ⟨Xn − Yn,Φn(X)− Φn(Y )⟩d
+⟨Xn+1−Φn(X)− Yn+1+Φn(Y ),Φn(X)−Φn(Y )⟩d + ||Φn(X)−Φn(Y )||2

= ||Xn − Yn||2 + ⟨Xn+1+Xn − Yn+1−Yn,Φn(X)−Φn(Y )⟩d
−⟨Φn(X)−Φn(Y ),Φn(X)−Φn(Y )⟩d+||Φn(X)−Φn(Y )||2

= ||Xn − Yn||2 + 2⟨X̄n − Ȳn,Φn(X)− Φn(Y )⟩d
which confirm the validity of contraction identity (2.2). �

Remark 2.2. For stochastic numerical methods, the contraction identity (2.2) holds
almost surely too (with their increment functional Φn which is random). This
identity (2.2) also explains why midpoint-type numerical integrators with Φn =
Φn(X̄n) form a preferable base for adequate construction of numerical methods
from a dynamical point of view. They may preserve the monotone character of
contractions (perturbations) of two-point motion process along scalar products (as
long as all increment functionals Φn are monotone).

Definition 2.3 (Exact-Monotone NMs). A numerical method Z with scheme
Zn+1 = Zn+Φn is called exact contraction-monotone iff the following implications
while discretizing ODEs dx/dt = f(t, x) with Caratheodory functions f can be
established

∀x, y ∈ IRd, t ∈ IR1 : ⟨f(t, x)− f(t, y), x− y⟩d ≤ 0

=⇒ ∀n ∈ IN: ||X0−Y0|| ≥ ||X1−Y1|| ≥ ... ≥ ||Xn−Yn|| ≥ ||Xn+1−Yn+1|| ≥ ...

and

∀x, y ∈ IRd, t ∈ IR1 : ⟨f(t, x)− f(t, y), x− y⟩d ≥ 0

=⇒ ∀n ∈ IN: ||X0−Y0|| ≤ ||X1−Y1|| ≤ ... ≤ ||Xn−Yn|| ≤ ||Xn+1−Yn+1|| ≤ ...

for all adapted random initial values X0, Y0 ∈ IRd of method Z (where X de-
notes the realization of Z-values started at X0 and Y of Z-values started at Y0,
respectively, for the same method Z).

Theorem 2.4 (Exact Contraction-Property of Midpoint Methods). All mid-
point-type methods X with increments Φ(X̄n) = f(t∗n,X̄n)hn, X̄n=(Xn+Xn+1)/2,
and any sample time-points t∗n ∈ IR1 are exact contraction-monotone for all ODEs
with adapted random initial values X0 and any choice of step sizes hn.

Proof. Apply the contraction identity (2.2) to midpoint methods with increment
functional Φ(X̄n) = f(t∗n, X̄n)hn and any sample time-points t∗n ∈ IR1. For them,
this identity reads as

||Xn+1 − Yn+1||2 = ||Xn − Yn||2 + 2⟨X̄n − Ȳn, f(t
∗
n, X̄n)− f(t∗n, Ȳn⟩d hn.
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Obviously, by taking the square root, this relation is equivalent to

||Xn+1 − Yn|| =
√
||Xn − Yn||2 + 2⟨X̄n − Ȳn, f(t∗n, X̄n)− f(t∗n, Ȳn)⟩d hn.

Now, the uniform monotonicity of Euclidean scalar product

⟨x− y, f(t, x)− f(t, y)⟩d
with respect to x, y ∈ IRd and positivity of hn imply the exact contraction-
monotonicity of related midpoint methods X. For example, if ⟨x − y, f(t, x) −
f(t, y)⟩d ≤ 0 for all x, y ∈ IRd then we have

||Xn+1 − Yn+1|| ≤ ||Xn − Yn||
for all n ∈ IN. Complete induction on n ∈ IN yields the non-increasing evolution of
Euclidean norms ||Xn − Yn|| in n. Similarly, we can verify the monotonicity (i.e.

the nondecreasing property) for ⟨x − y, f(t, x) − f(t, y)⟩d ≥ 0 for all x, y ∈ IRd.
Thus, the proof of Theorem 2.4 is completed. �
Remark 2.5. The situation with fully random increment functionals Φn (e.g. with
Φn(X) = a(tn, Xn)hn+b(tn, Xn)∆Wn for Euler methods) is somewhat more com-
plicated (due to the non-monotone character of Wiener processes W ) and requires
further research. However, an extension to p-th mean contractions (appropriate for
the concept of B-stability) gives some more insight for stochastic Theta methods
(see next subsections).

2.2. P-th mean contractivity and non-expansivity of backward Euler
methods. Let Xs,x(t) denote the value of the stochastic process X at time t ≥ s,
provided that it has started at the value Xs,x(s) = x at prior time s. x and y are
supposed to be adapted initial values. Let Π denote an ordered time-scale (discrete
(Π = IN) or continuous (Π = [0,+∞))) and p ̸= 0 be a nonrandom constant.

Definition 2.6 (P-th Mean Contractive SPs). A stochastic processX = (X(t))t∈Π

with stochastic basis (Ω,F , (Ft)t∈Π, IP) is said to be uniformly p-th mean (forward)

contractive on IRd iff ∃KX
C ∈ IR ∀t ≥ s ∈ Π ∀x, y ∈ IRd

IE
[
||Xs,x(t)−Xs,y(t)||p

∣∣∣Fs

]
≤ exp

(
pKX

C (t− s)
)
||x− y||p (2.3)

with p-th mean contractivity constant KX
C . In the case KX

C < 0, we speak of
strict p-th mean contractivity. Moreover, X is said to be a process with p-th mean
non-expansive perturbations iff ∀t ≥ s ∈ Π ∀x, y ∈ IRd

IE
[
||Xs,x(t)−Xs,y(t)||p

∣∣∣Fs

]
≤ ||x− y||p. (2.4)

If p = 2 then we speak of mean square contractivity and mean square non-
expansivity.

For strictly contractive processes, adapted perturbations in the initial data have
no significant impact on its long-term dynamic behavior. Adapted perturbations
of non-expansive processes are under control along the entire time-scale Π. These
concepts are important for the long-term control of error propagation through nu-
merical methods. It turns out that they are meaningful to test numerical methods
while applying to SDEs with monotone coefficient systems.
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Let p > 0 be a nonrandom constant.

Definition 2.7 (P-th Mean Monotone Coefficient Systems). A coefficient system
(a, bj) of SDEs (1.1) and its SDE are said to be (strictly uniformly) p-th mean

monotone on IRd iff ∃KUC ∈ IR ∀t ∈ IR ∀x, y ∈ IRd

⟨a(t, x)− a(t, y), x− y⟩d +
1

2

m∑
j=1

||bj(t, x)− bj(t, y)||2

+
p− 2

2

m∑
j=1

⟨bj(t, x)− bj(t, y), x− y⟩2d
||x− y||2

≤ KUC ||x− y||2. (2.5)

If p = 2 then we speak of mean square monotonicity.

In passing, of course, this definition and related B-stability analysis makes only
sense for SDEs with p-th mean monotone coefficient systems with KUC ≤ 0 (cf.
requirement (2.5)). This definition is consistent with definition 1.1.

Lemma 2.8. Assume that X satisfies SDE (1.1) with p-th mean monotone coef-
ficient system (a, bj).
Then X is p-th mean contractive for all p ≥ 2 and its p-th mean contractivity
constant KX

C can be estimated by

KX
C ≤ KUC .

As an exercise, this lemma can be proved by Dynkin’s formula (see Dynkin
[7], i.e. averaged Itô formula). Let us discuss the possible ”worst case effects” on
perturbations of numerical methods under condition (2.5) with p = 2. It turns out
that the (drift-implicit) backward Euler methods are mean square contractive for
SDEs with monotone drift and Lipschitz continuous diffusion terms.

Theorem 2.9. Assume that

(i) ∀n ∈ IN : θn = 1,
(ii) 0 < infn∈IN hn ≤ supn∈IN hn < +∞, all hn nonrandom (i.e. only admis-

sible step sizes),
(iii) ∃Ka ≤ 0∀x, y ∈ Rd ∀t ≥ 0 : ⟨a(t, x)− a(t, y), x− y⟩d ≤ Ka||x− y||2,
(iv) ∃Kb∀x, y ∈ Rd ∀t ≥ 0 :

∑m
j=1 ||bj(t, x)− bj(t, y)||2 ≤ Kb||x− y||2 .

Then, the drift-implicit Euler methods (1.6) with scalar implicitness θn = 1 have
mean square contractive perturbations when applied to SDEs (1.1) with mean
square monotone coefficients (a, bj) with contractivity constant

KY
C = sup

n∈IN

2Ka +Kb

1− 2hnKa
. (2.6)

If additionally 2Ka +Kb ≤ 0 then they are mean square non-expansive and

KY
C =

2Ka +Kb

1− 2Ka sup
n∈IN

hn
. (2.7)
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Proof. Rearrange the scheme (1.6) for the drift-implicit Theta methods with non-
random scalar implicitness (Θn) = θnI with 0 ≤≤ θn ≤ 1 to separate implicit
from explicit part such that

Xn+1−θnhna(tn+1,Xn+1) = Xn+(1−θn)hna(tn,Xn)+

m∑
j=1

bj(tn,Xn)∆W j
n. (2.8)

Recall that X and Y denote the values of the same scheme (1.6) started at values
X0 and Y0, respectively. Now, take the square of Euclidean norms on both sides.
By taking the expectation on both sides we arrive at

IE ||Xn+1−Yn+1||2−2θnhnIE⟨Xn+1−Yn+1, a(tn+1, Xn+1)−a(tn+1, Yn+1)⟩d
+θ2nh

2
nIE ||a(tn+1, Xn+1)− a(tn+1, Yn+1)||2

= IE ||Xn − Yn||2 + 2(1− θn)hnIE ⟨Xn − Yn, a(tn, Xn)− a(tn, Yn)⟩d

+(1−θn)
2h2

nIE ||a(tn,Xn)−a(tn,Yn)||2+hn

m∑
j=1

IE ||bj(tn,Xn)−bj(tn,Yn)||2.

Under the assumption (iii) with θn ≥ 0 we have

−2θnhn⟨a(t, x)− a(t, y), x− y⟩d ≥ −2θnhnKa||x− y||2 ≥ 0

for all x, y ∈ IRd and t ≥ 0. Consequently, under (iii) and (iv) with 0 ≤ θn ≤ 1,
we may estimate

(1−2θnhnKa)IE ||Xn+1−Yn+1||2 ≤ [1+(2(1−θn)Ka+Kb)hn]+IE ||Xn−Yn||2

+(1−θn)
2h2

nIE ||a(tn,Xn)−a(tn,Yn)||2.

for all n ∈ IN. This leads to the estimate

IE ||Xn+1 − Yn+1||2

≤ [1+(2(1−θn)Ka+Kb)hn]+
1−2θnhnKa

IE ||Xn−Yn||2

+
(1−θn)

2h2
n

1−2θnhnKa
IE ||a(tn,Xn)−a(tn,Yn)||2

=

(
1+

(2Ka+Kb)hn

1−2θnhnKa

)
IE ||Xn−Yn||2+

(1−θn)
2h2

n

1−2θnhnKa
IE ||a(tn,Xn)−a(tn,Yn)||2

≤ exp

(
(2Ka+Kb)hn

1−2θnhnKa

)
IE ||Xn−Yn||2+

(1−θn)
2h2

n

1−2θnhnKa
IE ||a(tn,Xn)−a(tn,Yn)||2

since 1 + z ≤ exp(z) for z ≥ −1. Now, set all parameters θn = 1 in the above
inequality. In this case one encounters

IE ||Xn+1 − Yn+1||2 ≤ exp

(
2Ka +Kb

1− 2hnKa
hn

)
IE ||Xn − Yn||2.
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Therefore, the drift-implicit backward Euler methods have mean square contrac-
tive perturbations with contractivity constant

KY
C = sup

n∈IN

2Ka +Kb

1− 2hnKa

=
2Ka +Kb

1− 2 sup
n∈IN

hnKa
if 2Ka +Kb ≤ 0.

Obviously, if 2Ka+Kb ≤ 0, then the perturbations are mean square non-expansive.
�

2.3. P-th mean non-contractivity and expansivity of Euler methods. Let
Xs,x(t) denote the value of the stochastic process X at time t ≥ s, provided that
it has started at the value Xs,x(s) = x at prior time s. x and y are supposed to
be adapted initial values. Let Π denote an ordered time-scale (discrete (Π = IN)
or continuous (Π = [0,+∞))) and p > 0 be a nonrandom constant.

Definition 2.10 (P-th Mean Noncontractive SPs). A stochastic process X =
(X(t))t∈Π with stochastic basis (Ω,F , (Ft)t∈Π, IP) is said to be p-th mean (forward)

non-contractive (in the strict sense) on IRd iff ∀t ≥ s ∈ Π ∀x, y ∈ IRd (adapted)

IE
[
||Xs,x(t)−Xs,y(t)||p

∣∣∣Fs

]
≥ ||x− y||p. (2.9)

X is said to be a process with p-th mean expansive perturbations iff ∀t > s ∈
Π ∀x, y ∈ IRd(x ̸= y) (adapted)

IE
[
||Xs,x(t)−Xs,y(t)||p

∣∣∣Fs

]
> ||x− y||p. (2.10)

If p = 2 then we speak of mean square non-contractivity and mean square expan-
sivity, respectively.

For non-contractive processes, perturbations in the initial data may have sig-
nificant impact on its long-term dynamic behavior. Adapted perturbations of
expansive processes lead to chaotic, sensitive dynamic behavior along the entire
time-scale Π. These concepts are important for the long-term control of error
propagation through numerical methods. They are meaningful to test numerical
methods while applying to SDEs with non-contractive coefficient systems.

Let p > 0 be a nonrandom constant.

Definition 2.11 (P-th Mean Non-decreasing Coefficient Systems). A coefficient
system (a, bj) of SDEs (1.1) and its SDE are said to be strictly uniformly p-th

mean non-decreasing on IRd iff ∃KUC ≥ 0 ∈ IR ∀t ∈ IR ∀x, y ∈ IRd

⟨a(t, x)− a(t, y), x− y⟩d +
1

2

m∑
j=1

||bj(t, x)− bj(t, y)||2

+
p− 2

2

m∑
j=1

⟨bj(t, x)− bj(t, y), x− y⟩2d
||x− y||2

≥ KUC ||x− y||2. (2.11)

If KUC > 0 in (2.11) then the coefficient system (a, bj) is said to be p-th mean
expansive and its SDE has p-th mean expansive perturbations. Moreover, if p = 2
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then we speak of mean square non-decreasing and mean square expansive pertur-
bations and systems, respectively.

Lemma 2.12. Assume that X satisfies SDE (1.1) with p-th mean non-decreasing
coefficient system (a, bj).
Then X has p-th mean non-decreasing perturbations for all p ≥ 2. If additionally
KUC > 0 in (2.11) then X possesses p-th mean expansive perturbations.

This lemma can be proved by Dynkin’s formula (averaged Itô formula). Let us
discuss the possible ”worst case effects” on perturbations of numerical methods
under condition (2.11) with p = 2. It turns out that the drift-implicit forward
Euler methods are mean square non-contractive under this condition and may
have even mean square expansive perturbations.

Theorem 2.13. Assume that

(i) ∀n ∈ IN : θn = 0,
(ii) 0 < infn∈IN hn ≤ supn∈IN hn < +∞, all hn nonrandom (i.e. only admis-

sible step sizes),
(iii) ∃Ka ∀x, y ∈ Rd ∀t ≥ 0 : ⟨a(t, x)− a(t, y), x− y⟩d ≥ Ka||x− y||2,
(iv) ∃Kb ∀x, y ∈ Rd ∀t ≥ 0 :

∑m
j=1 ||bj(t, x)− bj(t, y)||2 ≥ Kb||x− y||2 .

Then, the (forward) Euler methods (1.6) with scalar implicitness θn = 0 have mean
square non-contractive perturbations when applied to SDEs (1.1) with coefficients
(a, bj) satisfying 2Ka +Kb ≥ 0. If additionally 2Ka +Kb > 0 then they are mean
square expansive.

Proof. Consider the scheme (1.6) for the drift-implicit Theta methods with non-
random scalar implicitness (Θn) = θnI and separate implicit from explicit part
such that

Xn+1−θnhna(tn+1,Xn+1) = Xn+(1−θn)hna(tn,Xn)+
m∑
j=1

bj(tn,Xn)∆W j
n.(2.12)

Recall that X and Y denote the values of the same scheme (1.6) started at values
X0 and Y0, respectively. Now, take the square of Euclidean norms on both sides.
By taking the expectation on both sides we arrive at

IE ||Xn+1−Yn+1||2−2θnhnIE ⟨Xn+1−Yn+1, a(tn+1,Xn+1)−a(tn+1,Yn+1)⟩d
+θ2nh

2
nIE ||a(tn+1, Xn+1)− a(tn+1, Yn+1)||2

= IE ||Xn − Yn||2 + 2(1− θn)hnIE ⟨Xn − Yn, a(tn, Xn)− a(tn, Yn)⟩d

+(1−θn)
2h2

nIE ||a(tn,Xn)−a(tn,Yn)||2+hn

m∑
j=1

IE ||bj(tn,Xn)−bj(tn,Yn)||2.

Under the assumption (iii) and θn ≤ 1 we have

2(1− θn)hn⟨a(t, x)− a(t, y), x− y⟩d + hn

m∑
j=1

||bj(t, x)− bj(t, y)||2

≥ [2(1− θn)Ka +Kb]hn||x− y||2
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for all x, y ∈ IRd and t ≥ 0. Consequently, under (ii) - (iv), θn ≤ 1 and 2Ka+Kb ≥
0, we may estimate

(1−2θnhnKa)IE||Xn+1−Yn+1||2+θ2nh
2
nIE||a(tn+1, Xn+1)−a(tn+1, Yn+1)||2

≥ [1+(2(1−θn)Ka+Kb)hn]IE||Xn−Yn||2+(1−θn)
2h2

nIE||a(tn,Xn)−a(tn,Yn)||2.

for all n ∈ IN. Now, set θn = 0. This leads to the estimate

IE ||Xn+1 − Yn+1||2 ≥ [1 + (2Ka +Kb)hn]IE ||Xn − Yn||2 ≥ IE ||Xn − Yn||2.

Therefore, the forward Euler methods have mean square non-contractive pertur-
bations under the condition 2Ka+Kb ≥ 0. After returning to the latter inequality
above, one clearly recognizes that, if additionally 2Ka +Kb > 0, then the pertur-
bations are mean square expansive. �

2.4. Dynamic mean square BN- and B-stability of backward Euler me-
thods. It is natural to ask for transferring the deterministic concept of B-stability
to stochastic dynamical systems (random sequences) in an adequate dynamic fash-
ion. This can be done in the p-th mean moment sense fairly straight–forward, and
it has been started by [20] and [21]. A more adequate definition of moment B-
stability is given as follows.

Definition 2.14 (Dynamic B-Stability). A numerical sequence Z = (Zn)n∈IN
(method, scheme, approximation, etc.) is called dynamically p-th mean B-stable
iff it is p-th mean contractive for all autonomous SDEs (1.1) with p-th mean
monotone coefficient systems (a, bj) and for all admissible step sizes. It is said
to be dynamically p-th mean BN-stable iff it is p-th mean contractive for all non-
autonomous SDEs (1.1) with p-th mean monotone coefficient systems (a, bj) for
all admissible step sizes. If p = 2 then we also speak of dynamic mean square B-
and dynamic BN-stability.

This definition is consistent with definition 1.1. Indeed, the drift-implicit back-
ward Euler methods are appropriate to control the growth of its perturbations as
long as the underlying SDE does. This fact is documented by the dynamic mean
square B-stability of these methods in the following theorem.

Theorem 2.15 (Dynamic M.S. BN-, B-Stability of Backward Euler Methods).
The drift-implicit backward Euler method (1.2) applied to Itô SDEs (1.1) with
scalar implicitness parameters θn = 1 and nonrandom step sizes hn is (dynami-
cally) mean square BN-stable and B-stable.

Proof. Combine the main assertions of Lemma 2.8 and Theorem 2.9 �

3. Exponential Mean Square B-Stability of Stochastic Theta Methods

Under further restriction one may even gain exponential B-stability of drift-
implicit Theta methods applied to contractive SDEs.
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3.1. Exponential mean square B-Stability of backward Euler methods.
As an immediate consequence of Theorem 2.9 we gain exponential B-stability of
drift-implicit Euler methods (i.e. with all θn = 1).

Theorem 3.1 (Exponential M.s. B-stability of Backward Euler Methods). As-
sume that all parameters θn = 1 and step sizes hn are nonrandom,

sup
n∈IN

hn < +∞,

the same assumptions (i)-(iv) as in Theorem 2.9 are required, and additionally

2Ka +Kb < 0.

Then the drift-implicit Euler method (1.2) is exponential B-stable with exponents
(i.e. generalized rates of exponential convergence)

αn := −2Ka +Kb

1−2Kahn
≥ − 2Ka +Kb

1−2Ka supk∈IN hk
> 0. (3.1)

Proof. Return to Theorem 2.9 and extract the inequality

IE ||Xn+1 − Yn+1||2

≤ exp

(
(2Ka+Kb)hn

1−2θnhnKa

)
IE ||Xn−Yn||2+

(1−θn)
2h2

n

1−2θnhnKa
IE ||a(tn,Xn)−a(tn,Yn)||2

from its proof. For the drift-implicit backward Euler method (1.2) with θn = 1,
this inequality obviously reduces to

IE ||Xn+1 − Yn+1||2 ≤ exp

(
(2Ka+Kb)hn

1−2hnKa

)
IE ||Xn−Yn||2

which can be further estimated by

IE ||Xn+1 − Yn+1||2

≤ exp

(
(2Ka +Kb) inf

k∈IN

1

1−2hkKa
hn

)
IE ||Xn−Yn||2

≤ exp

(
(2Ka +Kb) inf

k∈IN

1

1−2hkKa
(tn+1 − t0)

)
IE ||X0−Y0||2

≤ exp

(
(2Ka +Kb)

1

1−2Ka supk∈IN hk
(tn+1 − t0)

)
IE ||X0−Y0||2

under 2Ka +Kb < 0. Hence, we conclude that

lim
n→+∞

||Xn − Yn||L2 = 0

for all L2(Ω,F0, IP)-integrable initial data X0 and Y0. Moreover, the estimation
(3.1) of B-stability exponents αn can be extracted from the above inequality chain.

�
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3.2. Exponential mean square B-Stability of general theta methods.
We can indeed establish numerical exponential B-stability of drift-implicit Theta
methods (1.6) with θn ̸= 1 under some specific circumstances such as Lipschitz
continuous drift a and diffusion coefficients bj .

Theorem 3.2 (Exponential M.s. B-stability of Theta Methods). Assume that all
parameters θn ∈ [0, 1] and step sizes hn are nonrandom,

(i) sup
n∈IN

θnhn < +∞,

the same assumptions (ii)-(iv) as in Theorem 2.9 are required, and additionally
there is a real constant KL > 0 such that

2Ka +Kb +K2
L sup

n∈IN
(1− θn)

2hn < 0

with

(v) ∀(t, x, y) ∈ IR1+2d : ||a(t, x)− a(t, y)|| ≤ KL||x− y||.
Then the drift-implicit Theta method (1.6) is numerically exponential B-stable with
exponents (i.e. generalized rates of exponential convergence)

αθ
n :=−2Ka+Kb+K2

L(1−θn)
2hn

1−2Kaθnhn
≥−

2Ka+Kb+K2
Lsupk∈IN(1−θk)

2hk

1−2Ka supk∈IN θkhk
> 0. (3.2)

Proof. Return to the proof of Theorem 2.9. Recall that we derived the inequality

IE ||Xn+1−Yn+1||2 ≤ [1+(2(1−θn)Ka+Kb)hn]+
1−2θnhnKa

IE ||Xn−Yn||2

+
(1−θn)

2h2
n

1−2θnhnKa
IE ||a(tn,Xn)−a(tn,Yn)||2

for all θn ≥ 0. A further estimation yields that

IE ||Xn+1 − Yn+1||2

≤
(
1+

(2Ka+Kb)hn

1−2θnhnKa

)
IE ||Xn−Yn||2+

(1−θn)
2h2

n

1−2θnhnKa
IE ||a(tn,Xn)−a(tn,Yn)||2

≤
(
1+

(2Ka+Kb)hn

1−2θnhnKa

)
IE ||Xn−Yn||2+K2

L

(1−θn)
2h2

n

1−2θnhnKa
IE ||Xn−Yn||2

=

(
1+

2Ka+Kb+K2
L(1− θn)

2hn

1−2θnhnKa
hn

)
IE ||Xn−Yn||2

≤

(
1+

2Ka+Kb+K2
L supk∈IN(1− θk)

2hk

1−2θnhnKa
hn

)
IE ||Xn−Yn||2

≤exp

(
2Ka+Kb+K2

L supk∈IN(1− θk)
2hk

1−2θnhnKa
hn

)
IE ||Xn−Yn||2

≤exp

(
2Ka+Kb+K2

L supk∈IN(1− θk)
2hk

1−2Ka supk∈IN θkhk
(tn+1 − t0)

)
IE ||X0−Y0||2 → 0

as n → +∞, under assumptions (i) - (v). Thus, from here, one obviously obtains
numerical exponential mean square B-stability of Theta methods for sufficiently
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small step sizes hn under 2Ka+Kb < 0. Moreover, its exponential decay rates αθ
n

can be estimated as in (3.2) (i.e. directly extract that from the latter inequality
chain). This completes the proof. �

4. V-stability of Two-Point Process of Theta Methods

This section aims at a slight relaxation of the notion of B-stability. A first
generalization of B-stability is given by V-stability of the two-point motion process
belonging to Theta methods along Lyapunov-type functionals V . Define

Vn(X,Y ) := ||Xn − Yn||2 − 2θnhn⟨Xn − Yn, a(tn, Xn)− a(tn, Yn)⟩d
+θ2nh

2
n||a(tn, Xn)− a(tn, Yn)||2

for n ∈ IN. Set θ−1 = θ0, h−1 = h0.

4.1. V-stability and invariance principle for θn ≥ 0.5.

Theorem 4.1 (Moment V-stability and Invariance Principle of Theta Methods).
Assume that

(i) θnhn is nonincreasing in n ∈ IN, θn ≥ 0.5,

(ii) ∀(t, x, y)∈IR1+2d : 2⟨x−y, a(t, x)−a(t, y)⟩d+
m∑
j=1

||bj(t, x)−bj(t, y)||2 ≤ 0,

(iii) IE [V0(X0, Y0)] < +∞.

Then vn := IE [Vn(X,Y )] is nonincreasing in n ∈ IN and ∃ limn→+∞ vn, more
precisely

∀n ∈ IN : vn := IE [Vn(X,Y )] ≤ v0−
n∑

k=0

(2θn−1)h2
nIE ||a(tn, Xn)−a(tn, Yn)||2

v∞ := lim
n→+∞

IE [Vn(X,Y )]≤v0−
+∞∑
k=0

(2θn−1)h2
nIE [||a(tn,Xn)−a(tn,Yn)||2]

lim
n→+∞

(2θn − 1)h2
nIE ||a(tn, Xn)− a(tn, Yn)||2] = 0.

Moreover, if additionally

(iv) infn∈IN(2θn − 1)h2
n > 0 (as in autonomous case with θ > 0.5)

then

+∞∑
n=0

IE [||a(tn, Xn)− a(tn, Yn)||2 < ∞

lim
n→∞

IE [||a(tn, Xn)− a(tn, Yn)||2 = 0

∀X0, Y0 ∈ L2(Ω,F0, IP) : lim
n→∞

||a(tn, Xn)||L2 = lim
n→∞

||a(tn, Yn)||L2

∀X0, Y0 ∈ L2(Ω,F0, IP) : lim
n→∞

||a(tn, Xn)||d = lim
n→∞

||a(tn, Yn)||d (IP−a.s.).
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Proof. From the proof of Theorem 2.13, we extract the identity

IE ||Xn+1−Yn+1||2−2θnhnIE ⟨Xn+1−Yn+1, a(tn+1,Xn+1)−a(tn+1,Yn+1)⟩d
+θ2nh

2
nIE ||a(tn+1, Xn+1)− a(tn+1, Yn+1)||2

= IE ||Xn − Yn||2 + 2(1− θn)hnIE ⟨Xn − Yn, a(tn, Xn)− a(tn, Yn)⟩d
+(1− θn)

2h2
nIE ||a(tn, Xn)− a(tn, Yn)||2

+hn

m∑
j=1

IE ||bj(tn, Xn)− bj(tn, Yn)||2.

Define

vn := IE [Vn(X,Y )]

for n ∈ IN. Thus, the above mentioned identity is equivalent to

vn+1 =

vn+hnIE
[
2⟨Xn−Yn,a(tn,Xn)−a(tn,Yn)⟩d+

m∑
j=1

||bj(tn,Xn)−bj(tn,Yn)||2
]

+[(1− 2θn)h
2
n + θ2nh

2
n − θ2n−1h

2
n−1]IE

[
||a(tn, Xn)− a(tn, Yn)||2

]
+2[θn−1hn−1 − θnhn]IE

[
⟨Xn − Yn, a(tn, Xn)− a(tn, Yn)⟩d

]
(4.1)

which can be estimated by

0 ≤ vn+1 ≤ vn − (2θn − 1)hnIE [||a(tn, Xn)− a(tn, Yn)||2]

under (i) - (iii). Now, it remains to apply the discrete invariance principle as stated
by Lemma 7.1 to (vn)n∈IN with

wn := (2θn − 1)hnIE [||a(tn, Xn)− a(tn, Yn)||2]

in order to conclude all implications of Theorem 4.1 on L2-convergence under
(iv). Finally, note that fast L2-convergence (i.e.

∑∞
n=1 ||Zn||2L2 < +∞) implies

a.s. convergence by Borel-Cantelli Lemma (i.e. Zn → 0 (a.s.) as n → +∞).
Therefore, the proof is complete. �

4.2. Asymptotic B-stability of theta methods. Consider the following no-
tion of asymptotic B-stability.

Definition 4.2 (Asymptotic P-th Moment B-Stability). A numerical method
with scheme Yn+1 = Yn + Φn(Y ) is called (globally) asymptotically p-th moment
B-stable iff

lim
n→+∞

IE ||Xn − Yn||pd = 0 (4.2)

for F0-adapted initial data with IE ||X0 − Y0||pd < +∞. If p = 2, we additionally
speak of asymptotic mean square B-stability. A numerical method with scheme
Yn+1 = Yn +Φn(Y ) is called (globally) a.s. asymptotically B-stable iff

lim
n→+∞

||Xn − Yn||d = 0 (IP− a.s.) (4.3)

for F0-adapted initial data with finite moments.
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Of course, every exponentially B-stable numerical method is asymptotically
B-stable. However, the B-stability according to definition 1.1 does not imply
asymptotic B-stability. So this notion of asymptotic B-stability lies somewhere
in-between exponential and classical B-stability.

Theorem 4.3 (Asymptotic Mean Square B-stability of Theta Methods (1.6)).
Assume that

(i) θnhn is nonincreasing in n ∈ IN, θn ≥ 0.5,

(ii) ∃KOL > 0 ∀(t, x, y)∈IR1+2d

2⟨x−y, a(t, x)−a(t, y)⟩d+
m∑
j=1

||bj(t, x)−bj(t, y)||2 ≤ −KOL||x− y||2d ≤ 0,

(iii) v0 = IE [V0(X0, Y0)] < +∞,
(iv) infn∈IN hn > 0.

Then Theta methods (1.6) are asymptotically mean square B-stable. Moreover, we
have a.s. asymptotic B-stability, i.e. more precisely

lim
n→+∞

||Xn − Yn||d = 0 (IP− a.s.)

for all X0, Y0 ∈ L2(Ω,F0, IP) with v0 < +∞.

Proof. Return to the identity (4.1) from previous proof of Theorem 4.1. Using the
requirements (i)-(iv) with KOL < 0 and all θn ≥ 0.5, we find that

vn+1 ≤ vn

+hnIE
[
2⟨Xn−Yn,a(tn,Xn)−a(tn,Xn)⟩d+

m∑
j=1

||bj(tn,Xn)−bj(tn,Yn)||2d
]

≤ vn − hnKOL||Xn − Yn||2L2 ≤ v0 −KOL

n∑
k=0

||Xk − Yk||2L2hk

≤ v0 −KOL inf
i∈IN

hi

n∑
k=0

||Xk − Yk||2L2

whenever v0 < +∞. Now, apply DIP from appendix (Lemma 7.1) to get to

0 ≤ lim
n→+∞

≤ v0 −KOL inf
i∈IN

hi

∞∑
n=0

||Xn − Yn||2L2 ,

hence
∞∑

n=0

||Xn − Yn||2L2 ≤ v0
KOL infn∈IN hn

< +∞.

The finite square summability of L2-norms ||Xn − Yn||L2 implies that

lim
n→+∞

||Xn − Yn||L2 = 0.

The principle of fast L2-convergence (due to the Borel-Cantelli Lemma) guarantees
that we may also establish a.s. convergence of ||Xn − Yn||d to 0 as n → +∞.
Therefore, the proof is complete. �



NUMERIC AND DYNAMIC B-STABILITY OF θ-METHODS 17

Theorem 4.4 (Asymptotic Mean Square B-stability of Theta Methods (1.6)).
Assume that

(i) θnhn is nonincreasing in n ∈ IN, θn > 0.5,

(ii) ∀(t, x, y)∈IR1+2d : 2⟨x−y, a(t, x)−a(t, y)⟩d+
m∑
j=1

||bj(t, x)−bj(t, y)||2 ≤ 0,

(iii) v0 = IE [V0(X0, Y0)] < +∞,
(iv) infn∈IN(2θn − 1)h2

n > 0 (as in autonomous case with θ > 0.5),

(v) ∃Ka > 0 ∀(t, x, y) ∈ IR1+2d : ||a(t, x)− a(t, y)|| ≥ Ka||x− y||d.
Then Theta methods (1.6) are asymptotically mean square B-stable. Moreover, we
have a.s. asymptotic B-stability, i.e. more precisely

lim
n→+∞

||Xn − Yn||d = 0 (IP− a.s.)

for all X0, Y0 ∈ L2(Ω,F0, IP) with v0 < +∞.

Proof. Return to the identity (4.1) from previous proof of Theorem 4.1. Using the
requirements (i)-(v) with Ka < 0 and all θn > 0.5, we find that

vn+1 ≤ vn+(1−2θn)h
2
nIE
[
||a(tn,Xn)−a(tn,Yn)||2d

]
≤ vn−(2θn−1)h2

nK
2
a||Xn−Yn||2L2 ≤ v0−K2

a

n∑
k=0

||Xk − Yk||2L2(2θk−1)h2
k

≤ v0 −K2
a inf
i∈IN

(2θi−1)hi

n∑
k=0

||Xk − Yk||2L2

whenever v0 < +∞. Now, apply DIP from appendix (Lemma 7.1) to get to

0 ≤ lim
n→+∞

≤ v0 −K2
a inf
i∈IN

(2θi − 1)hi

∞∑
n=0

||Xn − Yn||2L2 ,

hence
∞∑

n=0

||Xn − Yn||2L2 ≤ v0

K2
a infn∈IN(2θn − 1)hn

< +∞.

The finite square summability of L2-norms ||Xn − Yn||L2 implies that

lim
n→+∞

||Xn − Yn||L2 = 0.

The principle of fast L2-convergence (due to the Borel-Cantelli Lemma) guarantees
that we may also establish a.s. convergence of ||Xn − Yn||d to 0 as n → +∞.
Therefore, the proof is complete. �

5. A Discussion on Applications by Examples

A series of linear and nonlinear examples will illustrate some of our findings by
this section, and above all, the practical applicability of our results to nontrivial
situations. All examples are real-valued, however one can also extend them to
complex-valued ones (this is left to the reader). In what follows, for the mean
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square analysis, we can take any independent random variables ∆Wn with mo-
ments

IE [∆Wn] = 0, V ar(∆Wn) = IE [∆Wn]
2 = hn.

Of course, Gaussian variables ∆Wn ∈ N (0, hn) would satisfy these moment re-
lations. So, note that the results of our paper apply to both so-called weak and
strong convergent approximations of SDEs. Moreover, any additive martingale
noise such as σ∆Wn would not change our findings due to the nature of criterion
of B-stability canceling state-independent additive terms both in deterministic and
in stochastic settings. We will refer to admissible step sizes hk only here, i.e.
the requirement

0 < inf
n∈IN

hn ≤ hk ≤ sup
n∈IN

hn < +∞

is fulfilled throughout this section.

5.1. A linear SDE (geometric Brownian motion). In mathematical finance
they often refer to the geometric Brownian motion which satisfies the Itô SDE

dX(t) = λX(t)dt+ σX(t)dW (t). (5.1)

This equation is also used as test equation for A-stability of numerical methods
applied to SDEs with commutative noise. Obviously, for this SDE (5.1), we exactly
know the constants

Ka = λ,KL = |λ|,Kb = |σ|,KOL = −2λ− σ2(p− 1)

occurring in diverse theorems in our paper. The drift-implicit Theta method (1.6)
reduces here to

Yn+1 = Yn+λ[θnYn+1+(1−θn)Yn]hn+σYn∆Wn

with independent random variables ∆Wn with finite moments IE [∆Wn] = 0 and
V ar(∆Wn) = IE [∆Wn]

2 = hn. Due to its linearity, this scheme is equivalent to

Yn+1 =
1 + λ(1− θn)hn + σ∆Wn

1− λθnhn
Yn

for sufficiently small θnhn such that

[λ]+ sup
n∈IN

θnhn < 1

(just needed for existence, i.e. absence of any numerical explosions). Obviously,
SDE (5.1) has a p-th mean nonexpansive coefficient system for p > 1 iff

2λ+ σ2(p− 1) ≤ 0

and a strictly p-th mean contractive coefficient system for p > 1 iff

2λ+ σ2(p− 1) < 0

which represents the appropriate condition for an adequate investigation with re-
spect to p-th mean B-stability. Let this condition be satisfied for p = 2. Then,
Theorem 4.3 with

KOL = −2λ− σ2 > 0
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confirms the asymptotic mean square B-stability of all Theta methods with θ =
θn > 0.5 and admissible step sizes hn. Theorem 3.1 implies that the drift-implicit
backward Euler method with all θn = 1 and admissible step sizes hn with

0 < inf
k∈IN

hk ≤ hn ≤ sup
k∈IN

hk < +∞

is even exponentially mean square B-stable since 2Ka +Kb = 2λ + σ2 < 0. The
same is true for Theta methods with 0 ≤ θn ≤ 1 and sufficiently small step sizes
by Theorem 3.2. More precisely their (numerical) exponential mean square B-
stability is concluded from Theorem 3.2 if

2λ+ σ2 + λ2 sup
n∈IN

(1− θn)
2hn < 0.

More general, V-stability for Theta methods (1.6) with θn ≥ 0.5 and admissible
variable step sizes hn can be established (see Theorem 4.1). Similarly, asymptotic
B-stability of Theta methods by Theorems 4.3 and 4.4 is confirmed.

5.2. A SDE with nonLipschitz drift. Consider the Itô SDE

dX(t) = [λX(t)− γ|X(t)|αX(t)]dt+ σX(t)dW (t) (5.2)

where γ > 0, α > 0, λ, σ are real constants. This SDE has a strictly p-th mean
contractive coefficient system (a, b) iff

KOL := −2λ− σ2(p− 1) > 0

since, for all x, y ∈ IR1, we have

2(x− y)(a(x)− a(y)) + (p− 1)|b(x)− b(y)|2

= [2λ+ (p− 1)σ2](x− y)2 − γ(x− y)[|x|αx− |y|αy]
≤ [2λ+ (p− 1)σ2](x− y)2

with p ≥ 1 and γ ≥ 0. Let this equation be discretized by Theta methods which
reduce to the scheme

Yn+1 = Yn+
[
θn

(
λ−γ|Yn+1|α

)
Yn+1+(1−θn)

(
λ−γ|Yn|α

)
Yn

]
hn+σYn∆Wn

when applied to (5.2). Thanks to Theorem 4.3, we know about their asymptotic
mean square B-stability under θn ≥ 0.5 and KOL > 0. Theorem 4.1 says that
they are V-stable under same assumptions. Since λ < 0, KOL > 0, Ka = |λ| > 0,
we may even conclude exponential mean square stability for sufficiently small step
sizes hn whenever all θn > 0.5. More practically, we suggest to implement the
linear-implicit Theta methods

Yn+1 = Yn+
[
θn

(
λ−γ|Yn|α

)
Yn+1+(1−θn)

(
λ−γ|Yn|α

)
Yn

]
hn+σYn∆Wn

=
1 + (1− θn)(λ− γ|Yn|α)hn + σ∆Wn

1− θn(λ− γ|Yn|α)hn
Yn

which are ”asymptotically equivalent” to ”standard” Theta methods from above.
In particular, among them, the linear-implicit midpoint method with all θn = 0.5
is a computationally efficient variant (in order to avoid costly local resolution
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of implicit equations by numerical root-finding methods resulting into additional
numerical errors).

5.3. A SDE with nonlinear diffusion. Consider the Itô SDE

dX(t) = [λX(t)]dt+ σ sin(X(t))dW (t) (5.3)

where −KOL := 2λ + σ2 < 0. In this case, it is easy to recognize that this SDE
has mean square contractive perturbations since

|b(x)− b(y)|2 ≤ |σ sin(x)− σ sin(y)|2 ≤ σ2|x− y|2

by Lipschitz continuity of sin(.) function (i.e. apply MVT = mean value theorem).
The drift-implicit Theta methods (1.6) applied to SDE (5.3) take the explicit form

Yn+1 =
Yn(1 + (1− θn)λhn) + σ sin(Yn)∆Wn

1− θnλhn

which is well-defined whenever

∀n ∈ IN : θnλhn ̸= 1.

Thanks to Theorems 4.1, 4.3, 4.4, we may conclude that these methods have V-
stable, asymptotic mean square B-stable and, by Theorem 3.1 under

KOL − λ2 sup
n∈IN

(1− θn)
2hn > 0,

exponentially mean square B-stable perturbations whenever θn > 0.5 (i.e. with
rate KOL > 0 for sufficiently small step sizes). Their asymptotic (numerical)
mean square B-stability is even maintained for the special case of θn = 0.5 since
|a(x)− a(y)| = |λ||x− y| with |λ| > 0 under the imposed setting.

5.4. A nonlinear SDE with Lipschitz diffusion. Consider the Itô SDE

dX(t) = [λX(t)− γ(X(t))2n+1]dt+ σg(X(t))dW (t) (5.4)

where g is Lipschitz continuous with Lipschitz constant Lg, n ∈ IN, n > 0, γ > 0.
Suppose that

2λ+ (p− 1)σ2L2
g < 0.

Here, we find that

2(x− y)(a(x)− a(y)) + (p− 1)|b(x)− b(y)|2

= 2λ(x− y)2 − γ(x− y)(x2n+1 − y2n+1) + (p− 1)σ2|g(x)− g(y)|2

≤ (2λ+ (p− 1)σ2L2
g)(x− y)2 ≤ 0,

i.e. p-th mean B-stable perturbations for p ≥ 1. The drift-implicit Theta methods
(1.6) applied to SDE (5.4) take the explicit form

Yk+1 =
Yk(1 + (1− θk)[λ− γY 2n

k ]hk)− θkγY
2n+1
k+1 hk + σg(Yk)∆Wk

1− θkλhk

which is well-defined when

∀n ∈ IN : θn[λ]+hn < 1.
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Thanks to Theorems 4.1, 4.3, 4.4, we may conclude that these methods have V-
stable, asymptotic mean square B-stable and exponentially mean square B-stable
perturbations under θn > 0.5 (i.e. with rate

KOL := −2λ− σ2L2
g − λ2 sup

n∈IN
(1− θn)

2hn > 0

for sufficiently small step sizes). Their asymptotic (numerical) mean square B-
stability is even maintained for the special case of θn = 0.5 since |a(x) − a(y)| =
|λ||x−y| with |λ| > 0 under the imposed setting. A more practical implementation
avoiding local resolution of implicit equations by numerical root-finding methods
is given by the ”asymptotically equivalent” linear-implicit Theta methods

Yk+1 =
Yk(1 + (1− θk)[λ− γY 2n

k ]hk)− (1− θk)γY
2n+1
k hk + σg(Yk)∆Wk

1− θk(λ− γ|Yk|2n)hk
.

5.5. A nonlinear SDE with nonLipschitz drift and diffusion. Consider the
Itô SDE

dX(t) = [λX(t)− γ(X(t))2n+1]dt+ σ[X(t)]n+1dW (t) (5.5)

where n ∈ IN, n > 0, (p− 1)σ2 ≤ 2γ. Suppose that

λ < 0.

Then one can establish V -stability of perturbations and asymptotic mean square
B-stability of Theta methods with θn > 0.5 (apply Theorems 4.1, 4.3, 4.4) under
σ2 ≤ 2γ and λ < 0. An easy implementation of them is practically done by the
linear-implicit Theta methods

Yk+1 =
1 + (1− θk)[λ− γ|Yk|2n]hk + σY n

k σWk

1− θk[λ− γ|Yk|2n]hk
Yk

which is ”asymptotically equivalent” to the ”standard” Theta method, but eas-
ily implementable and computationally more efficient without solving nonlinear
algebraic equations at each integration step.

5.6. A N-Dimensional nonlinear SDE. Let λi ≤ 0 be real constants and
γ ≥ 0. ⟨., .⟩. Here ||.|| denote the Euclidean scalar product and norm in IRN ,
respectively. Define the N ×N diagonal matrices

Λ := diag(λ1, λ2, ..., λN ) and Σ := diag(σ1, σ2, ..., σN )

Consider the N -dimensional system of Itô SDEs (occurring in discretizations of
nonlinear SPDEs, e.g. [23]).

dXi(t) = λiXi(t)(1 + [
N∑

k=1

[Xk(t)]
2]γ/2)dt+ σiXi(t)dW (t) (5.6)
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for i = 1, 2, ..., N . First, we check p-th mean contractivity (for p ≥ 1) by applying
Lemma A.1 on the monotonicity of ||u||γu from [24] and get to the conclusion

2⟨x− y, a(t, x)− a(t, y)⟩d + (p− 1)||b(t, x)− b(t, y)||2

= 2⟨x− y,Λx(1 + ||x||γ)− Λy(1 + ||y||γ)⟩d + (p− 1)||Σx− Σy||2N
= 2⟨x− y,Λ(x−y)⟩d + 2⟨x−y,Λ(x||x||γ−y||y||γ)⟩d + (p−1)||Σ(x−y)||2N

= 2

N∑
i=1

λi(xi−yi)
2 + 2⟨x− y,Λ(x||x||γ− y||y||γ)⟩d + (p−1)

N∑
i=1

σ2
i (xi−yi)

2

≤
N∑
i=1

(2λi + (p− 1)σ2
i )(xi − yi)

2 ≤ max
k=1,...,N

(2λk + (p− 1)σ2
k)||x− y||2N

under λi ≤ 0, since

⟨x− y,Λ(x||x||γ − y||y||γ)⟩d ≤ 0

for all p ≥ 0. Hence, the SDE (5.6) is mean square nonexpansive if

max
k=1,...,N

(2λk + (p− 1)σ2
k) ≤ 0

and has a p-th mean contractive coefficient system (a, b) if

max
k=1,...,N

(2λk + (p− 1)σ2
k) < 0. (5.7)

Now, consider the backward Euler method applied to SDE (5.6) governed by the
scheme

Yn+1 = Yn + ΛYn+1(1 + ||Yn+1||γ)hn +ΣYn∆Wn.

Note that, for sufficiently small step sizes hn, one may solve this implicit alge-
braic equation by Newton-Raphson-type methods. Then, Theorem 2.9 implies
that this method is (numerically) exponentially mean square B-stable for system
(5.6) under condition (5.7) with p = 2. Moreover, under (5.7) with p = 2, the
drift-implicit Theta methods with θn ≥ 0.5 are (numerically) asymptotic mean
square B-stable according to Theorem 4.3 (also V-stable). As an alternative, we
suggest the ”asymptotically equivalent” discretizations by linear-implicit Euler
methods

Yn+1 = Yn + Λ(Yn+1(1 + ||Yn||γ)hn +ΣYn∆Wn

in order to avoid the time-consuming local resolution of implicit algebraic equa-
tions in N dimensions. We can still observe asymptotic stabilization of L2-
perturbations by these linear-implicit methods. Similarly, we may investigate the
linear-implicit Theta methods

Yn+1 = Yn + Λ(θnYn+1 + (1− θn)Yn)(1 + ||Yn||γ)hn +ΣYn∆Wn

and establish asymptotic mean square B-stability for θn ≥ 0.5 (apply Theorem
4.3 under condition (5.7)). However, among them with all θn = 0.5, we prefer the
linear-implicit midpoint methods

Yn+1 = Yn +
1

2
Λ(Yn+1 + Yn)(1 + ||Yn||γ)hn +ΣYn∆Wn.

to discretize SDE (5.6) with numerically B-stable perturbations as long as γ ≥ 0.
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6. Summary of Major Results

This list summarizes our major findings documented by a series of Theorems:
• The concepts of numeric and dynamic B-stability for stochastic-numerical
methods have been introduced. Numeric B-stability of numerical methods
relates to a non-increasing propagation of perturbations of initial data.
Dynamic B-stability of numerical methods requires numeric B-stability
of numerical methods for all underlying SDEs with monotone coefficient
systems (a, bj) and all admissible, nonrandom step sizes hn.

• Theorem 2.1 establishes a general a.s. identity on the two-point motion
process (X,Y ) for numerical methods. This identity highlights the impor-
tance of adequately constructed methods with monotone increments.

• Theorem 2.4 states all midpoint-type methods are exact-monotone (i.e.
possess a contraction-exact two-point motion process). Therefore, the ex-
istence of exact-monotone methods for random ODEs is constructively
verified by that theorem.

• Drift-implicit backward Euler-Maruyama method is both numerically and
dynamically mean square B-stable (see Theorems 2.9 and 2.15).

• Explicit forward Euler-Maruyama method is mean square expansive for
SDEs with expansive coefficient systems (see Theorem 2.13).

• Theorems 3.1 and 3.2 establish exponential B-stability for Theta methods
under appropriate conditions.

• The even more general concepts of V-stability along positive functionals V
and asymptotic B-stability for the two-point motion process are introduced
in Section 4.

• Theorem 4.1 reports on V-stability for variable step sizes with nonincreas-
ing parameters θnhn and an asymptotic invariance principle of equilibria.

• Theorems 4.3 and 4.4 provide us criteria for asymptotic B-stability of
Theta methods applied to (nonlinear) SDEs with mean square nonexpan-
sive coefficient systems with θn ≥ 0.5.

• Section 5 documents a series of examples showing several applications of
our theorems to linear and nonlinear SDEs, even in multi-dimensional case.

• In the appendix we verify a more general discrete invariance principle
(DIP).

This paper represents a humble trial to supplement some studies on qualitative
behavior of stochastic-numerical methods for SDEs. There are numerous exten-
sions possible, e.g., to carry on with B-stability analysis of compensated stochastic
theta methods (see Wang and Gan [27]) applied to jump diffusions. An alterna-
tive to our analysis is also given by Beyn, Isaak and Kruse [4] while referring to
monotone systems. There, C-stability and B-consistency of the split-step back-
ward Euler (SSBE) method and the projected Euler-Maruyama (PEM) method
are studied for SDEs with monotone coefficients.

7. Appendix: Discrete Invariance Principle (DIP)

In the previous sections we have exploited the following discrete version of
invariance principle (i.e. asymptotic convergence with wedge-type functions). For
convenience of readership, we add its elementary proof below.
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Lemma 7.1 (Discrete Invariance Principle (DIP)). Assume that the sequence
(vn)n∈IN of finite nonnegative real numbers vn ≥ 0 satisfies

∀n ∈ IN : vn+1 ≤ vn − wn (7.1)

with nonnegative real numbers wn ≥ 0. Then

(i) (vn)n∈IN is nonincreasing in n ∈ IN,

(ii)
∞∑

n=0

wn ≤ v0 < +∞,

(iii) limn→∞ wn = 0,

(iv) ∃ limn→+∞ vn and 0 ≤ limn→+∞ vn ≤ v0 −
∞∑
k=0

wk < +∞.

Proof. Monotonicity (i) of vn is seen from the equivalence (7.1) with

vn+1 − vn ≤ −wn ≤ 0

since wn ≥ 0 for all n ∈ IN. Recall the Monotone Bounded Sequence Theorem
from elementary calculus. Note that (vn)n∈IN is bounded from below by 0 and
decreasing (i.e. nonincreasing). Therefore, the finite limit limn→+∞ vn must exist.
By induction on n, from inequality (7.1), we obtain that

vn+1 ≤ v0 −
n∑

k=0

wk. (7.2)

Thus, by pulling over the limit as n → +∞, the limit of vn can be estimated by

0 ≤ lim
n→+∞

vn ≤ v0 −
∞∑
k=0

wk.

Consequently, (iv) is verified. This also implies that

0 ≤
∞∑

n=0

wn < +∞.

From Abel’s series theory, we know that this fact allows us to conclude that (iii)
is true. Finally, (ii) is clear from the positivity of vn+1 and direct rearrangement
of (7.2). This completes the proof. �
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1. Allen, E.: Modeling with Itô Stochastic Differential Equations, Springer-Verlag, New York,

2007.
2. Arnold, L.: Stochastic Differential Equations, John Wiley & Sons, New York, 1974.
3. Artemiev, S. S., Averina, T. A.: Numerical Analysis of Systems of Ordinary and Stochastic

Differential Equations, VSP, Utrecht, 1997.
4. Beyn, W-J., Isaak, E., Kruse, R.: Stochastic C-stability and B-consistency of explicit and

implicit Euler-type schemes, J. Sci. Computing 67 (2016), no. 3, 955–987.
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