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Abstract

We present numerical methods for dynamic traffic demand estimation between

N zones in a network, where the zones are disjoint subsets of nodes of the network.

Traffic is assumed to be generated or absorbed only in the zones and nowhere else in

the network. Traffic volumes between zones over a fixed period of time are modelled

as independent random variables with unknown means which we wish to estimate.

For each zone, the volume of all incoming and outgoing traffic is counted on a regular

basis but no information about the origin or destination of the observed

traffic is used. We suggest procedures for a regular update of estimates of the

N(N−1) mean traffic demands between the zones on the basis of an incoming stream

of the 2N traffic counts. The procedures are based on an exponential smoothing

scheme and are reminiscent of the expectation maximization (EM) algorithm if

smoothing is removed. Fast and reliable numerical algorithms, based on the con-

jugate gradient method, are presented for normal as well as for Poisson traffic de-

mands. The Poisson case is linked with entropy maximization. Computational tests

based on simulated data demonstrate both the numerical and statistical efficiency

of the procedures.
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1 Introduction

The estimation of inter-zonal traffic demands from traffic counts on links in a network is

an important problem in transportation planning and has been studied intensively in the

transportation literature [2, 3, 4, 5, 18, 19, 21, 22, 24, 25, 32, 33]. In this context, traffic

demands can refer to the number of passengers or vehicles or to tonnage of cargo that

are processed from their origins to their destinations through a network of roads, or even

to the number of data packets that are sent through an electronic network such as the

internet. A key question is how to estimate the unobserved demands for traffic between

various nodes, or zones, in the network from the observed traffic flows on the links of the

network.

Traditional urban traffic demand estimation is based on detailed demographic data, such

as travelers’ income and household size, and employs a complex four-step procedure, focus-

ing on trip generation, trip distribution, modal split and trip assignment, see for instance

[24, pp. 11-16] and [11, pp. 17-32]. In parallel to these socio-economic modelling efforts,

researchers have investigated the problem of estimating traffic demands on the mere basis

of counted traffic on some of the links in the network. The present paper contributes to

this literature. The approach is particularly appealing since the data collection can be

automated through the use of induction loops. Link-flow based traffic demand estimation

is typically classified into two categories, depending on whether or not congestion effects

are taken into account. Cascetta and Nguyen [4, 5] and Ortuzar and Willumsen [25] re-

view various methods for uncongested demand estimation, including maximum likelihood

[27], maximum entropy [28], least square [3] and Bayesian [19] approaches. Estimation in

the presence of congestion has been studied, among others, by Chen and Florian [6], Fisk

[14, 15], Maher and Zhang [20], and Yang et al. [32, 33].

The contribution of our paper lies in the following aspects: First, we suggest a model

which assumes that we can decide a priori on which links traffic is counted. This is in
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contrast to the existing literature, which assumes that the links on which traffic is counted

are exogenously determined and not under our control. Secondly, we suggest an updating

procedure, reminiscent to forecasting, which uses regularly arriving data to update mean

demand estimations on-line. Finally, we provide fast and reliable numerical algorithms

for normal and Poisson demands and test their numerical and statistical performance.

2 The Traffic Network Model

We assume that a given traffic network is partitioned into N zones, each zone being a

set of nodes of the traffic network. The zones are assumed to be disjoint but do not

necessarily cover the whole network. We make the following assumptions:

(A1) For each zone, we assume that all the incoming and outgoing traffic can be observed

and is counted regularly;

(A2) The traffic generated or absorbed anywhere in the network outside of the N zones

is negligible;

(A3) The mean demand between any two zones in the network is strictly positive.

Assumption (A1) requires that we can decide a priori where the traffic is counted: At

all entering and exiting arcs of each zone. Assumption (A3) is used for notational con-

venience. If we know that demand between certain zones is zero, then the model can be

straight-forwardly adapted by excluding this zone-pair from consideration in the estima-

tion procedures.

It is convenient to represent this set-up by a star-shaped meta-network, as depicted in

Figure 1, whose nodes are the zones and a hub which is connected to the zones. The hub

represents the possibly empty set of nodes of the real network which are not contained in

any of the zones, whilst the arcs to and from the hub carry the total counted traffic out

of or into the zones. Since traffic counts in our model are aggregated at the zone levels,

congestion effects are less relevant for demand estimation in our model. Indeed, in a star
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network any two zones are connected by a unique path and therefore network users, at

the level where we observe them, cannot switch from a slow congested path to a quicker

less congested path. In addition to their use for zone-based demand estimation in general

traffic networks, star networks can be directly employed as models of traffic junctions.

The counting of incoming and outgoing traffic can be automated by installing induction

loops. One example of this type of network model is the traffic flow in a linear network,

such as a motorway, where counts can be made on access and exit roads. Automated

and regularly up-dated estimations of mean traffic demands over various time periods can

then be usefully employed, e.g., in the design of time-varying traffic light or speed controls.

We model traffic demands from zone i to zone j as independent random variables whose

mean we wish to estimate. We assume that the total amount of traffic entering or leaving

any one of the zones is counted on a regular basis, say every day during a fixed time

interval, but that there is no information available on the destinations of outgoing or

origins or incoming traffic. The fixed time interval can be a full day of a particular peak

hour. We also assume that all vehicles which enter the network (leaving their origin)

during the fixed time interval also exit (arriving at their destination) during the fixed

time interval. We will use the following notations:

(i) Z
(k)
ij is the unobserved amount of traffic from zone i to zone j in the kth period, i.e.,

Z
(k)
ij is sampled from a distribution with mean λij which we wish to estimate.

(ii) O
(k)
i is the observed total amount of traffic leaving zone i during the kth period, i.e.,

O
(k)
i =

N∑

j=1

Z
(k)
ij .

(iii) I
(k)
j is the observed total amount of traffic entering zone j during the kth period,

i.e.,

I
(k)
j =

N∑

i=1

Z
(k)
ij .

If we could observe Z
(k)
ij over D periods then the sample mean

Z̄ij =
1

D

D∑

k=1

Z
(k)
ij (1)
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would be the natural estimator for λij. In our setting, however, we do not observe Z
(k)
ij

but only the total incoming and outgoing traffic I
(k)
j and O

(k)
i respectively. The question

therefore arises which quantities should be used in place of the unobserved traffic Z
(k)
ij in

(1)? If the vector λ = (λij) of mean traffic demands was known then it would be sensible

to replace the unobserved vector of traffic between nodes by its conditional expectation

Eλ[Z |
N∑

i=1

Z
(k)
ij = I

(k)
j ,

N∑

j=1

Z
(k)
ij = O

(k)
i ]. (2)

The computation of this conditional expectation is difficult for general distributions but

straight-forward for normally distributed demands as we will see in Section 3.

Alternatively, following Decartes’ maxim “when it is not in our power to determine what is

true, we ought to act according to what is most probable”, we may replace the unobserved

between-zones traffic by the most likely between-zones traffic subject to consistency with

the traffic counts. This assumes that we know the family of density functions pij(., λij)

of the traffic demands between zones i and j in parametric form, depending on the mean

λij that we wish to estimate, and leads to the optimization problem

max
z

p(z, λ) =
N∏

i=1

N∏

j=1

pij(z
(k)
ij , λij)

subject to
N∑

i=1

z
(k)
ij = I

(k)
j , j = 1, 2, . . . , N,

N∑

j=1

z
(k)
ij = O

(k)
i , i = 1, 2, . . . , N,

z
(k)
ij ≥ 0 i, j = 1, 2, . . . , N.

(3)

We will see later in Section 4 if pij(·) is the Poisson distribution then the optimization

problem can be approximated by the entropy maximization problem. The Poisson dis-

tribution with mean λ can be approximated by the normal distribution N(λ, λ) when λ

is large [13]. In this case we expect problem (1) with normal demands and problem (3)

with Poisson demands to give very similar demand estimation. This is indeed observed

in our numerical experiments.

The least squares approach offers a further alternative. Assuming that the distribution of

between-zone traffic clusters about the mean, one may take the estimate z to be as close
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as possible to the mean λ subject to consistency with the observations. This leads to an

optimization problem of the form

min
z

d(z, λ)

subject to
N∑

i=1

z
(k)
ij = I

(k)
j , j = 1, 2, . . . , N,

N∑

j=1

z
(k)
ij = O

(k)
i , i = 1, 2, . . . , N,

z
(k)
ij ≥ 0 i, j = 1, 2, . . . , N,

(4)

where d(., .) is a suitable distance function. If d(., .) is the Euclidean distance between z

and λ (4) is an ordinary least square problem with linear constraints. Alternative gener-

alized least square approaches can be found in [2, 3, 8, 19, 21, 22]. Whilst we focus in this

paper on the maximum likelihood (maximum entropy) approach and the development of

fast algorithms for solving (1) and (3), the algorithm for solving (3) can be easily modified

to solve the above least squares problem. We compare the maximum entropy approach

with the least square approach in Section 6.

In (1) we assumed the between-zones traffic Z
(k)
ij to be observed and estimated the mean

demands λij, whereas in (2), (3) and (4) we assumed mean demands λij to be known and

calculated surrogates for the unobserved traffic Z
(k)
ij . The two views, although individually

relying on unrealistic assumptions, can be naturally combined to an iterative procedure.

Starting with initial estimates λ
(0)
ij for mean demands, we may successively update λ

(k−1)
ij ,

e.g., using the well-known exponential smoothing formula [1] with parameter α:

λ
(k)
ij = λ

(k−1)
ij + α(z

(k)
ij − λ

(k−1)
ij ), (5)

where z
(k)
ij is obtained through (2), (3) or (4) with the unknown means λij replaced by the

current estimates λ
(k−1)
ij . This estimation method is essentially a forecasting procedure

and allows for fluctuations of mean demands over time. It can be extended to account for

trends in mean demands λij, e.g., by employing a two-parameter exponential smoothing

technique. The approach based on (3) is a generalization of the Expectation Maximization

(EM) algorithm of [9] which updates λ
(k)
ij by z

(k)
ij , i.e. uses the smoothing parameter α = 1

in (5). For an introduction to the EM algorithm, we refer readers to [12]. Our smoothing

approach should not be confused with the smoothed EM algorithm of [26] which smoothes

out spikes in the reconstruction of a full density function.
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2.1 Notational Convention

It will be useful in the sequel to represent the equations

N∑

i=1

Z
(k)
ij = I

(k)
j , j = 1, . . . , N

N∑

j=1

Z
(k)
ij = O

(k)
i , i = 1, . . . , N

(6)

in a concise matrix form ANx = b. To this end we use the following notation:




(x1, x2, . . . , xN−1) = (Z1,N , Z1,N−1, . . . , Z1,2);

(xN , xN+1, . . . , x2(N−1)) = (Z2,1, Z2,N , Z2,N−1, . . . , Z2,3);

(x2N−1, x2N , . . . , x3(N−1)) = (Z3,2, Z3,1, Z3,N , . . . , Z3,4);
...

(x(N−1)2+1, x(N−1)2+2, . . . , xN(N−1)) = (ZN,N−1, ZN,N−2, . . . , ZN,1).

(7)

Given this reordering of demands, the 2N × N(N − 1) arc-path incidence matrix AN of

the star network with N zones takes the form

AN =




B1

B2


 , (8)

where B1 and B2 are N ×N(N − 1) matrices of the form

B1 =




1N−1 0N−1 . . . . . . 0N−1

0N−1 1N−1 0N−1 . . . 0N−1

...
...

...
...

...
...

...
...

...
...

0N−1 0N−1 . . . 0N−1 1N−1




︸ ︷︷ ︸
N

and

B2 = (IdN , IdN , . . . , IdN︸ ︷︷ ︸
N−1

),

respectively. Here 1N−1 is the 1× (N − 1) row vector with all entries being 1, 0N−1 is the

1× (N − 1) row vector with all entries being 0 and IdN is the N ×N identity matrix.

Finally, we store the observed outflows Oi and inflows Ij suitably order in the column

vector

b = (O1, O2, . . . , ON , IN , IN−1, . . . , I1)
t. (9)
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2.2 Organization of the Paper

The rest of the paper is organized as follows. In Section 3, we explain how (2) can be ap-

proximated if the traffic demands are approximately normal. Then we turn our attention

to the optimization problems (3) and (4). In Section 4 we analyze the inherent degen-

eracy in the constraints of the optimization problems and suggest a revised formulation

of the objective function of (3) for the special case of Poisson demands that makes the

problem amenable to optimization procedures. We will see that the revised formulation

is related to entropy maximization, thus linking this popular estimation approach with

the Poisson distribution. In Section 5, we present a solution procedure for the dual of

the revised formulation of the maximization problem (3) for the case of Poisson demands.

This procedure combines Newton’s method with the conjugate gradient method. We ar-

gue theoretically why this combination is particularly adequate for the present problem.

The simulation examples in Section 6 demonstrate the numerical and statistical efficiency

of the proposed estimation technique. In Section 7, we outline possible extensions of the

technique to take advantage of sparsity in the network structure. Finally, concluding

remarks are given in Section 8 to summerize the paper.

3 Normal Demands

In this section we assume that traffic demands are normally distributed with means λij

and variances σ2
ij. We begin with the assumption that the variances are known; unknown

variances pose no additional problem as we will explain later.

The advantage of the normal distribution is that the conditional expectation (2) can be

computed straight-forwardly. The following lemma is the basis for this approximation.

Lemma 1 If the components of a vector X are independent standard normal variables

then the distribution of X conditional on CX = c is normal and the conditional expecta-

tion E[X | CX = c] is the smallest element of the hyperplane CX = c in the Euclidean

norm.

Proof: We assume without loss of generality that C has full row rank. Notice that X
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and Y = CX are both Gaussians with vanishing means and covariance matrix

cov




X

Y


 =




Id Ct

C CCt


 .

The lemma is thus a direct consequence of the fact that the distribution of the Gaussian

X conditional on the Gaussian Y is again Gaussian with

E[X|Y] = Ct(CCt)−1Y and cov(X|Y) = Id− Ct(CCt)−1C,

cf. e.g. Lemma 11.1 of [29].

We can apply the latter result to the standardizations Xij = Zij−λij

σij
of the variables Zij

to obtain the conditional expectation

Eλ[Z | ANZ = b] = λ + diag(σ)E[X | ANdiag(σ)X = −ANλ + b], (10)

where diag(σ) is the diagonal matrix with diagonal entries σij and b is given in (9). The

optimality conditions for the least distance problem in the lemma are

x− diag(σ)At
Ny = 0

ANdiag(σ)x = −ANλ + b.

Elimination of x yields a square system of 2N equations

ANdiag(σ2)At
Ny = −ANλ + b, (11)

where σ2 is obtained from σ by squaring all components. Given the solution y, (10) yields

Eλ[Z | ANZ = b] = λ + diag(σ)x = λ + diag(σ2)At
Ny. (12)

The main computational work is the solution of the linear system (11). We will argue

later that the conjugate gradient method is particularly appropriate for such systems, see

Proposition 2 below. Given the old estimation λ and the new observed traffic flows b,

one may update the mean demands between zones by the smoothing scheme (5) and (12)

via solving (11).
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It is straight-forward to extend the procedure based on (5) to include an estimation of σ2
ij

if the variance is unknown. Indeed, if the between zone traffics Z
(k)
ij were observed then

it would be appropriate to replace the unknown variance σ2
ij by the sample variance

Sij =
1

D − 1

D∑

i=1

(Z
(k)
ij − Z̄ij)

2.

The update formula (5) can therefore be extended to include a variance estimate

σ
(k)
ij = σ

(k−1)
ij + α′(z(k)

ij − λ
(k)
ij )2,

where λ
(k)
ij is obtained from (5) and α′ is a smoothing parameter.

4 Poisson Demands

The computation of the conditional expectation (2) does not seem to be as straight-

forward for Poisson demands. We therefore resort to replacing the unobserved between

zones traffic by the solution of the optimization problem (3). For the Poisson distribution

the problem turns into

max
x

n∏

i=1

λxi
i

xi!
e−λi

subject to ANx = b

x ≥ 0,

(13)

where AN is the 2N × N(N − 1) in (8), n = N(N − 1). By passing to the logarithm of

the objective function we obtain the equivalent optimization problem

max
x

n∑

i=1

(xi log λi − log xi!)

subject to ANx = b

x ≥ 0.

(14)

Notice that the constraints ANx = b are degenerate in the sense that the matrix AN

is rank deficient (Rank(ANAt
N)= 2N − 1). Moreover, the ratio of the largest and the

second smallest eigenvalue of the matrix ANAt
N is bounded above independently of the

matrix size N . The following lemma specifies these observations, which will be useful in

the sequel.
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Lemma 2 The eigenvalues of the matrix (ANAt
N) are 0 and 2(N − 1), both with multi-

plicity 1, as well as N − 2 and N , both with multiplicity N − 1.

Moreover σ2N(ANAt
N)/σ2(ANAt

N) ≤ 4 for N ≥ 3. Here σi(H) is the ith largest eigenvalue

of a positive semi-definite matrix H.

Proof: We can rewrite

ANAt
N = (N − 1)Id2N −




0 0 . . . . . . 0 1

0 0 . . . 0 1 0
...

...
...

...

0 1 0 . . . 0 0

1 0 . . . . . . 0 0




︸ ︷︷ ︸
=S

+




0 . . . 0 1 . . . 1
...

...
...

...

0 . . . 0 1 . . . 1

1 . . . 1 0 . . . 0
...

...
...

...

1 . . . 1︸ ︷︷ ︸
N

0 . . . 0︸ ︷︷ ︸
N




︸ ︷︷ ︸
=T

.

We note that S and T are symmetric matrices so they are diagonalizable. Moreover S

and T commute, i.e. (ST = TS), and therefore they are simultaneously diagonalizable,

see Horn and Johnson [17]. Thus there exists an invertible P such that

P−1SP = D1 and P−1TP = D2

where D1 and D2 are diagonal matrices containing the eigenvalues of S and T respectively.

Therefore we have

P−1ANAt
NP = (N − 1)Id−D1 + D2.

The eigenvalues of S are 1 (multiplicity N) and −1 (multiplicity N). We note that

Tv1 = −Nv1 and Tv2 = Nv2 where

v1 =
1√
2N

(1, 1, . . . , 1︸ ︷︷ ︸
N

,−1,−1, . . . ,−1︸ ︷︷ ︸
N

)t and v2 =
1√
2N

(1, 1, . . . , 1)t.

Thus the eigenvalues of the rank 2 matrix T are N , −N and 0, the latter with multiplicity

2N − 2. Direct calculation shows that

ANAt
Nv1 = 0 and (ANAt

N − 2(N − 1)I)v2 = 0,

hence 0 and 2(N − 1) are two eigenvalues of ANAt
N . We conclude that the eigenvalues of

ANAt
N are 0, N − 2 (multiplicity N − 1), N (multiplicity N − 1) and 2(N − 1). It follows
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that Rank(ANAt
N) is 2N −1. Finally, σ2N(ANAt

N) = 2(N −1) and σ2(ANAt
N) = (N −2).

Hence for N ≥ 3 we have

σ2N(ANAt
N)

σ2(ANAt
N)

=
2(N − 1)

N − 2
≤ 4.

4.1 Stirling’s Approximation and Entropy Maximization

To make the optimization problem (14) amenable to numerical optimization procedures

we need to find a suitable approximation for the factorial function in the objective. The

obvious candidate is Stirling’s approximation

M ! ≈
√

2πe−MMM+ 1
2

which leads to

log M ! ≈ M log M −M + O(log M), (15)

where O(log M) = (log M + log 2π)/2. It is well-known that Stirling’s approximation is

surprisingly accurate. Even if we neglect the O(log M) term in (15) the relative error for

M = 100 is only
log 100!− (100 log 100− 100)

log 100!
≈ 0.9%.

If we use Stirling’s approximation to replace the factorial function then the maximization

problem (14) becomes

max
x

n∑

i=1

−xi

(
log

(
xi

λi

)
− 1

)

subject to ANx = b

x ≥ 0.

(16)

Estimating demand through the optimization problem (16) is called Maximum Entropy

Estimation (MEE). This approach was first suggested by Wilson [30, 31] and has been

used by Jornsten and Nguyen [18] and Van Zuylen and Willumsen [28] for traffic demand

estimation, see also [32, 33]. We remark that the MEE approach in [28] is very simi-

lar to the one described in this paper except that we don’t need to assume a constant

proportional assignment of links to trips. Therefore we don’t need to involve an assign-

ment method in our algorithm and we can update the origin-destination matrix (demand
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means) by using the old origin-destination matrix only.

The efficient method for (16) that we will develop in the next section is relevant for

maximum entropy estimation which is typically applied without explicit distributional

assumptions on traffic demands. Notice, though that our derivation of the MEE opti-

mization problem (16) shows that, at least for sufficiently large means, MEE is equivalent

to maximizing the likelihood of independent Poisson processes.

5 Solving the Maximization Problem

The optimization problem (16) has N(N−1) variables and 2N equality constraints. There

exists a unique optimal solution in the interior of the nonnegative orthant as the objective

function is strictly concave and tends to −∞ as x tends to ∞ or to the boundary of the

nonnegative orthant. We suggest to solve the dual rather than the primal problem because

the former has only 2N variables as opposed to the N(N − 1) variables of the primal.

5.1 The Dual Problem

We may discard the non-negativity constraints of problem (16) because the objective

function approaches −∞ as x tends to the boundary of the nonnegative orthant. The

dual problem of (16) is therefore of the type

min
y

max
x

L(x,y), (17)

where y is the multiplier and L(., .) is the Lagrangian function

L(x,y) =
n∑

i=1

(xi log λi − xi log xi + xi) + yt(b− Ax). (18)

Here and in the remainder of the section we write AN as A since N is fixed throughout.

The optimal solution x∗(y) of the inner maximization problem of (17) solves the equations

∇xi
L(x,y) = log λi − log xi −

m∑

j=1

ytA.i = 0, i = 1, 2, . . . , n

and is thus of the form

x∗i (y) = λie
−ytA.i , i = 1, 2, . . . , n, (19)
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where A.i is the ith column of the matrix A. After substituting x∗(y) back into (17) the

dual problem simplifies to

min
y
{

n∑

i=1

λie
−ytA.i + ytb}. (20)

The solution of the primal problem (16) is obtained from the solution of the dual problem

(20) through (19). We have thus transformed a constrained maximization problem with

N(N − 1) variables into an unconstrained minimization problem with 2N variables.

5.2 Newton’s Method for the Dual Problem

A variety of numerical methods are available for solving (20), see e.g. Nocedal and

Wright [23]. In the following we will explain how Newton’s method in conjunction with

the conjugate gradient method can be used and give a theoretical justification for the

efficiency of the conjugate gradient method in this setting. To this end we denote by

f(y) =
n∑

i=1

λie
−ytA.i + ytb (21)

the function to be minimized. The gradient and Hessian of f are of the form

∇f(y) = −Ax∗(y) + b

∇2f(y) = A · diag(x∗(y)) · At,
(22)

where x∗i (y) is as defined in (19) and diag(x∗(y)) is the diagonal matrix with diagonal

entries x∗i (y).

Consider the vector

v1 =
1√
2N

(1, 1, . . . , 1︸ ︷︷ ︸
N

,−1,−1, . . . ,−1︸ ︷︷ ︸
N

)t.

It is obvious that

vt
1A = 0 (23)

vt
1b = 0, (24)

where the latter equation is a consequence of the balance equation
∑N

i Ii =
∑N

i Oi. Hence

f(y + z) = f(y) for every y ∈ v⊥1 and every z in the linear span of v1 and it therefore

suffices to find a minimizer of f in v⊥1 .
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Lemma 3 The null space of ∇2f(y) is the linear span of v1 and ∇2f(y) is positive

definite on v⊥1 .

Proof: By our assumption (A3) in Section 2, all the demands λi are positive. Therefore

the Hessian

∇2f(y) = A · diag(x∗(y)) · At

is obviously positive semi-definite because x∗i (y) = λie
−ytA.i ≥ 0. If zt∇2f(y)z = 0 then

0 = zt∇2f(y)z ≥ min{x∗i (y)}ztAAtz ≥ 0

and therefore ztAAtz = 0. Lemma 2 thus implies that z = αv1.

We conclude that f is strictly convex on v⊥1 and will now proceed to applying Newton’s

method to minimizing f on the latter subspace. Newton’s method produces a sequence

of points yk according to the iteration yk = yk−1 + pk, where the Newton step pk is the

solution of the equation

∇2f(yk)pk = −∇f(yk). (25)

Notice that, by the above lemma, ∇2f(yk) is a one-to-one mapping of v⊥1 onto itself.

Hence, since ∇f(yk) ∈ v⊥1 by (22), (23) and (24), there exists a unique pk ∈ v⊥1 such

that (25) holds. Newton’s method for minimizing f on v⊥1 is thus well defined. If we

start with y0 ∈ v⊥1 the Newton sequence will remain in this subspace. Moreover, since

the Hessian ∇2f(y) is non-singular on this subspace, the Newton sequence converges lo-

cally at a quadratic rate. To enforce global convergence one may wish to resort to line

search or trust region techniques, cf. e.g. [7, 10]. We did not find this necessary in our

computational experiments for which we used the following standard procedure:

Newton’s Method (see Nocedal and Wright [23]):

Choose starting point y0 ∈ v⊥1

k = 1;

while ||∇f(yk)||2 > tolerance

find pk ∈ v⊥1 with ∇2f(yk−1)pk = −∇f(yk−1);

set yk = yk−1 + pk;

k = k + 1;

15



end.

A possible starting point is e.g. y0 = 1√
2N

(1, 1, . . . , 1)t. Since the estimation procedure

outlined in the foregoing section needs the solutions of a sequence of such optimiza-

tion problems with a constant v1 it seems sensible to use the optimal solution of the

(k − 1)th problem as starting point for the kth problem in the sequence. The main

computation in an iteration of Newton’s method is the solution of the linear system

∇2f(yk−1)pk = −∇f(yk−1) in v⊥1 . The positive definiteness of ∇2f(y) on v⊥1 suggests

the use of the conjugate gradient method, which is an iterative method. By making

use of the sparse structure of the matrix A, we don’t need to store the iteration matrix

∇2f(yk−1), which is an advantage over a direct method. Moreover, the conjugate gradient

method converges very fast because the iteration matrix has a favorable spectral property

which we will explain in Propositions 1 and 2. The numerical efficiency is also apparent

in our computational examples in Section 6.

Conjugate Gradient Method (see Golub and van Loan [16]):

Choose starting point y0 ∈ v⊥1

r0 = b−Hy0;

k = 1;

p1 = r0;

α1 = rt
0r0/p

t
1Hp1;

y1 = y0 + α1p1;

r1 = r0 − α1Hp1;

while ||rk||2 > tolerance,

k = k + 1;

βk = rt
k−1rk−1/r

t
k−2rk−2;

pk = rk−1 + βkpk−1;

αk = rt
k−1rk−1/p

t
kHpk;

yk = yk−1 + αkpk;

rk = rk−1 − αkHpk;

end;

y = yk.
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Lemma 4 (Golub and van Loan [16, p. 525]) When the conjugate gradient method is

applied to solve Hx = b where H a symmetric positive definite square matrix, then we

have
||xi − x||
||x0 − x|| ≤ 2

(√
τ − 1√
τ + 1

)i

.

Here xi is the approximate solution obtained at the ith iteration and τ = σmax(H)/σmin(H),

the condition number of H.

A possible starting point for the conjugate gradient method is again

y0 =
1√
2N

(1, 1, . . . , 1)t ∈ v⊥1 .

Starting with y0 ∈ v⊥1 the conjugate gradient method converges in at most 2N − 1

steps. However, convergence can occur earlier depending on the chosen tolerance and the

condition number of ∇2f(y) on v⊥1 by Lemma 4. Since the Hessian matrix is symmetric

positive definite on v⊥1 , the convergence rate of the conjugate gradient method depends

on the effective condition number

τeffective =
σ2N(∇2f(y))

σ2(∇2f(y))
,

where σi(∇2f(y)) is the ith smallest eigenvalues of ∇2f(y). The following proposition

gives a bound on the effective condition number in terms of bounds on traffic demands

but independent of the number of zones N .

Proposition 1 If L is the smallest and U the largest mean traffic demand λi then

(N − 2)Le−2||y||∞ ≤ σ2(∇2f(y)) ≤ σ2N(∇2f(y)) ≤ 2(N − 1)Ue2||y||∞ .

Hence the effective condition number of the matrix ∇2f(y) is bounded above by 3Ue4||y||∞/L.

Proof: In view of the definition of x∗(y) in equation (19) we have

Le−2||y||∞ ≤ x∗i (y) ≤ Ue2||y||∞ , i = 1, 2, . . . , 2N. (26)

Hence for all z ∈ v⊥1 we obtain

(Le−2||y||∞)
ztAAtz

ztz
≤ ztA · diag(x∗(y)) · Atz

ztz
≤ (Ue2||y||∞)

ztAAtz

ztz
.
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Thus Lemma 2 yields

Le−2||y||∞(N − 2) ≤ σ2(∇2f(y)) ≤ σ2N(∇2f(y)) ≤ 2Ue2||y||∞(N − 1).

We conclude that the effective condition number of the Hessian matrix satisfies

σ2N(∇2f(y))

σ2(∇2f(y))
≤ 2Ue2||y||∞(N − 1)

Le−2||y||∞(N − 2)
≤ 3Ue4||y||∞

L
.

We conclude this section with three remarks.

Remark 1: Note that the effective condition number in Proposition 1 depends on ||y||∞
and recall that in the iterations of Newton’s method we have

yk = yk−1 + pk and ∇2f(yk−1)pk = −∇f(yk−1) = b− ANx∗(yk−1).

We write

pk = ∇2f(yk−1)
−1(b− ANx∗(yk−1))

where ∇2f(yk−1)
−1 is valid for ∇f(yk−1) ∈ v⊥1 . Then

||pk||2 ≤ e2||yk−1||∞

L(N − 2)

(
||b||2 + 2(N − 1)Ue2||yk−1||∞

)

≤ e2||yk−1||∞

L

( ||b||2
N − 2

+ 4Ue2||yk−1||∞
)

because

||ANx∗(yk−1)||2 ≤ 2(N − 1)Ue2||yk−1||∞ .

Since ||pk||∞ ≤ ||pk||2, we have

||yk||∞ ≤ ||yk−1||∞ +
e2||yk−1||∞

L

( ||b||2
N − 2

+ 4Ue2||yk−1||∞
)

. (27)

Recall that b, defined in (9), is a random vector in the smoothing scheme. In Lemma 5

we will show that E(||b||2) ≤ 2
√

Λ where Λ is the expected total traffic in the network.

Thus if the expected total traffic in the network grows at a rate less than O(N2) (in fact,

Λ ≤ maxi,j{λij} ·N2) when the number of zones N increases, then E(||b||2/(N −2)) ≤ γ,

for certain γ > 0 independent of N . In this case, the expectation of the right-hand-side

18



of (27) is independent of N . In this case, we expect that the conjugate gradient method

will converge fast independently of the network size, when applied to solving system (25).

This effect can be observed in the numerical examples in Section 6 below.

Lemma 5 If traffic demands between zones are independent and follow Poisson distribu-

tions with means λij(i, j = 1, 2, . . . , N) and λii = 0 for i = 1, 2, . . . , N , then

E(||b||2) ≤ 2
√

Λ,

where

Λ =
N∑

i=1

N∑

j=1

λij

is the expected total traffic in the network.

Proof: Note that

E(||b||2)2 ≤ E(||b||22) = E(
N∑

i=1

(O2
i + I2

i )),

where Oi and Ii is the observed outflow and inflow of zone i. Note also that

E(Oi) =
N∑

j=1

λij, E(Ii) =
N∑

j=1

λji, V ar(Oi) =
N∑

j=1

λij, V ar(Ii) =
N∑

j=1

λji,

because the demands between zones are assumed to be independent and to follow Poisson

distributions with means λij and variances λij. Thus, using of the well-known formula

E(x2) = V ar(x) + E(x)2, we arrive at

E(
N∑

i=1

(O2
i + I2

i )) =
N∑

i=1

(
E(O2

i ) + E(I2
i )

)
= 4

N∑

i=1

N∑

j=1

λij = 4Λ,

which proves the result.

Remark 2: Instead of using the proposed subspace method, one may suggest to remove

the degeneracy in the system of linear equations directly, e.g. by deleting the first row

of the matrix A. One can then apply Newton’s method since the new matrix ÃÃt is

symmetric and positive definite. The drawback of this approach is that the spectral prop-

erties of ÃÃt are not as favorable for the conjugate gradient method as those of AAt. The

numerical results in the following section indicate that the alternative approach is indeed

less efficient.
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Remark 3: Finally, we remark that the conjugate gradient method is equally suited to

solve (11). Indeed, the following analogy to Proposition 1 holds and can be proved in the

same way.

Proposition 2 If L is the smallest and U is the largest mean traffic demand λi then

(N − 2)L ≤ σ2(A · diag(λ) · At) ≤ σ2N(A · diag(λ) · At) ≤ 2(N − 1)U

Hence the effective condition number of the matrix A · diag(λ) · At is bounded above by

3U/L, independent of N .

6 Numerical Experiments

We will next report on some numerical tests which demonstrate the fast convergence of

the proposed optimization algorithm as well as the statistical efficiency of the suggested

estimation method. In all tests we used as the stopping criterion for Newton’s method

||∇f(yk)||2 < 10−7

whereas the conjugate gradient method was stopped if

||rk||2 < 10−14.

For the test results reported below we used star networks of varying size with two arbi-

trarily chosen patterns of the initial traffic demands λij and the traffic counts bk are given

as follows:

(a) λij = 10000 + 1000(−1)i+j and





bi =
∑

j(λij + (−1)i+j100(i + j)), i = 1, 2, . . . , N

b2N−i+1 =
∑

j(λji + (−1)i+j100(i + j)), i = 1, 2, . . . , N

(b) λij = 10000 + (−1)i+j1000(i + j)(i + j + 1)−1 and





bi =
∑

j(λij + (−1)i+j1000(i + j)), i = 1, 2, . . . , N

b2N−i+1 =
∑

j(λji + (−1)i+j1000(i + j)), i = 1, 2, . . . , N

20



6.1 Numerical Efficiency of the Optimization Procedure

Tables 1 and 2 contain numerical efficiency performance measures for the two examples.

Here, N is the number of zones in the star networks, n = N(N − 1) is the number of

parameters which are to be estimated, Wi(i = 1, 2) is the number of iterations of Newton’s

method, Ti(i = 1, 2) is the total number of iterations of the conjugate gradient method

and Ci(i = 1, 2) is the average number of iterations of the conjugate gradient method,

Ci = Ti/Wi. Here i = 1 represents our proposed method and i = 2 represents the method

where the incidence matrix is regularized by deleting the first equation in ANx = b as

indicated at the end of the last section.

Both, the number of iterations W1 for Newton’s method and the average number of itera-

tions for the conjugate gradient method are moderate and indeed roughly constant for the

problem sizes and classes considered here. The computational costs of the algorithms are

mainly due to matrix-vector multiplications of the form (ADAt)x which take O(N(N−1))

operations. The comparison of the two methods shows that, as expected, the conjugate

gradient method is less efficient for the second approach based on a straightforward reg-

ularization of the constraints. We have run several other examples with similar results.

6.2 Successive Updates of Demand Estimates

We tested the statistical efficiency of the estimation procedure as explained in the intro-

ductory section:

Choose initial demand estimates λ
(0)
i

For k = 1 : D

Generate unobserved traffic z(k) between zones, either by solving (16) or through

(12), based on observed traffic counts b(k) and λ = λ(k−1).

Update λ by the exponential smoothing formula λ
(k)
i = λ

(k−1)
i + α(z

(k)
i − λ

(k−1)
i )

end.
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We recall that for large mean demands eg. (λi > 100), the Poisson distribution is well

approximated by the normal distribution N(λi, λi). In this case the procedure based on

(12) is preferable because the computation only involves solving one linear system (11)

in each iteration and we will only report the numerical results generated by this method.

As a measure of statistical performance we used the absolute relative error:

Ei,D =
|λ(D)

i − λi|
λi

.

Here, D is the total number of simulation runs (the length of the period). Tables 3-5

present simulation results for N -zone star networks with N = 3, 6, 12, 24 and 48 and

different smoothing factors α including the popular α = 0.1, the case of EM algorithm

α = 1 and the optimal smoothing factor (correct to two decimal places). The demand

from zone i to zone j (i 6= j) is assumed to follow a Poisson distribution with mean

λij = 30000 +
1000i(−1)i−j

i + j
. (28)

The number of observation periods was chosen to be D = 30. Tables 3-5 report the

average relative errors 1
n

∑n
i=1 Ei,30 for the following three cases:

Case 1. Initial mean demands λ
(0)
i are the correct demands.

Case 2. Initial mean demands underestimate the correct demands by 3000.

Case 3. Initial mean demands overestimate the correct demands by 3000.

The average relative errors are below 0.5 % for all tested network sizes and initial esti-

mates; only a slight dependence of the performance on the initial estimates was observed.

The rate at which it decreases depended again somewhat on the quality of the initial es-

timate. We first observe that in Case 1, when the initial demands are correct, the smaller

the smoothing factor the better the result. In fact, the optimal smoothing factor in this

case is zero. In Case 2 and 3, the initial demands deviate substantially from the true de-

mands. In these cases, the numerical results suggest that any smoothing factor between

0.1 and 1 gives a reasonably good result. Although we have no recipe for choosing the

optimal smoothing factor, the numerical results seem to indicate that α = 0.1 is a sensible

choice. In Figure 2, we present the average absolute errors of the smoothing scheme when
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α = 0.1 and N = 48 in K = 30 smoothing steps. For Case 2 and 3, although the initial er-

rors are large, the smoothing process cuts down the errors to less than 1% in 30 iterations.

Finally we also compare the MEE approach based on (3) with (4) based on the L2-norm,

the least square approach (which in fact is a quadratic programming problem) by assuming

Erlangian (l phases) traffic demands with mean given in (28). In Figure 3, we present

the average absolute errors of the smoothing scheme when α = 0.1 and N = 48 after 30

smoothing steps for different values of l. We only present Case 3 because similar patterns

are observed for the other cases. For small values of l(l ≤ 2) , the L2-norm approach

is better. For larger values of l, the MEE approach is better and the average errors are

decreasing.

7 Exploitation of Specific Network Structure

In this final section, we briefly illustrate how the efficiency of the proposed estimation

methods can be enhanced by exploiting specific network structures. We focus on the case

of a two-star network as depicted in Figure 4.

For the first star network A with hub H, the zones 1, 2, . . . , N are connected to H and

for the second star network A′ with hub H ′ the zones 1′, 2′, . . . , N ′ are connected to H ′.

To travel from zone i of network A to zone j′ of network A′, one has to pass through both

hubs H and H ′ and vice versa. The two-star network can be thought of as a single-star

network if the hubs H and H ′ are treated as a single hub. This results in a star network

with N + N ′ zones. It is more efficient, however, to treat the two networks separately

initially and then combine the results. In this approach, the computational cost can be

further reduced by using parallel computing techniques. For the star network A, one may

regard the star network A′ as the (N +1)th zone of the star network A, represented by hub

H ′. Similarly for star network A′, one may regard the star network A as the (N ′ + 1)th

zone of the star network A′, represented by hub H. The traffic demand among the zones

in each of the networks can be estimated by our proposed method. Moreover, at the same

time one can also estimate the mean demand from a zone to the other network i.e.

{Z1H′ , . . . , ZNH′ , Z1′H , . . . , ZN ′H}
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and also the demand moving into a zone from the other network i.e.

{ZH′1, . . . , ZH′N , ZH1′ , . . . , ZHN ′}.

Here ZiH′ is the estimated mean demand from zone i of network A to network A′, Zj′H is

the estimated mean demand from zone j′ of network A′ to network A, ZH′i is the estimated

mean demand from network A′ to zone i of network A and ZHj′ is the estimated mean

demand from network A to zone j′ of network A′. The demand from zone i in network A

to zone j′ in network A′ can then be estimated by

ZiH′ × ZHj′

ZH1′ + ZH2′ + . . . + ZHN ′
.

Similarly the demand from zone j′ in network A′ to zone i in network A can be estimated

by

Zj′H × ZH′i

ZH′1 + ZH′2 + . . . + ZH′N
.

This aggregation method can be extended to networks that are composed of a series of

separated star networks with the hub being linked by a tree so that between any two hubs

there is only one path joining them.

For illustration purposes we have applied this modified method to a five-zone network in

[3], see Figure 5. We note that in this network, there is only one directed path between

any two zones. The traffic demands between zone i and zone j is assumed to be a Poisson

process with mean Dij as follows:

D =

1

2

3

4

5




− 100 300 400 100

50 − 125 125 50

300 100 − 700 700

500 250 500 − 1000

300 225 225 600 −




.

The network can be decomposed into three 3-zone star networks as follows: (1,2,H),

(H,3,H”) and (H’,4,5). We test our algorithm by using simulation with initial guess being
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given by

D0 =




− 500 500 500 500

500 − 500 500 500

500 500 − 500 500

500 500 500 − 500

500 500 500 500 −




.

The average relative errors for the first 30 iterations are given in Figure 6. We see that

the average errors decrease very quickly.

8 Concluding Remarks

We have studied the problem of updating estimates of traffic demands between zones in a

network from observed traffic counts. The contribution of the paper is two-folded: First,

we suggest an estimation model which makes an explicit assumption on the arcs where

traffic is counted, at all entrances and exits of each zone, and uses a forecasting proce-

dure to regularly update demand estimations based on arriving traffic counts. Second, we

suggest numerical procedures for the estimation and argue theoretically and through nu-

merical illustrations that these procedures are efficient, numerically and statistically. The

first approach is based on replacing unobserved between-zones traffic by its expectation

conditional on observed traffic counts, whereas the second method is based on replacing

the unobserved between-zones traffic by the most likely traffic volume subject to consis-

tency with the observed counts. The first approach is specified for normally distributed

traffic demands, while the second is particularly useful for Poisson demands. The second

approach is, through the use of Stirling’s approximation, linked with the maximum en-

tropy in the literature. Numerically, the first procedure is simpler since it relies on the

solution of a single system of linear equations for each observation, whereas the second

procedure is based on solving an unconstrained optimization problems when new data

arrives.
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Figure 1: The Star Network.
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Table 1: Number of Iterations for Convergence for (a).

N n W1 T1 C1 W2 T2 C2

25 600 5 46 9.20 5 59 11.80

50 2450 4 34 8.50 4 45 11.25

100 9900 4 34 8.50 4 45 11.25

200 39800 4 34 8.50 4 46 11.50
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Table 2: Number of Iterations for Convergence for (b).

N n W1 T1 C1 W2 T2 C2

25 600 5 71 14.20 5 88 17.60

50 2450 4 49 12.25 4 62 15.50

100 9900 4 49 12.25 4 61 15.25

200 39800 4 46 11.50 4 63 15.75
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Table 3: Average Absolute Errors for Different Smoothing Factors (Case 1).

N Optimal α Optimal Average Average Absolute Average Absolute

Absolute Error Error When α = 0.1 Error When α = 1

3 0.01 0.00% 0.00% 0.00%

6 0.01 0.10% 0.37% 0.39%

12 0.01 0.08% 0.29% 0.30%

24 0.01 0.08% 0.28% 0.29%

48 0.01 0.08% 0.28% 0.29%
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Table 4: Average Absolute Errors for Different Smoothing Factors (Case 2).

N Optimal α Optimal Average Average Absolute Average Absolute

Absolute Error Error When α = 0.1 Error When α = 1

3 0.16 0.05% 0.39% 0.05%

6 0.13 0.36% 0.47% 0.38%

12 0.20 0.30% 0.42% 0.30%

24 0.19 0.31% 0.41% 0.31%

48 0.18 0.32% 0.43% 0.32%
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Table 5: Average Absolute Errors for Different Smoothing Factors (Case 3).

N Optimal α Optimal Average Average Absolute Average Absolute

Absolute Error Error When α = 0.1 Error When α = 1

3 0.18 0.06% 0.47% 0.06%

6 0.30 0.48% 0.68% 0.48%

12 0.34 0.40% 0.59% 0.40%

24 0.30 0.39% 0.56% 0.39%

48 0.26 0.40% 0.55% 0.40%
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Figure 2: The Average Relative Errors.
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Figure 3: The Average Relative Errors.
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Figure 4: The Two-Star Network.
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Figure 5: The Five-zone Network.
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Figure 6: The Average Relative Errors.
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