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Numerical Absorbing Boundary Conditions
for the Wave Equation

By Robert L. Higdon

Abstract. We develop a theory of difference approximations to absorbing boundary conditions
for the scalar wave equation in several space dimensions. This generalizes the work of the
author described in [8].

The theory is based on a representation of analytical absorbing boundary conditions proven
in [8]. These conditions are defined by compositions of first-order, one-dimensional differen-
tial operators. Here the operators are discretized individually, and their composition is used as
a discretization of the boundary condition. The analysis of stability and reflection properties
reduces to separate studies of the individual factors. A representation of the discrete boundary
conditions makes it possible to perform the analysis geometrically, with little explicit
calculation.

1. Introduction. Consider the wave equation

(1.1)

for t > 0 on the spatial domain Ü = {(x, y): x > 0, y e Rk). Our goal is to find
boundary conditions that cause wave motions from the interior of S2 to pass through
the boundary x = 0 without being reflected. Boundary conditions of this type are
desirable in a number of physical problems. See, e.g., [2], [3], [4]. In general, it is not
possible to find practical boundary conditions that do the above task perfectly.

In this paper we discuss difference approximations to absorbing boundary condi-
tions of the form

(1.2) n ((«*«,) ¿j-c¿ u = 0,

where |a .| < tt/2 for all j. An analysis of the analytical conditions (1.2) was given in
[8]. Here we summarize some properties of (1.2).

(1) The condition (1.2) is satisfied exactly by any linear combination of plane
waves traveling out of ß at angles of incidence ±ax,..., ±ap with speed c. (In two
space dimensions, consider /(xcosa- + y sin a j + ct).) For such a linear combina-
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66 ROBERT L. HIGDON

tion there is no reflection. In general, the reflection coefficient is

(1.3) - n
/ cos a - cos 6

COS GLj + cos 6

for sinusoidal plane waves traveling at angle of incidence 6. Each factor in (1.3) has
absolute value less than 1 when |0| < 77/2.

(2) For any given p and any given problem, the angles a can be chosen so as to
distribute the zeros of (1.3) and thereby optimize the absorption properties of (1.2).
In general, the choice of optimal a. depends on the configuration of the problem.
For example, the angles may be chosen to take advantage of a priori information
about the directions from which particular wave motions approach the boundary. In
practical situations one may need to limit the value of p that is used; see the end of
Section 3.

(3) In Proposition 9.1 of [8] it is shown that (1.2) provides a general representation
of absorbing boundary conditions, in the following sense. If an absorbing boundary
condition is based on a symmetric rational approximation to the portion of the
dispersion relation corresponding to outgoing waves, then it is either

(a) equivalent to (1.2), for suitable a; satisfying |a-| < 77/2; or
(b) unstable; or
(c) not optimal, in the sense that the coefficients in the boundary condition can be

modified so as to reduce the magnitude of the reflection coefficient for all Fourier
modes corresponding to nontangential incidence.

For example, the boundary conditions of Engquist and Majda [3], [4] are based on
Padé approximations and are equivalent to (1.2) for ax =  • • • = <xp = 0.

Various rational approximations have also been used to construct one-way wave
equations; see, e.g., [1], [6], [11], [12]. In certain physical problems such equations are
applied throughout the spatial domain in order to model wave propagation in one
direction but exclude propagation in the opposite direction. These equations can also
be used as absorbing boundary conditions when (1.1) is used as the interior
equation; in this case the factorization in remark (3) can be considered.

The radiating boundary conditions of Bayliss and Turkel [2] do not fit into the
format described above. However, they resemble (1.2), with ay = 0 and certain
variable lower-order terms added to the various factors. The absorbing boundary
conditions of Lindman [9] resemble the first-order version of (1.2), but include
certain correction terms that involve values of several functions that need to be
updated at each time step.

The purpose of the present work is to give a general analysis of difference
approximations to (1.2). We discretize each factor with a first-order difference
operator having a one-dimensional stencil. (See Section 3 for precise formulas.) The
composition of these operators then gives an approximation to (1.2). This composi-
tion has the following properties.

(1) The stencil is one-dimensional, which simplifies implementation near corners
of rectangular spatial domains.

(2) The analysis of stability and reflection properties reduces to separate studies of
the individual factors. (See Sections 2 and 3.) This leads to major simplifications in
the analysis.
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BOUNDARY CONDITIONS FOR THE WAVE EQUATION 67

These remarks generally do not apply when one-way wave equations of order two
or more are used as absorbing boundary conditions but are not factored as described
above. (See, e.g., Section 8 of [8].)

The analysis in the present paper is performed using geometrical constructions in
the complex plane and involves little explicit algebraic calculation. This analysis is
based on the representation of discrete boundary conditions given by the operator
M(K,Z l) developed in Section 5. The representation may have application beyond
the present problem; see the beginning of Section 6.

In [8] we analyzed and tested two types of discrete boundary conditions that are
equivalent to certain discretizations of (1.2) for cosa, = À = cAt/Ax. One of these
methods, "space-time extrapolation", is extremely easy to implement. The purpose
of the present work is to remove the restriction cos ay = X and give a theory that
covers a broader class of difference approximations to (1.2).

The outline of this paper is as follows. In Section 2 we make some preliminary
comments. In Section 3 we describe the discrete boundary conditions used here and
state the main results of the paper. These results are proved in Sections 4 through 7.
Some numerical tests of the boundary conditions are given in Section 8.

2. General Theoretical Framework. In this section we define some notation and
describe the theoretical framework to be used here.

For the sake of notational simplicity only, we orient the paper to the case of two
space dimensions (k = 1); the space domain is then given by x > 0 and y e R.
However, the results also apply to problems in higher dimensions. At appropriate
places we indicate the notational changes needed to describe and analyze the more
general case.

Let Ujm denote an approximation to u(jAx, mAy, nAt), and let K and Z denote
the forward shift operators with respect to x and t, respectively, defined by
KuJ.m = u'j+i,m and Z«"m = «"m1- We will consider boundary conditions of the
form

(2.1) B(K,Z-')u"Cl = 0,
where B is a polynomial in two variables having a nonzero constant term. The
boundary conditions used later do not involve shifts in the ^-direction. In the
interior of ß we will use the standard second-order centered difference approxima-
tion to (1.1); for two space dimensions this is given by

„n + i _ 2u"    + u"~l

(At)2
(2.2)

c2
J' + 1. m ¿■Uj,m +  Uj-\,m Uj,m + l        ^Uj,m +  Uj,m-\

+
(AxY (AyY

Extensions to other interior schemes are indicated at the beginning of Section 6 and
at the end of Section 7.

In later analyses of boundary conditions we will use a stability criterion that is an
analogue of one used by Gustafsson, Kreiss, and Sundström [5] to prove stability
results for first-order hyperbolic systems in one space dimension. The criterion can
be described as follows.
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68 ROBERT L. HIGDON

Consider solutions of (2.2) that have the form

(2.3) «;•„, = KVAT'2"-
where k and z are complex and tj is real. The quantities in (2.3) must satisfy the
"dispersion relation"

z-2 + z-1 = (c^)\k-2 + k'1)

In the case of higher-dimensional problems, the last term in (2.4) is replaced by a
sum of such terms.

For each z and each -qAy, there are two solutions k1s k2 of (2.4). In Section 4 we
show that if \z\ > 1, then kx and k2 can be defined so that |k,| < 1 and |k2| > 1.
When \z\ = 1 we define kx and k2 to be limits of values corresponding to |z| > 1.
The stability criterion is

(2.5) fi(K,,z-1) * 0   whenever |z| > 1, for all t/Aj.

A physical interpretation of (2.5) is given in [8]. (Also see Trefethen [10].) A related,
but different, interpretation is given below.

In later sections we will consider boundary conditions defined by operators of the
form

p
(2.6) B(K,Z'l)=Y\DJ{K,Z-x),

7 = 1

where each D, is a discretization of a factor in (1.2). The criterion (2.5) amounts to
requiring Dj(kv z~l) ¥= 0 for each j. The factors can thus be analyzed individually.

Reflection properties of boundary conditions will be described as follows; cf. [3],
[8], [10]. Let
(2 7) g/fx+nu'+iu«

denote an oscillatory wave. This can be written in the form (2.3), with

(2.8) k = e'iAx,        z = e'"A'.

Consider a linear combination

(2.9) ClK{e,J>vz" + c2K'2e^zn,

where subscripts 1 and 2 correspond to group velocity pointing into and out of the
spatial domain Q, respectively. This is consistent with the definition of kx and k2
given in connection with (2.5); see Section 4. When (2.9) is inserted into the
boundary condition (2.1), the result is the reflection coefficient

B{k2,z-1)
(2.10) R(r,,z)

5(Kl,z->)

(In general, one would consider wave packets formed by integrating with respect to
T) and co, but the analysis reduces to separate studies of each pair (17, u). Also see the
discussion of transforms given below.) We want \R(r¡, z)\ to be as small as possible.
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BOUNDARY CONDITIONS FOR THE WAVE EQUATION 69

If a boundary condition has the factored form (2.6), then (2.10) implies

(2.11) *(tj,z)= -T\{-Rj(v,z)),
y'-l

where Rj is the reflection coefficient associated with Dy. The reflection properties
can thus be studied one factor at a time.

The reflection coefficient leads to an interpretation of (2.5) that suggests the
validity of this criterion. Suppose \z\ > 1. Then (2.3) consists of values of modes
exp(yx + ii\y + st) for Res > 0, where k = exp(-yAx) and z = exp(sAr). The gen-
eral solution of the interior difference equation can be built up from these modes by
means of Fourier transforms in y and Laplace transforms in t. (The process is an
analogue of one given in Section 5 of [7] for first-order hyperbolic systems. Reduce
the transformed interior equation to a one-step system of difference equations in x,
and analyze the solution.) The limit \z\ -* 1 corresponds to At -» 0, if Res is fixed.

Now consider (2.9), but with \z\ > 1, \kx\ < 1, and |k2| > 1. The first and second
terms can still be associated with incoming and outgoing waves, respectively. (See,
e.g., [7], [10], or Section 4.) The stability criterion (2.5) then means that it is possible
to solve for incoming modes in terms of outgoing modes (see (2.10)), and the
solvability is uniform as the mesh is refined. This interpretation is an analogue of an
interpretation given in [7] of the Kreiss well-posedness criterion for first-order
hyperbolic systems.

3. Difference Approximations to (1.2); Statement of Results. In this section we
define some discretizations of (1.2) and state the main results of the paper. Let

(3.1) (oo8a)£_<JL

denote a typical factor in (1.2). This will be approximated by

D(K,Z~l) = (cosa)f ̂ rf—)[(1 - a)I + aK]
(3.2) V     M     I

-c(^i)[<l-6)/+ «-'].

The coefficients a and b give weighted space and time averages of the time and
space differences, respectively. This formulation includes the forward Euler, back-
ward Euler, and box scheme approximations to (3.1). (See Section 5.2.) At this point
we place no restrictions on a and b, except that they be real.

We will discretize (1.2) by a composition of the form

(33) inDj(K,Z~l)\u^ = 0.

The angle a and the coefficients a and b may depend on j.
According to remarks made in Section 2, the analysis of (3.3) reduces to a study of

individual operators of the form (3.2). In order to perform this analysis, we first
develop the representation of D(K,Z~l) given in Lemma 1. This representation is
used to prove the reflection property in Theorem 1 and the stability result in Lemma
2. The conclusions of Lemma 2 are then translated into the statement about
D(K,Z~l) given in Theorem 2. The proofs of these results are given in later
sections.
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70 ROBERT L. HIGDON

The lemmas and theorems are stated for the case of two space dimensions. The
corresponding statements about higher-dimensional problems (y G Rk) are ob-
tained by replacing (cAt/Ay)2 with E(cAi/Av^)2 and tjA y- with tj • Ay.

Lemma 1. D(K,Z~l) can be manipulated to yield
Ax

a + b\\ cos a
I-[l + rz(Zl-I)][l+rK(K-I)}(3-4)

D(K,Z  l)

= M(K,Zl),

where X = cAt/Ax and
/„ ~\ / cosa \
(3.5) rz = a-r- ) + b; cosa '

Remarks. A motivation for the form of M(K,Z~l) is given in Subsection 5.1.
There, we use properties of the dispersion relation (2.4) to develop a class of discrete
boundary conditions that are approximately satisfied by outgoing waves but are not
satisfied by incoming waves. This derivation is the process by which the author
originally obtained M(K,Zl). This development uses properties of the interior
difference scheme and does not consider the possibility of consistency with analyti-
cal boundary conditions.

However, Lemma 1 shows that if a + b(A/cosa) + 0, then the behavior of
M(K, Z~l) is actually equivalent to that of D(K, Z~l). This fact will be the basis of
essentially all of the later analysis, for the following reason.

The analysis of stability and reflection properties of D(K,Z~l) requires the
analysis of the complex-valued functions D(kx, z_1) and D(k2, z_1). (See Theorems
1 and 2.) Here \z\ > 1, \kx\ < 1, |k2| > 1. If the given form of D(K, Z~l) were to be
used, the analysis would appear to require a great deal of tedious algebraic
manipulation. Such manipulation is a traditional feature of applications of the
stability theory of Gustafsson, Kreiss, and Sundström [5]. However, the situation
is different in the case of the equivalent operator M(K, Z1). The function 1 +
rz(z~x — I) maps the domain \z\ > 1 to a certain disk in the complex plane; a
similar comment holds for 1 + rK(K - 1). In later sections it will be seen that much
of the analysis of stability and reflection can then be performed by studying simple
geometrical properties of certain mappings in the complex plane. This does a great
deal to simplify the analysis.

The operator M(K,Z~l) does not help in the analysis of the special case
a + b(X/cosa) = 0. However, this case will be handled easily by separate argu-
ments.

If a and b are varied so that the quantities rz and rK in (3.5) do not change, then
M(K,Z~l) does not change. Thus different discretizations of d/dt and 3/3x in
(3.1) can lead to equivalent operators (3.2). In particular, no generality is lost by
assuming a = b in (3.2). This remark includes the case a + b(X/cosa) = 0; see
(5.9).

In the remainder of this section we assume that the interior difference scheme
satisfies the Courant-Friedrichs-Lewy condition
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BOUNDARY CONDITIONS FOR THE WAVE EQUATION 71

Theorem 1 (Reflection property). // |z| = \kx\ = |/c2| = 1 and kx =£ k2, then

D(k2,z-')
(3.7) < 1.

D(Kl,z-1)

This holds for all choices of a and b and all yAy.

Remarks. Theorem 1 implies that the reflection coefficient for the general boundary
condition (3.3) has absolute value less than 1 for purely oscillatory modes, except
when kx = k2 (cf. (2.11)). The constraint kx + k2 means, essentially, that the case of
zero normal group velocity is excluded. For details, see the proof of Theorem 1 in
Subsection 5.3. The exceptional case is of no consequence.

The above theorem applies to all oscillatory waves admitted by the interior
difference scheme. It is not restricted just to those waves that are resolved well by
the grid and thus described by consistency with (1.1) and (1.2).

Lemma 2 (Stability for M(K, Z~1)). Suppose that rz and rK are positive. If

(3.8) (2rz-l)(2rJC-l)<l,

and if strict inequality holds either in (3.8) or in the CFL condition (3.6), then the
operator M(K,Zl) in (3.4), (3.5) satisfies the stability condition

(3.9) M{k1, z_1) ¥= 0,    for \z\ > 1 except if z = kx •= 1, and for all tjA j\

// strict inequality holds in (3.6), then the constraint (3.8) can be relaxed slightly;
necessary and sufficient conditions for (3.9) are given at the end of the proof of Lemma
2 in Section 6.

If rz and rK are negative, then (3.9) is satisfied; no constraints need be placed on r7
and rK in this case.

Remarks. If M(K, Z~l) is used to represent D(K, Z1), then r7/rK = (cosa)/A
> 0. (See (3.5).) Thus it is no restriction to assume that rz and rK have the same
sign. Some numerical computations described in Section 8 suggest that, in practice,
rz and rK should be positive. The exceptional case M(l, 1) = 0 in (3.9) is discussed
below.

Lemma 2 is used to help prove the following, final result.

Theorem 2 (Stability for D(K, Z~1)). If
/„ -~\ / cosa \      ,      1 / cosa
(3.10) a(^r) + b^2-(— + l

and if strict inequality holds in either (3.10) or (3.6), then the operator D(K, Z~x) in
(3.2) satisfies the stability condition

(3.11) D(kx, z"1) ¥= 0,    for \z\ ̂  1 except if z = kx = 1, and for all t]Ay.

In the case a = b, (3.10) is equivalent to

(3.12) a<2'

If strict inequality holds in (3.6), then the constraints (3.10) and (3.12) can be relaxed
slightly; for details, see Section 7. These constraints include the possibility of negative a
or b.
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72 ROBERT L. HIGDON

Theorem 2 immediately yields an analogous stability property for higher-order
boundary conditions of the form (3.3).

The proofs of Theorem 1 and Lemma 2 require detailed information about the
dispersion relation (2.4). This information is developed in Section 4. In Section 5 we
motivate the form of M(K,Z~l) and prove Lemma 1 and Theorem 1. Lemma 2 is
proved in Section 6, and Theorem 2 is proved in Section 7.

We conclude this section with some remarks about the behavior of (3.9) and (3.11)
for z — Kx — 1. In Section 2 the stability criterion (2.5) was interpreted as a
solvability condition. For the boundary conditions considered here, this condition
breaks down as z -+ 1 and Kj -> 1. The dispersion relation (2.4) implies that this
case corresponds to k2 = 1 and -qAy = 0, and (2.8) then implies that the frequency
and wave numbers must be zero. A comparison with (2.10) shows that the reflection
coefficient is a 0/0 form in this case. For neighboring z and k the reflection
coefficient is bounded by 1, so the breakdown in (2.5) would seem to present no
difficulty.

However, this situation depends on a delicate balance between the effects of the
boundary condition on incoming and outgoing waves, as the frequency tends to zero.
Conceivably, this balance could be disrupted by perturbations from the ideal
situation of a linear problem with constant coefficients on a uniform grid.

Another practical difficulty is illustrated by some computations described in [8].
There, some second-order (p = 2) boundary conditions worked well, but some
third-order conditions produced large reflections that increased with time. It appears
that this difficulty is due to the fact that the initial data was nonzero (but very small)
at a few points within the stencil of the boundary condition, but the boundary values
at x = 0 were zero at the initial time. Thus, in effect, the boundary condition had a
very small forcing term for a couple of time levels. A comparison with (2.1) and
(2.10) shows that the forcing term is divided by B(kv z~l) when the coefficient for
the incoming mode is found. (Strictly speaking, this remark applies to manipulations
of the Fourier-Laplace transforms of the interior scheme and boundary condition, as
described at the end of Section 2.) Since the denominator tends to zero, the effect on
incoming waves can be large. The actual effect on the solution depends on the order
of the pole in 1/B(kx, z_1) and the number of space dimensions, since the solution
can be represented by an inverse Fourier-Laplace transform. (Consider integration
in polar coordinates.) The computations in question involved two space dimensions.
In subsequent computations the incompatibility was removed, and third-order
conditions worked better than second-order ones; the behavior of the latter was not
affected by the change.

The above remarks suggest that the boundary condition (1.2) is not very robust
when p is sufficiently large. However, the breakdown in solvability can be relieved
by replacing (1.2) with

(3.13) Till ^9 9n((cos«,)--c^ + e7 u = 0,

where the e/s are nonnegative and at least some are positive. The stability analysis
of (1.2) given in Proposition 7.3 of [8] can be modified easily to analyze (3.13). If the

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BOUNDARY CONDITIONS FOR THE WAVE EQUATION 73

discrete operator D(K, Z"1) is altered by adding e, then the leading 1 in M(K, Z~l)
in (3.4) is replaced by 1 + e(Ax/c)[a + b(X/cosa)]. The methods used to prove the
above theorems can be extended easily to this case.

4. Properties of the Dispersion Relation. Here we analyze the dispersion relation
(2-4),

z-2 + z-1 = (c^)2((c-2 + K-1)

(4.1)
+ (c|^) (*"*'-2+ *-**>).

In particular, we examine how the possible values of k vary as z varies with |z| > 1
and T¡Ay fixed. This information will be fundamental to the development in later
sections. Throughout this discussion we assume that the CFL condition (3.6) is
satisfied.

First consider the case of purely oscillatory waves of the form (2.7). In this case
k = exp(/£Ax) and z = exp(/'wA/), so (4.1) can be written as

The graph of (4.2) is given in [8]. The group velocity associated with (2.7) is
( —9co/9|, — du/d-q); this vector points into (out of) the spatial domain £2 if and
only if £Ax and wAi have opposite (same) signs. (Here we assume |£Ax| < -rr,
\uAt\ < 77, and \r¡Ay\ < ir; this is no restriction.)

The relation (4.2) gives sufficient information about (4.1) for the analysis of the
discrete conditions in [8]. However, in the present paper it is also necessary to
examine (4.1) for |z| > 1 and describe how this case relates to the case \z\ = 1.

During the discussion of the stability criterion (2.5) in Section 2, certain state-
ments were made about the roots Kj and k2 of (4.1) corresponding to |z| > 1 and
fixed T]Ay. Propositions 4.1, 4.3, and 4.5 give properties of the roots k of (4.1) that
justify those earlier statements. The precise definitions of kx and k2 are given in the
present section; no prior knowledge of the roots is assumed here. For all z and r)Ay,
the two roots k of (4.1) are reciprocals of each other, since (4.1) is symmetric in k
and k"1.

We begin by describing the behavior of (4.1) for |z| > 1. Later we extend the
description to \z\ = 1.

Let D = {z G C: \z\ < 1} and E = {z e C: \z\ > 1}; and let £>£,, Eu and DL,
EL denote the intersections of D and E with the open upper half-plane and open
lower half-plane, respectively. (See Figure 4.1(a).) Throughout this section, r¡Ay is
assumed fixed.

Proposition 4.1. If z G Ev, then one root k of (4.1) lies in DL, and the other lies
in Eu. The corresponding transformations map Eu onto DL and Eu onto Ev,
respectively. If z g EL, then one root k lies in Du and the other is in EL; the
corresponding transformations are onto.

Proof. First suppose z g Ev. In this case, Im(z -2 + z_1)>0 (see Figure
4.1(b)); a comparison with (4.1) shows Im(ic - 2 + k_1) > 0. It follows that the
roots k cannot be real and cannot lie on the unit circle, since otherwise k - 2 + k ~'
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would have to be real. Furthermore, the roots k are reciprocals of each other,
so one root must lie inside the circle and the other must lie outside. The sign of
Im(/c - 2 + k"1) then implies that the roots must lie in DL and Eu- To show that
the maps Eu -* DL and Ev -» Ev are onto, interchange the roles of k and z in the
above arguments.

The case z g El can be treated in a similar manner.   D
From now on, we will denote by k,(z) and k2(z) the roots k of (4.1) that lie in D

and E, respectively, when ze^u EL. These are labeled in Figure 4.1. For
notational simplicity, the dependence on the parameter t]Ay will not be indicated
explicitly.

The next proposition states some facts that will be needed later. The proposition
will be used frequently without explicit reference.

Proposition 4.2. Suppose f is a complex number.
(a) // f is real, then

f-2 + f-1>0        ifand only if £ > 0 and ?# 1;
f-2 + {-1< -4    ifand only if £ < 0 and £* -1.

(b) // |f | # 1 and f + f_1 « rea/, //ie« f is rea/.

Proof of part (b). Suppose |f| =£ 1 and f is not real. Then f and f-1 have different
moduli and have nonzero arguments of opposite sign. Their imaginary parts thus
have different magnitudes and cannot cancel.   D

Proposition 4.3. If z > 1, then the roots k of (4.1) are real; one root lies in (0,1),
and the other lies in (1, + oo). If z < — 1, then one root lies in ( — 1,0) and the other
lies in (—oo, — 1). As \z\ -* + oo with z real, the moduli of the roots tend to 0 and oo,
respectively.

(a)

/ •/ *--*"~

(b) (c)

Figure 4.1
Illustration of Proposition 4.1
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BOUNDARY CONDITIONS FOR THE WAVE EQUATION 75

Proof. First observe that e"' y - 2 + e~"] y < 0, with equality occurring if and
only if t]Ay = 0. (Here we assume \t]Ay\ < tt.)

If z > 1, then the left side of (4.1) is positive. Thus k - 2 + k_1 > 0, and k is
real. The graph of k - 2 + k"1 shows that one root k lies in (0,1), and the other lies
in (1, + oo). As z -» +00, these roots tend to 0 and + oo, respectively.

If z < -1, then z - 2 + z_1 < -4. Thus k - 2 + k"1 < -4. (Here we use the
CFL condition (3.6).) The remainder of the analysis is similar to that of the previous
case.   D

For z real with \z\ > 1, let kx(z) and k2(z) denote the roots of (4.1) so that
|*c1(z)] < 1 and |k2(z)| > 1. This notational convention is consistent with the one
established after Proposition 4.1; together, the conventions define maps kx: E -> D
and k2: E -> E. The conclusions of Proposition 4.3 are illustrated as part of Figure
4.2.

Proposition 4.4. The transformations kx: E -> D and k2: E -» E are analytic and
one-to-one.

Proof. Analyticity follows from the fact that the roots kx and k2 are distinct. To
show that the maps are one-to-one, suppose that z0 and zl are distinct points in E
that map to the same point k. Then for this k, and the given r¡Ay, Eq. (4.1) has two
roots z outside the unit circle. This is impossible, since these roots must be
reciprocals of each other.   D

In general, the ranges of these maps are not all of D and E, respectively; see cases
(A)-(B) and (F)-(G) in Figure 4.2.

Proposition 4.5. (a) The maps kx: E -» D and k2: E -* E have analytic extensions
to a neighborhood of any point z0 for which \z0\ = 1 and the roots k of (4.1) are
distinct.

(b) The maps have continuous extensions to the domain {z e C: \z\ > 1}.

Proof, (a) The roots are distinct when z = z0. There thus exist analytic functions /
and g defined on a neighborhood Q of z0 such that

(1) f(z) and g(z) are the roots k of (4.1), for each z g Q; and
(2) the ranges of / and g are disjoint.

The functions / and g must then coincide with the functions kx and k2 when z e £>
and \z\ > 1.

(b) This has already been shown, except at points z0 for which |z0| = 1 and the
roots k of (4.1) coincide. At any such point, let kx(z0) and k2(z0) be the common
value. To show continuity at z0, use either Rouché's theorem or the continuity of the
modulus of the square root.   D

The roots kv k2 of (4.1) are distinct except when kx = k2 = +1, since kxk2 = 1.
Proposition 4.5 yields a natural definition of kx and k2 for \z\ = 1. This is the

definition that will be used from now on. Further information about these roots is
given in the following proposition. It may be useful to interpret the conclusions in
terms of the graph of (4.2) for |£Ax| < tt, \uAt\ < tt, and i\Ay fixed.

Proposition 4.6. When \z\ = 1, the dependence between z and kv k2 is that which
is indicated in Figure 4.2. The figure illustrates the case where 0 < arg z < ir when
\z\ = 1. // —tt < argz < 0 when \z\ = I, then the signs of arg*! and arg/c2 should
be reversed. Here r¡Ay is fixed.
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K[ (incoming) k2 (outgoing)

Figure 4.2

Illustration of Propositions 4.3 and 4.6. Letters indicate corresponding values.
Arrows indicate directions of relative movement. In this picture tj A y # 0,
and 0 < argz < tr when \z\ = 1.

Proof. Suppose z = 1. If rjA y. + 0, then k - 2 + k"1 is positive, and kx < 1 < k2.
This is case (B) in the figure.

For the moment, continue to assume i)Ay ¥= 0, and move z around the unit circle.
The left side of (4.1) becomes negative. At some point, k - 2 + k"1 = 0, so that k1
and k2 come together to form a double root kx = k2 = 1. This is case (C) in the
figure. If T)Ay = 0, then this coalescence occurs when z = 1. Between cases (B) and
(C), the modes (2.3) are evanescent.

Now move z further around the circle. Then z — 2 + z ~1 becomes more negative,
and k-2 + k~1<0. The two values of k must then lie on the unit circle; this
follows from parts (a) and (b) of Proposition 4.2. The labeling of kx and k2 in the
figure follows from Propositions 4.1 and 4.5.

The remainder of the analysis is similar to the above.   D
According to (4.2) and related discussion, a purely oscillatory mode has incoming

(outgoing) group velocity if and only if arg z and arg k have opposite (same) signs.
Thus Kj and k2 are associated with incoming and outgoing modes, respectively.

A related identification of these modes is given by the following. Consider a point
z for which \z\ = |k¡(z)| = |k2(z)| = 1, with Kj ¥= k2. If z is perturbed so that
\z\ > 1, then Kj and k2 are perturbed so that |kJ < 1 and |k2| > 1. This is indicated
by the dotted arrows at the positions (D) in Figure 4.3. Thus incoming waves
(subscript 1) are associated with perturbations to modes (2.3), KJe'vyz", that decay as
x increases, when \z\ > 1. Outgoing waves are associated with modes that decay as x
decreases.

This is an example of a labeling process that is found more generally; see
Trefethen [10]. (Also see [7].) In the proof of the general case one uses conformai
dependence of k on z.
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5. Properties of M(K, Z_1). The operator M(K,Z~l) was defined in (3.4) and
(3.5). Here we motivate its form and prove Lemma 1 and Theorem 1.

The operator will be derived without reference to discretizations of (cosa)3/3i -
c3/3x. Instead, we work directly with properties of the interior difference scheme to
produce an operator that defines a discrete absorbing boundary condition. The
operator can be adjusted so that it does its best absorption for waves traveling at
angle of incidence ± a. (At this point we refer to waves that are resolved well by the
grid.) After the operator is derived, we show that it is equivalent to certain
discretizations of (cosa)3/3/ - c3/3x. This is Lemma 1.

The operator also has a desirable absorption property for all oscillatory waves
admitted by the interior difference scheme, not just those that are resolved well by
the grid. This is given in Theorem 1.

5.1. Construction of M(K, Z_1). In order to motivate the form of M(K, Z_1), we
begin with a description of the space-time extrapolation boundary conditions
discussed in [8]. These use powers of the operator

(5.1) S(K, Z'l) = I- Z~XK.

The reflection coefficient for the first-order version is

S(k2,z-*)

Rs 5(k1sz-)-

In the dispersion relation (4.1) assume r)Ay + 0. Thus z#l when kx = k2 = 1.
(See case (C) in Figure 4.2.) If z is moved around the unit circle away from 1, then
kx and k2 also move around the circle. The k's move more rapidly than does z, since
each k moves through a complete semicircle when z moves through part of a
semicircle. Thus at some point, k2 catches up with z. At this point, 1 - z~1k2 = 0,
and Rs = 0. Since z = exp(/<oAi) and k = exp(;£Ax), z = k2 implies uAt = £2Ax.
But c£2/co ~ cos 6 for waves that are resolved well by the grid, where 6 is the angle
of incidence. (See Figure 4.3 in [8], or calculate group velocity.) The best absorption
then occurs for coso » cAt/Ax = X.

The operator in (5.1) is equivalent to certain discretizations of A3/3i - cd/dx.
Two examples are given in Subsection 5.2.

The angle of best absorption for (5.1) is determined by the point where k2 catches
up with z. Now suppose we want a boundary condition that is tuned to a different
angle of incidence. To that end, consider the more general operator

(5.2) M(K,Z-l) = I-P(Z-1)Q(K),

where P and Q are linear polynomials having real coefficients. P and Q will be
chosen so that argQ(k2) coincides with arg P(z) at frequencies corresponding to the
desired angle.

The following construction accomplishes this goal. Let

(5.3) P(z~l) = l+rz(z^-l),        Q(k) = 1+ /-,(«-1),

where rz and rK are real nonzero constants that have the same sign. When (5.3) is
inserted into (5.2), the result is the operator M(K, Z"1) defined in (3.4) and (3.5).
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/>(;-')

Figure 5.1

Geometrical representations of P(z   l) and ô(k •) for \z\
pictures, rz > I, and 0 < rK < 1.

!^(«i)

|k,I = 1. In these

P and Q map the unit circle to circles of radius |rz| and \rK\, respectively, with
•P(l) = 0(1) = I- A geometrical interpretation of P(z~l) and Q(k) follows from the
fact that P(z~1) - 1 and Q(k) - 1 are real multiples of z_1 - 1 and k — 1,
respectively. (See Figure 5.1.) In the figure, rz > 1 and 0 < rK < 1. In each graph
the solid circle is the unit circle.

The reflection coefficient for M(K,Zl)'\s

I - P(z1)Q(k2)
(5.4) Rm =

I - P(z1)Q(kx)

Now consider the angles of best absorption for oscillatory waves that are resolved
well by the grid. For such waves, uAt and £Ax are small, so z and k are close to 1.
In the following discussion, we assume that rz and rK are positive; a related analysis
applies to the case where they are both negative.

First locate P(z~x) and Q(k). Figure 5.1 implies that rzargz_1 is the (signed) arc
length from 1 to P(z~l) along the circle of radius r7. Similarly, argP(z~') is the
(signed) arc length along the unit circle to the point whose argument is that of
P(z~1). If z is near 1 these lengths coincide to leading order, so rzargz_1 ~
arg P(z~x). Similarly, when k is near 1, we have rK arg« = argg(K).

In these cases, P(z~l) and Q(k) have moduli nearly equal to 1. Thus if

(5.5) argP(z1)~ -argÔ(K2),

then

\l - P(z~1)Q(k2)\«\1 - P(z-y)Q(Kx)\,

and RM is essentially zero. But (5.5) means r2argz_1 «

r7 cAt

rKHTgK2, so

(5.6) .21 ~ L?
u      r, Ax

This implies that the reflection is essentially zero for waves traveling at angles of
incidence 6 for which (cosf?)/X ~ r7/rK. The boundary condition can therefore be
adjusted to an arbitrary angle a by choosing rz and rK so that
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Taylor expansions of the exponentials in (5.4) imply that, to leading order, —RM
has the form of a factor in (1.3). The above discussion applies only to those
oscillatory waves that are resolved well by the grid; for general reflection properties,
see Theorem 1.

Compositions of operators of the form M(K,Z~l), analogous to (3.3), can be
used to yield higher-order absorption. (Cf. (2.11).)

5.2. Proof of Lemma 1; Examples. Here we show that M(K,Z~l) provides a
representation of the difference operator D(K, Z~l) defined in (3.2).

The definition (3.4) of M(K, Z~l) implies

(5.8)     - M(K, Z"1) = rz(Z~x - I) + rK{K - I) + rzrK(Z^ - I)(K - I).

A manipulation oi D(K,Zl) yields
Ax D(K, Z^1)M =

(5.9)

cosa (z-
cosa

1-I)+(K-I)

+ b](Z'l-l)(K-l).

When (5.9) is multiplied by

«( cosa + b
cos a

the right side is the same as the right side of (5.8), with
cosa

(5.10)

Thus,

(5.11)

r7 = a + b, rK = a + b cosa

Ax
c

a + b cosa
D(K,Z1) = M(K,Zl).

This completes the proof.   D
The parameters defined in (5.10) satisfy the constraint (5.7). We now give some

specific approximations to (3.1) that are included in the general form D(K, Z~l).
(a) Forward Euler: a = 0, b = 1. The stencil has an "L" shape. Here rz = 1 and

rK = A/cos a.
(b) Backward Euler: a = b = 0. The stencil has inverted "L" shape. In this case,

M(K,Z~l) cannot be used to give a representation of D(K,Z~l). However,
stability and reflection properties for this case will be handled easily by separate
arguments.

(c) Box scheme: a = b = 1/2. In this case, rz < 1 < rK or rK < 1 < rz, unless
X = cosa.

The stability properties of these examples are summarized in Section 7.
After Lemma 1 was stated in Section 3, it was pointed out that different pairs

(a, b) can lead to equivalent operators D(K, Z"1). An example of this is given by
the space-time extrapolation operator (5.1); this is equivalent to both the forward
Euler and box scheme approximations to A 3/3/ - c3/3x.

5.3. Proof of Theorem 1 (Reflection Property). Here we show

(5.12)
D{k2,z-1)

D{kx,z-1)
< 1
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when \z\ = Ik^ = |k2| = 1 and kx =t k2. The dispersion relation (4.1) implies /c^ = 1,
so kx and k2 coincide only when kx = k2 = +1. Except when z = kx = k2 = I, this
case corresponds to zero normal group velocity; this can be determined from the
graph of (4.2) for fixed tjAy (see [8]), or from the group velocity (-3w/3£,
— 3w/3t|).

If z = kx = k2 = 1 then TjAy = 0 (see (4.1)), and the mode (2.3) corresponds to
frequency zero. In this case the behavior of neighboring frequencies is described by
the consistency of D(K, Z~l) with (3.1).

If z, kx, and k2 lie on the unit circle with kx + k2, then these numbers cannot be
real. This is implied by Figure 4.2.

In order to prove (5.12), we need to consider two different cases.
Case I: a + b(X/cosa) + 0. In this case (5.12) is equivalent to

A/(k2,z"1)
(5J3) M( -l      < 1

M\KX,Z       )

(see (5.11)), or \RM\ < 1. The formulas in (5.10) imply that rz and rK have the same
sign.

Consider the factors P(Z~l) and Q(K) in M(K,Z~l). P(zl), Q(kx) and
Q(k2) are not real, since z_1, kx, and k2 are not real. Figure 5.1 shows that
argP(z_1) and argg(Ki) have the same sign, whereas argip(z_1) and argg(K2)
have opposite signs. Furthermore, lô^)! = |ô(k2)| and argQ(Kx) = -arg(2(K2).
The line through P(z~l) and the origin is therefore the set of all points in the
complex plane that are equidistant from P(z~1)Q(kx) and P(z1)Q(k2). (See
Figure 5.2(a).) P(z~x)Q(k2) lies on the same side of this line as 1. A comparison
with (5.4) and (5.2) yields (5.13).

Case II: a + b(X/cosa) = 0. In this case M(K, Z"1) cannot be used to represent
D(K, Z_1). However, (5.9) now reduces to the simplified form

Ax D(K,Z->)=(^)(Z-i-I)+(K-I).c \   X
A typical configuration of z_1 - 1 and Kj - 1 is given in Figure 5.2(b). Clearly
|£>(k2, z~l)\ < \D(kx, z-l)\, and (5.12) follows.    D

P(:-l)Q(*i)

\P(Z'1)Q(K1)
\

K-,  -  1

\/(z'x - l)(cos«)/X

K,   -1

(a) Case I (b) Case II

Figure 5.2
Illustration of Theorem 1.
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6. Proof of Lemma 2 (Stability for M(K, Z x)). Here we show M(kx, z_1) * 0 for
\z\ > 1 except when z = k, = 1, subject to the conditions described in the theorem.
Equation (5.2) shows that the desired conclusion is equivalent to the statement

(6.1) P(z1)Q(kx) ¥= 1    for \z | > 1, except when z = kx = 1, and for all TjAy.

It is assumed that rz and rK have the same sign. (This is no restriction.)
First consider the special case where 0 < rz < 1 and 0 < rK < 1. This case is

covered by the general analysis given below, but here it is possible to use a special
argument that is much simpler than the general one. In this argument, the only fact
about the dispersion relation that is used is that \kx\ < 1 when |z| > 1; this suggests
the possibility of easily extending this method to other interior schemes or other
problems.

If 0 < rz < 1, then the formula

(6.2) P(z-i) - 1 = rz(z~l - 1)

(see (5.3)) implies that the map z_1 >-> P(z~l) is a contraction toward 1, as indicated
in Figure 6.1. In each graph the shaded area is the domain of possible values of the
specified quantity. P(l) = 1, but otherwise \P(z'l)\ < 1 for \z\ > 1. An analogous
conclusion holds for Q(kx), since 1^1 < 1. Thus \P(z~1)Q(kx)\ < 1 for \z\ > 1,
except when z = kx = I, and (6.1) follows.

Similar analyses hold if 0 < rz < 1 and rK = 1, or if rz and rK are both negative.
In the latter case, (6.2) implies that P(z~l) lies outside the unit circle if \z\ > 1 and
z # 1. A similar conclusion applies to Q(kx), so \P(z~1)Q(kx)\ > 1 except when
Z  =  Kj  =  1.

The above arguments fail for other choices of rz and rK. In such cases it is
possible to have \P(z~1)Q(tc1)\ = 1 in situations other than z = kx = I. These cases
are of interest; for example, the box scheme can yield rz > 1, or rK > 1, or
rz = rK = 1. (See Subsection 5.2.) A more careful analysis is therefore needed. In the
following discussion we assume tjA y is fixed, rz > 0, and rK > 0.

Case I: \z\ > 1, z not real. First suppose z e Ev- Figure 4.1 shows z'1 G DL and
kx g DL in this case. The geometrical interpretations of P(z~l) and Q(kx) imply
that P(z~l) and Q(kx) must then lie in the lower half-plane. (Cf. Figure 5.1.) Since
their arguments are between -ir and 0, their product cannot be real and positive. In
particular, P(z1)Q(kx) + 1, which is the desired conclusion.

Next suppose \z\ = 1 and Imz > 0. Then z^1 lies on the lower unit semicircle,
and P(z~l) is in the lower half-plane. Cases (B)-(F) in Figure 4.2 show that k, lies
either on the lower unit semicircle or on the real axis. Thus Q(kx) is either in the

P(z')

Figure 6.1
P(z~l) for\z\> landO <rz<l.
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slope = rz

Q(h)
slope = rK

Figure 6.2
Values ofP(z~1) and Q(kx) for \z\> 1, with z real.

lower half-plane or on the real axis. In the first case, P(z'1)Q(kx) cannot be real
and positive, so P(z~x)Q(kx) =f= 1. In the second case, P(z~1)Q(kx) can be real only
if Q(Ki) - O- But then the product would be zero, and we still have P(z~1)Q(kx) =£ 1.

Therefore, P(z~1)Q(kx) + 1 if \z\ > 1 and Imz > 0. A similar analysis applies to
the case Im z < 0.

Case II: |z| > 1 with z real. This is the only case that can yield instability, and it is
the only source of restrictions on rz and rK.

Here -1 =$ z_1 < 1. Figure 4.2 shows that kx also lies in [-1,1], and, in fact, is
often restricted to a proper subinterval of [-1,1]. The corresponding values of
P(z~l) and Q(kx) are graphed in Figure 6.2. (Cf. (5.3).) On the given domains,
P(z~l) < 1 except if z = 1, and Q(kx) < 1 except if kx = 1. Thus the only way to
have P(z1)Q(kx) = 1 (except when z = kx = I) is for P(z~l) and Q(kx) both to
be negative.

We now obtain the sufficient condition (3.8) given in Lemma 2. If P( — I) > 0,
then P(z~1) > 0 whenever -1 < z~x < 1; (6.1) must then hold, regardless of the
behavior of Q. Similarly, if Q( — l)> 0, then (6.1) holds, regardless of the behavior
of P. Thus (6.1) can fail only if P( -1) < 0 and Q( -1) < 0. So suppose that P( -1)
and Q( — I) are negative, and now also assume P(-l)Q(-l) < 1. Then for any z~1
and kx in [-1,1] for which P(z~l) < 0 and Q(kx) < 0, we must have P(z~1)Q(kx)
< 1, except if P(-l)Q(-l) = 1 and z = kx= —I. (This follows from the signs
and monotonicity of P and Q.) For any other z_1 and kx in [-1,1], it has already
been established that P(z'1)Q(kx) # 1. Thus for the case where P(~l) and Q(-l)
are negative, the stability condition (6.1) is satisfied if

(6.3) p(-i)Ô(-i)<i
and if either strict inequality holds in (6.3) or it is not possible to have solutions of
the dispersion relation for which z = kx = -1. The ideas behind Propositions 4.3
and 4.6 show that z = kx = -1 is impossible if and only if strict inequality holds in
the CFL condition (3.6). Thus, for the case where P(-l) < 0 and Q(-l) < 0, the
stability condition (6.1) is satisfied if (6.3) holds and if strict inequality holds in
either (6.3) or (3.6).

We now describe the above conclusions in terms of conditions on rz and rK.
Throughout this discussion we have assumed rz > 0 and rK > 0. The case where
P(-1)>0 and  Q(-l) is unrestricted thus corresponds to 0 < rz < 1/2 and
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rK > 0. The case Q(-l)> 0 corresponds to 0 < rK < 1/2 and r7 > 0. In the case
where P( —1) and Q(-l) are negative, we have rz > 1/2 and rK> 1/2. The
formulas (5.3) for P(z_1) and Q(k) show that (6.3) is equivalent to

(6.4) (2rz - l)(2rK - 1) < 1.

The union of the sets of all (rz, rK) described here is defined by (6.4) and the
constraints rz> 0 and rK > 0; consider the region in the (rz, r^-plane bounded by
the positive coordinate axes and the hyperbola (2rz - l)(2rK - 1) = 1. The desired
sufficient condition (3.8) has thus been established.

If strict inequality holds in the CFL condition (3.6), then the constraints imposed
by (3.8) can be relaxed slightly. The analysis is similar to the above, but more
tedious, so here we merely outline the results.

If strict inequality holds in (3.6), then Kj can never equal — 1 for z < — 1. An
analysis of the dispersion relation (4.1) shows that the most negative kx (for z < -1)
occurs when z = -1 and i)Ay = ± it. The extreme kx is —d+ (d2 - 1)1/2, where

At \2\   I   At
(6-5) d=-1 + YÍCWlCAx
(The CFL condition (3.6) is satisfied if and only if d > 1.) An analysis similar to the
above shows that (6.4) can be replaced by

(6.6) (2rz- l)[{l + d -(d2 - l)1/2)rK- l] <l.

A study of hyperbolas in the (rz, r^-plane shows that (6.6) represents a loosening of
the restriction (6.4).

The inequality (6.6) is necessary and sufficient for the stability condition (6.1) to
hold, except for the following technicality. If P(0) < 0, 0(0) < 0, and P(0)Q(0) = I,
then P(z~1)Q(kx) > 1 for z < -1 and P(z~1)Q(kx) < 1 for z > 1. However, this
situation is sensitive to perturbations in rz and rK. This case is of little practical
significance, since (3.5) shows that rz and rK depend on the mesh ratio and wave
speed. The definition (3.4) of M(K, Z"1) shows that P(0)Q(0) = 1 if and only if
M(kx, z_1) -* 0 as \z\ -> oo and \kx\ -* 0. This situation could therefore be avoided
by requiring uniformity in (3.9) and (6.1) as \z\ —> oo.

7. Proof of Theorem 2 (Stability for D(K, Z"1)). The goal is to show

(7.1) D(kx, z_1) # 0,    for |z| > 1 except if z = kx = 1, and for all TjA_y,

subject to the conditions described in the theorem. This conclusion immediately
yields an analogous stability property for the general boundary condition (3.3).

Lemma 1 states that if a + b(X/cosa) is nonzero, then D(K, Z"1) is a nonzero
multiple of M(K, Z"1), with

<■-. „v / cosa \      , /
(7.2) rz = a( —) + 2>;        rK = ^cosa

In this case, (7.1) is equivalent to the statement (3.9) that is obtained by replacing
D(kx, z~l) with M(kx, z_1). The analysis then amounts to an application of Lemma
2. The case a + b(X/cosa) = 0 will be handled separately.
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Lemma 2 gives separate descriptions of the cases where rz and rK are both
positive and both negative. Therefore, we finally divide the proof of Theorem 2 into
the following cases:

Case I: a + b(X/cosa) < 0. Here rz and rK are negative, and Lemma 2 implies
that (3.9) and (7.1) hold.

Case II: a + b(X/cosa) = 0. Here M(K,Z~l) cannot be used to represent
D(K,Z~1). However, (5.9) implies

kx _,      _,,      / cosa \,     ,     lX     ,       ,x
-— D(K,Z    l)=(-rj(z-l-l)+(K-l)

in this case. If |z| > 1, then z_1 - 1 has negative real part except when z = 1.
Furthermore, |ic11 < 1, so kx — 1 has negative real part except when kx = 1. Since
\a\ < ir/2, we can conclude D(kx, z"1) J= 0 except when z = kx = I. This is (7.1).

Case III: a + b(X/cosa) > 0. Here Lemma 2 can be applied, with rz > 0 and
rK > 0. For this case, Lemma 2 states that (3.9) (and (7.1)) must hold if

(7.3) (2rz - l)(2rK - 1) < 1

and if strict inequality holds either in (7.3) or in the CFL condition (3.6). When (7.2)
is substituted into (7.3), the result is

,„ ., / cosa \      ,      1 / cosa(7.4) a(__) + è<_(__ + 1

Cases I—III then imply that if (7.4) holds, and if strict inequality holds in (7.4) or
(3.6), then the stability condition (7.1) must hold. This completes the proof of the
part of Theorem 2 associated with (3.10) and (3.12).

Some numerical computations described in Section 8 suggest that Case III is the
case of greatest interest in practice.

The above analysis gives a condition that is sufficient for (7.1) to hold. We next
apply the condition (6.6) that is essentially necessary and sufficient for the stability
condition to hold for M(K,Z~l), when rz and rK are positive. This condition is
equivalent to

/_ -\ I cosa \ i / cusa \
(7.5) a\lT ) +

1 / cos a \      1
?(—) + 2

Here ß = 1 + d - (d2 - 1)1/2, where d is given in (6.5). The CFL condition (3.6) is
satisfied if and only if ß < 2.

This completes the proof of Theorem 2.   D
We conclude with some examples. According to remarks made after Lemma 1 in

Section 3, every operator D(K, Z_1) of the form (3.2) is equivalent to an operator of
that form for which a - b. For this case (7.4) says a < 1/2.

The general necessary and sufficient condition (7.5) involves a, X = cAt/Ax, and
cAt/Ay. If Ax = Ay, then the CFL condition (3.6) implies X < 2_1/2 = .707. (This
assumes two space dimensions.) In the numerical computations described in Section
8, we use Ax = A y and X = .625, and in most cases we assume a = b. Under these
assumptions, (7.5) says a < .684 when a = 0; if a = ir/6, then (7.5) says a < .674.
The right side of (7.5) approaches 1/2 as \a\ -» ir/2.
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Next consider the specific discretizations mentioned in Subsection 5.2.
(a) Forward Euler: a = 0, b = 1. In this case (7.4) is equivalent to cosa > À. The

necessary and sufficient condition (7.5) says cosa > X(ß/2).
(b) Backward Euler: a = b = 0. This is Case II discussed above. For this example

no restriction is placed on a or on the mesh, except that the CFL condition (3.6)
must be satisfied, and we need \a\ < ir/2. The stability analysis of this case depends
only on the fact that |kj| < 1 when \z\ > 1, and it thus may extend easily to other
interior schemes or other problems.

(c) Box scheme: a = b = 1/2. In this case the stability condition (7.1) holds
whenever strict inequality holds in the CFL condition.

8. Numerical Computations. Here we give the results of some numerical computa-
tions involving the boundary conditions described in this paper. We present separate
series of tests which

(1) illustrate the stability limit (7.5),
(2) demonstrate how the amount of reflection varies with the choice of ax and a2

in (1.2), and
(3) illustrate the behavior of the boundary conditions near a corner.
The format of these computations is similar to that used in [8]. We use wave speed

c = 1, mesh size Ax = Ay = 1/25, and mesh ratio At/Ax = At/Ay = .625. For all
tests the initial condition is

,     x (a)     «(x, vs0) = /e"30r2>    r<A5<
(8.1) W       V    y    '     \0, r> .45;

(b)    «,(x,>>,0) = 0,

where r2 = (x - .5)2 + y2. The Fourier transform of the Gaussian is a Gaussian
centered about wave number zero. A comparison with the graph of the dispersion
relation (4.2) shows that the wave motion is composed of Fourier modes associated
with all possible directions of propagation. There will therefore be a broad range of
angles of incidence present at each boundary used here.

In Tests # 1 and # 2 we compute solutions to the wave equation on the domain

üx= {(x,y): 0 < x < 2, -2 < y < 2),

with various choices of boundary condition at x = 0. The solutions are analyzed
only on the smaller domain

ß2= {(x, y):0 <x < 1, -1.5 < y < 1.5}.

(See Figure 8.1(a).) The boundaries of Qx are chosen so that reflections from the top,
bottom, and right boundaries of tix are not able to reach fi2 during the time interval
on which solutions are computed. The computations thus test reflection properties of
the boundary conditions imposed at x = 0, without interference from any other
boundary. The support of the initial data is contained in ß2.

With the initial condition (8.1) we also compute a solution on the larger domain
{(x, y): — 1 < x < 2, -2 <y <2). The restriction of this solution to ß2 is the
"free-space" solution corresponding to zero reflection. This will be used to compute
reflected errors.
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2
1.5

-1.5

2

-1
ß,   I

\— -J

(a) Tests #1 and #2 (b) Test #3

Figure 8.1
Domains used in the computations.

For each computation in Tests #1 and #2, we calculate L2-norms of the
reflection on ß2 at times .25, .50, .75,... ,2.00. These reflections are then expressed
as percentages of the L2-norm of the initial value (8.1)(a). In the results given in
Tables 8.1, 8.2 and 8.3, we give only maximum reflections (from those at the stated
times).

Test #1. Effects of different values of a. Here we use the boundary condition

(8.2) D(K,Z-')ul%} = 0

with a = b. This is the first-order version of (3.3). Solutions are computed using
various values of a and with a = 0 and a = 30 degrees, (a is the angle of incidence
for which the factor (3.1) is designed to be perfectly absorbing.) The purpose of this
set of computations is to illustrate the effects of different choices of a, and, in
particular, illustrate the stability limit (7.5).

Table 8.1
Test #1. Percent reflection for first-order boundary condition
with a = 0. For each value of a, the amount of reflection given
is the maximum observed at times 0.25,0.50,..., 2.0.

- 10     -1 0     0.1     0.2   0.25     0.3     0.4
Reflection |   34.4   13.3   9.06    8.88    8.78    8.77    8.78    8.86

0.5     0.6     .65     .68     .69     .70     .71      .72
Reflection 9.03   9.28   9.43   9.54   9.57    660.     10" 10s

Table 8.2
Test # I. Percent reflection for first-order boundary condition
with a = 30 degrees.

0     0.25     0.5     0.6     .67     .68     .69    .70
Reflection 7.23   6.94   7.33   7.67   7.95    8.00   350.    105
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Table 8.3
Test # 2. Percent reflection for second-order boundary condition
with  various  combinations of ax   and  a2.   The angles  are
measured in degrees.

ax = 30 ax = 40 ax = 50 ax = 60
a2 = 30 2.91
a2 = 40 2.71 2.57
a2 = 50 2.61 2.51 2.46
a2 = 60 2.77 2.62 2.91 3.80

The results for a = 0 are given in Table 8.1. For every value of a except the last
three, the maximum reflection from times .25, .50,..., 2.0 occurs either at t = 1.25
or t = 1.50. For a = .70, .71, and .72 the solution displays an obvious instability,
and the reflections for these are given at / = 2.0.

Some results for a = 30 degrees are given in Table 8.2. The reflections for this
case display the same general variation with a that is seen for a = 0, so here we
show mainly the results that illustrate the onset of instability. In general, the
reflections for this case are less than those for a = 0; the reasons for this are
included in the discussion of Test #2.

In Section 7 it was stated that if a = b, Ax = Ay, and X = .625, then the stability
limit (7.5) says a < .684 when a = 0 and a < .674 when a = 30 degrees. This is
consistent with the behavior observed in Tables 8.1 and 8.2.

Test #2. Effects of different ax and a2. Here we use the boundary condition

(8.3) Dx(K,Z^)D2(K,Z-l)u"o^ = 0

at x = 0, where DX(K, Z"1) and D2(K, Z_1) are discretizations of (3.1) with a = ax
and a = a2, respectively. Equation (8.3) is a discretization of (1.2) with p = 2.
Solutions are computed using various values of ax and a2. In Dx(K,Zl) and
D2(K, Z_1)weusea = b = .25.

If ax = a2 = 0, the maximum percent reflection on ß2 is 3.48; if ax = a2 = 10
degrees, the reflection is 3.41; if ax = a2 = 20 degrees, the reflection is 3.22. Table
8.3 gives an array of reflections corresponding to various other ax and a2. In all of
these cases, the maximum reflection from times 0.25,0.50,..., 2.00 occurs either at
t = 1.25, t = 1.50, or t = 1.75.

In this particular series of computations the minimum reflection is found when ax
and a2 are each near 50 degrees. As ax and a2 are increased from zero, the effect is
to spread out the zeros of the reflection coefficient (1.3) and thereby broaden the
range of angles of incidence where the boundary condition is highly absorbing.
However, as expected, the effectiveness of the boundary condition is reduced if ax
and a 2 are made too large.

Figure 8.2 shows the reflection patterns for the cases ax = a2 = 0 and ctx = a2 =
50 degrees. In each graph the plotted quantity is the solution computed with
boundary minus the free-space solution. The vertical scale is exaggerated in order to
make the patterns visible; on the surfaces in Figures 8.2(a) and 8.2(b), the maximum

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



88 ROBERT L. HIGDON

(a)    o:, = a2 = 0 (b)    «,=«-,= 50 degrees

Figure 8.2
Test #2. Reflection patterns at time t = 1.25.

ordinates are 0.022 and 0.014, respectively. The positive x-axis points to the right,
and the positive y-axis recedes into the background. The graph shows every other
grid point in the x direction and every third point in the y direction.

In the above tests, L2-norms of reflections were also computed on the interior
domain [1/3,1] X [-1.5,1.5]. These norms are minimized when ax and a2 are each
near 45 degrees.

In general, the choice of optimal ax and a2 depends on the configuration of the
problem. For example, on a short boundary segment, large angles of incidence might
not be possible, so ax and a2 should be reduced accordingly.

Test #3. Behavior near a corner. In the analysis given in this paper, the spatial
domain is assumed to be a half-space. This can be regarded as a study of a localized
problem in a neighborhood of a flat portion of the boundary of a bounded domain.
However, this analysis does not consider the effects of the boundary conditions in a
neighborhood of a corner. Here we give some empirical evidence which suggests that
no difficulties are encountered in this case. It is assumed that an absorbing boundary
condition is imposed at each of the intersecting boundary segments. These computa-
tions were performed because Engquist and Majda [4] found that instabilities could
arise if boundary conditions of their form were matched improperly at the point of
intersection.

We compute solutions on the domain {(x, y): 0<x<2, — 1 <_y < 1} with
initial condition (8.1). The solutions are analyzed only on the smaller domain

Q3= {{x,y):0 < x<l, ~l<y <l}.

(See Figure 8.1(b).) The boundary conditions being tested are imposed at x = 0 and
y = ±1. With the given initial condition we also compute a solution on ((x, y):
— 1 <x<2, — 2 < v- < 2); the restriction of this solution to S23 is used to calculate
reflected errors.

For each boundary condition that is imposed at x = 0, we also compute a
solution on the domain üx defined earlier. The amount of reflection on Q3 is then
calculated. The comparison of the two sets of computations indicates the effects of
the boundaries y = ± 1 and the corners (0,1) and (0, -1).
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The following sets of boundary conditions are tested.
(a) Second-order space-time extrapolation at x = 0 and y = ±1. This boundary

condition uses the square of the operator S(K, Z~l) defined in (5.1); the condition
at the boundary x = 0 can be written as

.n + 1
l0.m z"l,m        "2,m •

This method is equivalent to the box scheme and forward Euler discretizations of
(À3/3; - c3/3x)2« = 0. Here, X = .625, socos_1A = 51.3 degrees.

(b) General second-order boundary condition (8.3) at x = 0, with ax = a2 = 30
degrees and a = .25, and second-order space-time extrapolation at y = ±1.

The discrete boundary conditions used here have one-dimensional stencils, so
there is no difficulty with implementing them near the corners. This is different from
the case where the boundary conditions involve tangential derivatives. (Cf. [4].)
Because of the form of the interior difference scheme (2.2), the corner points are
never used in the computation and are excluded from the calculation of reflected
errors.

The results of the computations are shown in Figure 8.3. For each computation
the percent reflections were calculated for times .25, .50,..., 2.00. In each graph the
dotted line gives the reflections for the computation with boundary x = 0, and the
solid line gives the reflections with boundaries x = 0 and y = ± 1. In each case the
additional boundaries yield additional reflection, but there is no evidence of any
instabilities arising from the effects of the corners.

Reflection

1.0

(a)

2.0

Reflection

1.0

(b)

2.0

Figure 8.3

Tests # 3. Effects of a corner. In each of cases (a) and (b), the dotted line
gives the percent reflection without a corner, and the solid line gives
reflections with a corner.

Note Added in Proof. It has recently come to the author's attention that R. G.
Keys has independently derived analytical boundary conditions of the form (1.2).
See Geophysics, vol. 50, no. 6, June 1985, pp. 892-902.
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