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The recently proposed Josephson traveling-wave parametric amplifier (JTWPA) based on a ladder transmission line
consisting of radio-frequency SQUIDs and exploiting three-wave mixing (3WM), has great potential in achieving both
a gain of 20 dB and a flat bandwidth of at least 4 GHz. To realize this concept in practical amplifiers we model the
advanced JTWPA circuit with periodic modulation of the circuit parameters (engineered dispersion loadings), which
allow the basic mixing process, i.e., ωs = ωp −ωi, where ωs, ωp, and ωi are the signal, the pump, and the idler
frequencies, respectively, and efficiently suppress propagation of unwanted higher tones including ω2p = 2ωp, ωp+s =
ωp +ωs, ωp+i = ωp +ωi, etc. The engineered dispersion loadings allow achieving sufficiently wide 3 dB-bandwidth
from 3 GHz to 9 GHz combined with a reasonably small ripple (±2 dB) in the gain-versus-frequency dependence.

I. INTRODUCTION

Due to attainable quantum-limited performance, Joseph-
son parametric amplifiers (JPAs) make a multitude of mi-
crowave quantum experiments possible, e.g., amplification
and squeezing of zero-point fluctuations1,2, dramatic improve-
ment of sensitivity of quantum sensors3, observation of quan-
tum jumps4, generation of entangled microwave radiation5,
single-shot6 and continuous nondemolition7 measurements
of superconducting qubits, etc. Nowadays they are con-
sidered as indispensable tools for quantum technologies8.
Recently, Josephson traveling-wave parametric amplifiers
(JTWPAs)9–20 are in particular focus of research in the fields
of quantum communication and quantum computing. Thanks
to their transmission-line architecture, leaving off a customary
cavity, JTWPAs achieve a substantially wider bandwidth and
larger dynamic range10.

The core of a JTWPA is a nonlinear microwave transmis-
sion line, made up of a LC-ladder circuit with cells, which in-
clude either single Josephson junctions (see, e.g., Refs.9–12) or
SQUIDs (see, e.g., Refs.13–21). Due to their nonlinear current-
phase relation (or, equivalently, nonlinear Josephson induc-
tance LJ) these elements enable frequency mixing. The con-
ventional scheme of JTWPAs9–13,19,20 is based on four-wave
mixing (4WM), where frequencies of the signal, ωs, the pump,
ωp, and the idler, ωi, obey the relation ωs +ωi = 2ωp. Such
mixing is enabled by the Kerr-like nonlinearity of the inverse
Josephson inductance, L−1

J (φ) ≈ (1− γ ′φ 2)L−1
J0 with coeffi-

cient γ ′ = 1/6, which stems from the Taylor-series expan-
sion of the sine-shape current-phase relation of the Joseph-
son current, I = Ic sinφ 22. Here Ic is the critical current,
L−1

J0 = [∂ I(φ)/∂ (ϕ0φ)]
φ=0 = Ic/ϕ0 is the inverse Josephson

inductance for vanishingly small signals, and ϕ0 = h̄/2e is the
reduced magnetic flux quantum.

The major challenge in designing JTWPAs with 4WM is
fulfilling the matching relation for the corresponding wave
numbers, ks + ki = 2kp, in the range of operating frequencies
and powers. The problem originates from the properties of
the Kerr effect which, on the one hand, ensures 4WM, but, on
the other hand, causes unwanted self-phase modulation (SPM)

and cross-phase modulation (XPM) of the waves due to the
intensity-dependent refractive index of the line. This effect
leads to imperfect phase matching, ∆k = 2kp − ks − ki 6= 0,
which in addition is very sensitive to pump power23. This
problem of amplifiers with 4WM can be fixed by careful dis-
persion engineering, either by applying the resonant phase
matching technique10–12, where resonators are inserted into
the transmission line at regular intervals, or by using peri-
odic loadings in the transmission line, opening stop-bands in
the dispersion relation19. In this way the phase velocity of
the pump wave is adjusted yielding ∆k → 0 However, both
techniques lead to a wide stop-band in the center of the gain
profile. A recently demonstrated approach circumvents the
need of dispersion engineering by reversing the sign of the
Kerr nonlinearity, such that the nonlinear Kerr-induced phase
shift compensates the linear dispersion phase mismatch13,20.
Although this elegant approach overcomes the problem of a
stop-band in the gain profile, its gain profile is rather camel-
back shaped than being flat.

Recently, the concept of a JTWPA with three-wave-mixing
(3WM) was proposed14 and tested15,17. In amplifiers of
this type, the frequencies obey the basic parametric relation,
ωs +ωi = ωp, and their mixing is possible due to the non-
centrosymmetric nonlinearity of type24,25

L−1
S (φ)≈ (1−β

′
φ)L−1

S0 , (1)

where β ′ is the coefficient of the non-centrosymmetric non-
linearity, and LS and LS0 denote the inductance for finite and
vanishingly small signals, respectively. Such a nonlinearity
can be engineered, for example, with the help of a flux-biased
non-hysteretic rf-SQUID14. Alternatively, this nonlinearity
can be engineered by using a modified (multi-junction) rf-
SQUID having a Josephson kinetic inductance instead of lin-
ear inductance in one branch, i.e., the so-called superconduct-
ing nonlinear asymmetric inductive element (SNAIL)15,26–28.
Fine tuning of the bias flux allows full suppression of the Kerr
nonlinearity in both rf SQUIDs and SNAILs.

Compared to the Kerr-based JTWPA with 4WM, the
JTWPA with 3WM normally contains only a small or even
vanishing Kerr-like nonlinearity, so it is almost free of SPM
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and XPM effects23 and the corresponding wave numbers ks,
ki and kp do not depend on the pump power. Although this
remarkable property intrinsically ensures phase-matching for
the basic 3WM process,

∆k = kp− ks− ki ≈ 0 (2)

(naturally, in case of sufficiently small chromatic
dispersion)14, the phase-matching conditions for unwanted
mixing processes with higher frequencies are also satisfied.
These processes include, e.g., the generation of the second
harmonic of the pump, ω2p = 2ωp, and the sum-frequency
generations, ωp+s = ωp + ωs and ωp+i = ωp + ωi. All
these unwanted mixing processes cause leakage of the pump
power11,14 and dramatically limit the achievable signal gain29.
In fact, the amplitudes of these tones can be of the same
order as pump and signal, respectively29. This problem can
be solved by engineering a relatively strong dispersion in the
transmission line to break the phase-matching condition for
all unwanted processes21,30,31. This can be done, for example,
by lowering the SQUID plasma frequency18,21. At the same
time, the phase-matching of the relevant 3WM process can
be retained by techniques like resonant-phase-matching10 or
quasi-phase-matching21. In this paper, however, we show
how periodic dispersion loadings in the transmission line can
be engineered such that the problem of unwanted mixing
processes is solved and simultaneously the bandwidth and
flatness of the resulting gain profile is maximized without
change of the circuit architecture.

II. CIRCUIT DESCRIPTION

The electric diagram of our superconducting microwave
circuit with nominally vanishing losses is shown in Fig. 1a.
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Figure 1. (a) Electric diagram of the JTWPA consisting of a serial
array of N � 1 identical rf-SQUIDs with not necessarily identical
ground capacitances Cn. Homogeneous magnetic field B is perpen-
dicular to the circuit plane and produces, as shown in panel (b), sim-
ilar constant flux Φe applied to each rf-SQUID having inductance L
and a Josephson junction with critical current Ic and self-capacitance
CJ . The basic circuit variables are Φn, the flux value on the n-th node
of the line, and In, the alternating current generated by a microwave
and injected in the n-th rf-SQUID.

The circuit consists of an array of N elementary cells (see
Fig. 1b). Each elementary π-type unit cell consists of an rf-
SQUID, deployed as a nonlinear inductance enabling 3WM14,
and two capacitances to ground 0.5Cn (with integer n= 1...N),
which are periodically varied to create the dispersion loadings.
All N rf-SQUIDs, consisting of an inductance L in parallel to
a Josephson junction having critical current Ic and junction ca-
pacitance CJ , are nominally identical and nonhysteretic, i.e.,
the dimensionless screening parameter βL ≡ LIc/ϕ0 < 132.

For a vanishingly small ac current I injected in the rf-
SQUID the linear inductance equals

LS(I→ 0)≡ LS0 = L/(1+βL cosφdc) , (3)

where the phase φdc is set by an external magnetic flux Φe
14.

Thus, the inductance of the rf-SQUIDs can be effectively
controlled in situ by a magnetic field B, which is applied
equally to all rf-SQUIDs, or alternatively, by injecting a dc
bias current Idc into the transmission line, and thus inducing
Φe = LIdc.

Considering now a small but not vanishing ac phase pertur-
bation φ = (Φn−Φn+1)/ϕ0 on the n-th rf-SQUID, induced
by small injected ac current I� Φ0/LS0, we find the inverse
nonlinear SQUID inductance

L−1
S =

∂ I(φ)
∂ (φϕ0)

≈ (1−2βφ −3γφ
2)L−1

S0 , (4)

with β and γ denoting the coefficients of the non-
centrosymmetric and the Kerr-nonlinearity, respectively. The
coefficients β and γ ,

β =
βL

2
sinφdc

1+βL cosφdc
, (5)

γ =
βL

6
cosφdc

1+βL cosφdc
, (6)

are odd and even 2π-periodic functions of the phase φdc, re-
spectively. Thus, the nonlinearity of the SQUID inductance is
effectively controllable by Φe, too. Since 3WM is enabled by
the non-centrosymmetric nonlinearity, we aim at a relatively
large value of β . To reduce unwanted Kerr effects causing
SPM and XPM, γ should be small. In this paper, we bias the
SQUIDs by Idc such, that φdc ≈ π/2+βL, for which β is close
to its maximum value, and γ is sufficiently small, so that SPM
and XPM do not cause substantial phase mismatch.

The nominal value of the inductance L and the average
value of the ground capacitances

C =
1
m

m

∑
n=1

Cn, (7)

are chosen such that the characteristic impedance of the equiv-
alent uniform transmission line for sufficiently low frequen-
cies,

Z ≈ Z =

√
LS0

C
=

√
L

C(1+βL cosφdc)
, (8)

is equal to Z0 = 50Ω at the envisaged operation point φdc to
achieve impedance-matching to the amplifier’s experimental



Numerical analysis of a 3WM JTWPA with engineered dispersion loadings 3

environment. Note that this impedance can be in-situ flux-
tuned.

The self-capacitance CJ of the Josephson junction yields the
plasma frequency of the rf SQUID ωJ = (LS0CJ)

−1/2, and the
ground capacitances define the characteristic frequency ω0 =
(LS0C)−1/2, both constituting the cutoff frequency29

ωc = 2(LS0(C+4CJ))
−1/2 = (ω−2

0 /4+ω
−2
J )−1/2 (9)

No propagation of electromagnetic waves along the transmis-
sion line is possible for ω > ωc. For lower frequencies, the
transmission line becomes dispersive, and the dispersion rela-
tion k(ω) is approximately

k ≈ ω

ω0

(
1+

ω2

2ω2
J
+

ω2

24ω2
0

)
(10)

for frequencies ω � ω0,ωJ . Here, the wave number k is nor-
malized to the reverse physical size of the elementary cell d−1

(d = `/N, where ` is the total length of the line). Since typical
signal, idler, and pump frequencies (e.g., ωs,i/2π ≈ 4...8 GHz
and ωp/2π ≈ 12 GHz) are much smaller than both the fre-
quencies ω0,J/2π ≈ 80...100 GHz, the dispersion relation is
roughly linear, k ≈ ω/ω0. Therefore, for the 3WM process,
with ωp = ωs +ωi, the phase matching condition kp ≈ ks + ki
is approximately fulfilled. However, due to the almost lin-
ear dispersion relation, the phase matching conditions for un-
wanted 3WM processes, e.g.,

ωp+s = ωp +ωs , kp+s ≈ kp + ks , (11)
ωp+i = ωp +ωi , kp+i ≈ kp + ki , (12)
ω2p = 2ωp , k2p ≈ 2kp , (13)

are roughly fulfilled, too. These processes are unwanted since
they lead to leakage of power and undulations of the signal
gain18,33 (c.f. Appendix A). It was shown recently via circuit
simulations29 that indeed a large number of unwanted mix-
ing processes take place in a 3WM-JTWPA with a homoge-
neous transmission line and relatively low chromatic disper-
sion ( fJ = ωJ/2π = 86 GHz, f0 = ω0/2π = 67 GHz), and
that the gain in such an amplifier was thereby limited to rather
smaller values on the order of 10 dB.

III. DISPERSION ENGINEERING

It is the major task in the design of a 3WM-JTWPA to de-
stroy the phase-matching in all unwanted processes Eq. (11)-
(13), while preserving it solely for the basic 3WM process
Eq. (2). Our approach to tackle this issue is based on periodic
dispersion loadings, which has the advantage that no modifi-
cation of the circuit architecture is required (like, for example,
inserting resonator-based phase-shifters into the transmission-
line11,12), but only a variation of the circuit parameters is
needed.

The method of periodic dispersion loading has earlier been
applied for 4WM traveling-wave amplifiers, based on the non-
linearity of the kinetic inductance (KI-TWPAs) and designed

as a superconducting coplanar waveguide transmission line34.
The engineered loadings were realized as waveguide regions
of certain length with increased width. Placed at specific
intervals, these loadings formed a frequency stop band and
thus prevented propagation of unwanted waves (e.g., the third
harmonic of the pump generated due to the Kerr nonlinear-
ity). KI-TWPAs with additional dc biasing enabling both
4WM and 3WM30,35 were realized using similar concepts. In
their analysis of periodic loadings in KI-TWPA, Erickson and
Pappas36 suggested that this method may also be applicable
to the lumped-element (Josephson-junction based) traveling-
wave parametric amplifiers. This concept was demonstrated
recently by Planat et al.19 for a 4WM-JTWPA. In this paper
we extend the concept of periodic loadings to the case of a
3WM-JTWPA based on an rf-SQUID array (c.f. Refs.37,38).

In our approach, the periodic loadings are realized by vari-
ation of ground capacitances Cn. The periodic variation of the
ground capacitances leads to a corresponding modulation of
the local value of phase velocity, vn = d/

√
LS0Cn, with a shape

similar to that in the Kronig-Penney model39. The wave fre-
quency ω(k), as a function of (Bloch) wave number k, forms
in this case a band structure with opened gaps (frequency
bands of forbidden wave propagation) at k j = jkm/2, where
km = 2π/m, and centered around frequencies ω j =( jπ/m)ω0,
where integer m is the period of the capacitance variation and
integer variable j = 1, 2, etc. The size of the j-th gap is pro-
portional to the corresponding j-th Fourier coefficient in the
expansion of the Kronig-Penney potential40.

Our periodic loadings are designed such that the first gap
( j = 1) of the resulting band structure ω(k) is rather narrow
and the second gap ( j = 2) is wide. This is achieved using a
variation of the ground capacitances Cn with three discrete ca-
pacitances as shown in Fig. 2a. This modified Kronig-Penney
waveform39 has a basic period of m or, equivalently, the di-
mensionless space frequency of km/2π = 1/m. However, the
double-frequency component 2/m of this waveform (corre-
sponding to the period of m/2) has substantially larger mod-
ulation depth than that of the basic frequency 1/m. This rela-
tion is due to inserting two slightly different capacitances for
each half-period. Therefore, the width of the second gap in
the spectrum ω(k) is expected to be notably larger than that
of the first gap. The shape of ω(k) can be calculated analyti-
cally using the transfer-matrix-method (TMM)41, as described
in Appendix B, and is presented in Fig. 2b.

The purpose of the narrow first gap is preserving optimal
phase-matching for the basic 3WM process, while the wide
second gap is used for suppressing higher-frequency mixing
modes. The former is necessary because of a non-negligible
phase-mismatch ∆k > 0, which is a side-effect of the wide
gap j = 2. This mismatch corresponds to a coherence length
ξ = π/∆k on the order of a few hundred elementary cells,
ξ < N, limiting the achievable signal gain. However, placing
the pump frequency ωp slightly above the upper edge of the
first gap makes it possible to somewhat reduce the wave num-
ber kp and, hence, compensate the mismatch Eq. (2), ∆k ≈ 0,
in a rather wide range of the signal frequency (Fig. 2c). This
corresponds to a coherence length ξ on the order of several
thousands of elementary cells, and for ξ � N it results in
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Figure 2. Dispersion engineering via periodic loadings. (a) Scheme of periodic variation of the ground capacitance Cn over the length of the
JTWPA transmission line. The values of ground capacitances Cn, n = 1,2, ...,N, are altered between three constant values, with the global
period m. It is assumed that 0.25m is an integer and, for example, the first segment with Cn = C01 extends from n = 1 up to n = 0.25m
inclusively. (b) Resulting dispersion relation, normalized on k0 = ω/ω0. Grey-shaded areas denote stop-bands (gaps), opened due to the
periodic loadings shown in panel (a). The pump frequency is fixed at the upper edge of the first gap (corresponding to loading period m) so
that kp is lowered and phase-matching of the pump, the signal, and the idler is achieved. All unwanted higher-frequency tones, fp+s, fp+i, f2p,
etc., are strongly phase-mismatched since they fall either into the highly dispersive region above fp or into the wide second gap (corresponding
to loading period m/2). The position of the six most relevant 3WM tones are marked by vertical dashed lines for the case of fp = 12.92 GHz
and fs = 8 GHz. (c) Phase-mismatch ∆k = kp− ks− ki versus fs for two different pump frequencies. Plots in (b) and (c) are calculated using
TMM for the circuit parameters C01 = 8.8 fF, C02 = 62.3 fF, C03 = 80 fF, m = 20, LS0 = 109 pH, CJ = 20 fF, and N = 1500.

nearly exponential signal growth along the array14.
The wide second gap encompasses the second harmonic of

the pump, ω2p, and covers a wide frequency range around this
frequency (see Fig. 2b). The up-converted frequencies ωp+s
and ωp+i either also fall in this gap or are located near the
band edge (purple and brown dashed lines in Fig. 2b). Then
either the propagation of the generated waves is forbidden,
or the phase matching for the corresponding processes, given
by Eqs. (11)-(13), is violated. The latter condition prevents
a steady amplification of the respective wave, so these tones
can only grow in an undulation manner. In this way, it is quite
possible to effectively suppress the growth of unwanted mix-
ing modes, while preserving the phase-matching of the basic
3WM process.

IV. CIRCUIT SIMULATIONS

A. WRspice circuit model

In order to numerically model our JTWPA circuit, we use
the software WRspice42, which is a SPICE-based circuit sim-
ulator, capable of simulating circuits containing Josephson
junctions. WRspice has been used earlier to model the JTWPA
without dispersion engineering of the transmission line based
on rf-SQUIDs29 and for analyzing the effect of parameter
variation on the perfomance of this JTWPA43. Compared to
other approaches of analyzing a JTWPA, SPICE simulations
offer more flexibility in modeling and rigorously analyzing
the circuit – an advantage which comes at the cost of higher
computation power. The alternative coupled-mode equations
(CME) approach, often used to analyze JTWPAs9,10,34, gives
valuable insight into the physics of such devices, but relies

on several assumptions and approximations, including the
transition from the discrete to the continuous telegrapher’s
equation9, the slowly-varying amplitude approximation10,
and the restriction to a limited number of tones included in the
analysis29. The approach of Planat et al.19, based on finding
the solution of the discrete wave equation in the form of trav-
eling waves, avoids most of these approximations, but does
not allow including reflections of the pump wave (below we
show that for our circuit the pump reflections can be quite pro-
nounced). Moreover, it is a commonly applied approximation
to omit higher orders of nonlinearity of the examined device
in its theoretical description (c.f. the truncated Taylor series in
Eq. (4)). In contrast to these approaches, no such assumptions
are made in a WRspice transient analysis. Specifically, WR-
spice simulator models the conventional sinusoidal current-
phase relation of the Josephson junction and thus synthesizes
the current-phase relation of rf-SQUIDs in a form which Tay-
lor expansion also contains infinite number of terms. In this
way, the simulator takes into account all waves occuring due
to high-order nonlinearities and their reflections.

The JTWPA circuit model and its parameters used through-
out this paper are presented in Fig. 3a. In our model, Joseph-
son junctions obey the RCSJ model44,45 with critical current
Ic, junction self-capacitance CJ , and a linear subgap resistance
RJ , modeling the quasiparticle losses in the Josephson junc-
tions. The subgap resistance causes an attenuation46

A [dB] = 10log10(e)Nω
2L2

S0/Z0R j, (14)

which amounts to ca. 1 dB at 13 GHz. The junction gap volt-
age, Vg = 2.6 mV (typical value for Nb), has no influence on
the results of the simulations presented in this paper, because
the Josephson junctions always remain in the superconducting
state, while the microwave oscillations of the phase are small.
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Figure 3. (a) Schematic of the JTWPA circuit implemented in
simulator WRspice. The circuit consists of N = 1500 π-type unit
cells, having capacitances Cn according to the capacitance profile of
Fig. 2a, and inductances L = 84 pH. The Josephson junction (JJ)
obeys a RCSJ model as described in the text, with Ic = 1.57 µA,
CJ = 20 fF, and IcRJ = 16.5 mV. Input and output of the circuit are
terminated by resistances Rs = Rt = 50 Ω, respectively. Pump and
signal are fed by current sources with currents ip(t) = Îp sinωpt and
is(t) = Îs sinωst, respectively; a dc current Idc = 9.8 µA provides the
flux-biasing of all rf-SQUIDs. Panel (b) shows the propagation of the
six most relevant waves along the JTWPA extracted from the WR-
spice simulation. The unwanted higher-frequency tones f2p, fp+s,
and fp+i are significantly suppressed. All higher harmonics and mix-
ing products had notably lower powers than the latter three tones.
The signal and idler tones rise nearly exponentially, demonstrating
an almost pure 3WM process. Parameters of the circuit used in this
simulation are Îp = 2.0 µA, fp = 12.92 GHz, and fs = 6.7 GHz. The
signal level, Îs = 0.01 µA, was sufficiently low, so that the amplifier
saturation for the given gain of ca. 20 dB remained negligibly small.

Other passive circuit components (inductances L and capaci-
tances Cn) are modelled as lumped and lossless components.
A transient analysis computes voltages vn(t) and currents in(t)
for each node n as a function of time over a specified time in-
terval. These transient quantities are then converted to the fre-
quency domain performing Discrete Fourier Transform (see
Appendix C for details) and the amplitudes and phases of the
relevant tones are extracted.

B. Wave-mixing and parametric amplification

The spatial evolution of the waves of the principal tones,
i.e., pump fp, signal fs, and idler fi, plus the undesired waves
with frequencies fp+s, fp+i, and f2p, are shown in Fig. 3.

For each of these tones, the powers Pn = 1
2 Re{VnI∗n} asso-

ciated with the n-th node (Vn is the complex node voltage
in the frequency domain, I∗n is the complex-conjugate of the
complex node current In), are plotted against the node num-
ber. One can see that the signal and the idler increase almost
exponentially14,

As(n) ∝ cosh(gn)+
i∆k
2g

sinh(gn), (15)

Ai(n) ∝ sinh(gn), (16)

as they propagate along the array. Here, As,Ai are the (com-
plex) amplitudes of the signal and the idler, respectively, and
g is an exponential gain coefficient14. This gives evidence
of parametric amplification with almost pure 3WM, remain-
ing phase-matched all along the line, with a coherence length
ξ = 2186 > N, and resulting in a signal gain of ca. 22 dB for
the frequencies given in the caption of Fig. 3b. In contrast, the
mixing process given by Eq. (12) is mismatched, i.e,

∆kp+i = kp+i− kp− ki� π/N , (17)

and thus it is incoherent, with ξp+i = π/∆kp+i = 75 � N
(brown line). The tones fp+s (purple line) and f2p (red line)
are evanescent modes36, i.e., they fall in the wide second gap,
where no propagation is possible, and show distinct beating
patterns. For example, the tone f2p appears as two predomi-
nant superimposed beating patterns with envelope periods of
π/(2kp−km) = 104 cells each. The up-conversion tones, fp+s
and fp+i, are each ca. 10 dB lower in amplitude than the sig-
nal, and the power of the second harmonic of the pump is
about 20 dB below the pump wave power. Hence these tones
are strongly suppressed. For example, only ca. 1% of the
pump power is converted to harmonics (all higher harmonics
have even lower amplitudes than the second harmonic). For
comparison, in a JTWPA circuit without dispersion engineer-
ing (with otherwise identical circuit parameters) up to 70% of
the pump power is converted to harmonics (see Appendix A).

C. Gain profile

Continuous broadband gain was found only for pump fre-
quencies slightly above the first gap. Pump frequencies in
a range of roughly 12.4–13.2 GHz permit sufficient phase
matching for broadband signal gain of G = |S21|2 > 20 dB at
Îp = 1.8 µA (incident pump power Pp,in≈−78 dBm). Varying
the pump frequency alters ∆k( fs) (see Fig. 2c) and thus influ-
ences the shape of the gain profile. The dependence of the
gain on the signal frequency is shown in Fig. 4 for two differ-
ent pump frequencies. The gain profile for fp = 12.48 GHz
shows a nearly elliptical shape, since the phases of pump, sig-
nal, and idler are matched best in the center of the signal band,
fs = fp/2. For fp = 12.92 GHz, phase-matching is imperfect
in the center, but perfect (∆k = 0) farther apart from the center
(see the orange curve in Fig. 2c). This leads to a slight drop
in the center of the gain profile, when compared to that for
fp = 12.48 GHz, but also to better flatness and larger 3 dB-
bandwidth of ca. 7.2 GHz ≈ 0.56 fp. The resulting band-
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Figure 4. Signal gain versus frequency in a JTWPA for two dif-
ferent pump frequencies. While higher gain |S21|2 is obtained with
fp = 12.48 GHz, the pump frequency fp = 12.92 GHz yields bet-
ter flatness, larger 3 dB-bandwidth, and greatly reduced ripple. The
peaks in the center of the curves occur due to degenerate 3WM,
i.e., fs = fi = fp/2. In this regime, parametric amplification is
phase-sensitive. The inset shows the phase-sensitivity of the gain
at fs = fp/2, where the signal phase was tuned relative to the phase
of the pump. The phase-sensitive gain varies periodically between
amplification and deamplification. In the case of deamplification the
gain profile would show a dip in its center. The maximum degenerate
gain is ca. 6 dB higher than the nondegenerate gain in the vicinity of
fp/2, while the maximum extinction ratio is approaching 48 dB for
fp = 12.48 GHz and 51 dB for fp = 12.92 GHz. The pump ampli-
tude was Îp = 1.8 µA in these simulations.

width is furthermore a function of the convexity of the dis-
persion relation30, which is defined by the width of the gaps
or, equivalently, the modulation depth of the capacitance pro-
file Cn. A smaller modulation depth leads to a wider range of
phase-matched signal frequencies, but also reduces the phase-
mismatch for unwanted processes. Thus the modulation depth
is a tradeoff between bandwidth and the suppression of un-
wanted parametric processes.

The distinct peaks at fs = 6.24 GHz and 6.46 GHz for
fp = 12.48 GHz and 12.92 GHz, respectively, emerge due to
degenerate 3WM, where the signal and idler frequencies co-
incide, fs = fi = fp/2. As long as the phase of the idler is
rigidly connected to the phases of the pump and the signal
(see, e.g., Eq. (19) in Ref.14), the signal and the idler inter-
fere either constructively (leading to amplification) or destruc-
tively (leading to deamplification), depending on the phase of
the signal relative to that of the pump. Respective simula-
tions are shown in the inset in Fig. 4. This interesting regime,
where single-mode squeezing is possible31, is easily accessi-
ble in a 3WM-JTWPA, since the pump frequency is well sep-
arated from the signal and the idler, fp = 2 fs,i (in contrast to
a conventional 4WM-JTWPA, where the signal and the idler
coincide with the strong pump tone, fp = fs,i, that masks the
effect). As was recently demonstrated by Qiu et al.47, phase-
sensitive amplification is, however, possible using two pump
waves ( fp1 < fs = fi < fp2) in a 4WM-JTWPA, and they re-

port a a large extinction ratio of 56 dB.
The ripple in the gain profile (Fig. 4) is an unwanted but

expected feature for any JTWPA with a slight impedance mis-
match Z 6= Z0 (Z0 is the impedance of the external circuit
connected to the JTWPA)19,33,34. For the curves in Fig. 4
the average value Z = 52 Ω (valid for low frequencies, i.e.,
wavelengths � m) is close to Z0. The impedance mismatch
is in this case mainly caused by the frequency dependence
of Z due to relatively low frequencies fJ and f0 and sig-
nificant dispersion in the range from 0 to fp engineered by
the periodic loadings. This impedance mismatch causes sig-
nal reflections at both ends of the array, and the back- and
forth-propagating signal wave creates a Fabry-Perot-like in-
terference pattern19. The frequency-spacing in this pattern
corresponds to twice the electrical length of the array, ∆ f =
vp/2` ≈ ω0/2N = 160 MHz, where vp is the average phase
velocity. The idler wave is also multiply reflected, but travels
at a slightly different phase velocity due to small chromatic
dispersion. The parametric interaction of signal and idler be-
tween their multiple reflections leads to ripple having two su-
perimposed, slightly different, periods. Furthermore, it was
observed in simulations (not shown) that the amount of ripple
increases with increasing gain, which is a fingerprint of Fabry-
Perot-like interferences in JTWPAs due to the amplification
the signal wave experiences as it travels between its multiple
reflections19. In the same way, the occurrence of backward
amplification, i.e., the 3WM interaction of the reflected sig-
nal (wave-number −ks) with the reflected pump (−kp)33, can
further enhance ripple. For pump frequencies closer to the
gap the reflectivity and hence the backward gain are high (see
inset in Fig. 5), which accounts for the higher amount of rip-
ple in the gain profile of fp = 12.48 GHz compared to that of
fp = 12.92 GHz (Fig. 4).

To decrease ripple and prevent strong backward-traveling
signal waves, the reflectivity at the output and the input of the
array should be minimized for both the signal, say, between 1
and 11 GHz, and the pump frequency. Therefore, sufficiently
good impedance matching should be achieved. The passive
circuit components L and Cn, designed to meet the target value
Z = Z0 at the envisaged working point φ

opt
dc (φe) ≈ π/2+βL,

can only be manufactured within certain technological mar-
gins. However, the dependence Z(φdc) (Eq. (8)) is rather steep
in the vicinity of that working point, such that small devia-
tions of L and Cn from their target values can be compensated
by fine-tuning of φe without degrading the amplifier perfor-
mance dramatically. For example, ∆Z =±10% is achieved by
∆φe ≈ ±0.4 rad. The corresponding change of β is smaller
than 20%, which can be compensated by changing the pump
amplitude. The Kerr coefficient, |γ|< 0.08, is still only a frac-
tion of |β |, and the resulting phase-mismatch due to SPM and
XPM can be compensated by re-adjusting the pump frequency
anyway. Therefore, the circuit design allows in-situ fine tun-
ing of the transmission line impedance by an external mag-
netic field and thereby makes it possible to reduce unwanted
reflections of microwaves at the output and the input.

It is not possible, however, to fully suppress gain ripple by
fine-tuning of the impedance. Due to the periodic variation
of the ground capacitances, the impedance Z, with average
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value Z (valid only for wavelengths� m), shows a slight pe-
riodical variation with frequency. This variation appears as
side-lobes of the gaps (being the main-lobes) in the reflection
coefficient S11( f ), which is presented in Fig. 5. The sidelobes
have a periodicity of ∆ f ≈ ω0/2N = 160 MHz, similar to that
of the gain ripple. For frequencies closer to the gap this pe-
riod is reduced. The gaps and their side-lobes shift slightly to
smaller frequencies as the pump power is increased (inset in
Fig. 5), which is due to a small residual Kerr nonlinearity19.
This shift is small, however, when compared to that reported
in Ref.19. To minimize pump reflections, the pump frequency
is placed in the mimimum between two adjacent side-lobes. In
the signal band (ca. 3...9 GHz), sufficiently far below the first
gap, the reflection coefficient of up to −19 dB is rather small,
but still leads to weak multireflections, and thus to notable
gain ripple (Fig. 4). When the average impedance is matched,
Z = Z0, these side-lobes are the main cause of ripple in the
gain profile. It should be noted that the occurence of side-
lobes is immanent to the concept of periodic loadings and can-
not be resolved by standard impedance matching techniques
easily. However, its effect can be possibly mitigated using
the apodization technique, a well-established method for side-
lobe suppression in optical fibre Bragg gratings48,49. Adapting
this technique to our concept should be possible by designing
a non-uniform modulation depth of the periodic loadings (in-
stead of a uniform modulation depth as in the present paper),
enveloped by a suitable apodization function, e.g., a truncated
Gaussian. Potentially this could be a method to strongly re-
duce unwanted reflections and ripple in the gain profile.
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Figure 5. The reflection coefficient |S11| for typical frequencies of
signal, idler, and pump. The quasi-periodic patterns are the side-
lobes of the first stop-band (grey-shaded area). The inset shows a
close-up view of |S11| in the pump frequency range. As the pump
power increases (Îp = 0.01 µA for the cyan curves and Îp = 1.8 µA
for the dashed orange curve), the gap and its side-lobes shift slightly
to lower frequencies. To minimize pump reflection, the pump fre-
quency is placed in a minimum between two adjacent side-lobes;
violet and green vertical lines mark the pump frequencies used in
Fig. 4. The curves are obtained by WRspice simulations where only
one sine-wave (pump) current was injected (Îs = 0).

V. CONCLUSION

In conclusion, we have proposed a modified design of a
lumped-element Josepshon traveling-wave parametric ampli-
fier using periodic loadings with the shape shown in Fig. 2a
and illustrated by circuit simulations the possibility to achieve
gain of 20 dB in the frequency range from 3 GHz to 9 GHz.
We presented a simulation approach which includes all occur-
ing tones, reflections from the amplifier terminations, etc., and
has no assumptions on the order of nonlinearities produced
by the Josephson junctions. Our implementation of periodic
loadings enables both reasonable phase matching of the basic
3WM process and effective suppression of unwanted high-
frequency modes. The design of the device remains simple
and close to the original design14, i.e., it does not need any ad-
ditional elements in the amplifier architecture. Furthermore,
it is possible to slightly tune the line impedance of the device
by a magnetic flux bias. We believe that further improvement
of the JTWPA characteristics is possible by applying periodic
loadings with a more sophisticated design, including periodic
variation of the rf-SQUID parameters. This could be done,
for example, by varying the sizes of the Josephson junctions
along the array according to the recently proposed technique
of the Floquet-mode JTWPA50.

We think that periodic loadings in JTWPAs with 3WM
may open the way to practical low-noise parametric devices
with sufficiently large bandwidth, which are a key enabling
technology for quantum communication and quantum com-
puting circuits. Due to good phase matching, a JTWPA of
this type presents a circuit with remarkable properties, which
may allow, for example, creating various quantum states of
microwaves in a wide frequency range51,52.
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Appendix A: JTWPA without dispersion engineering

In a JTWPA without dispersion engineering, i.e., with a
homogeneous transmission line, the signal gain is limited by
power leakage from the main tones to unwanted tones. To il-
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Figure 6. The dynamics of the major six waves propagating along
the homogeneous JTWPA without dispersion engineering, i.e., hav-
ing identical ground capacitors throughout the array. Power is trans-
ferred alternatingly between the pump and the second harmonic of
the pump; and the pump is decreased in its mimima by 5 dB, where
the second harmonic power is larger than the pump power. The sig-
nal and idler waves cannot grow monotonically due to their strong
interaction with the up-conversion tones fp+s and fp+i. The signal
gain is 8 dB. Parameters used in this simulation are Îp = 2.0 µA,
fp = 12.92 GHz and fs = 8.0 GHz, and the circuit parameters are as
described in the text.
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Figure 7. Signal gain versus frequency in the JTWPA without dis-
persion engineering (dark-purple curve). For comparison the respec-
tive curve of a dispersion-engineered JTWPA (light-purple curve, c.f.
Fig. 4) is shown. Without dispersion engineering the signal gain is
limited to ca. 9 dB and the gain profile is asymmetric. The distinctive
peaks stem from the phase-sensitive amplification at the degenerate
3WM, fs = fp/2. The pump amplitude is Îp = 1.8 µA and the circuit
parameters are as described in the text.

lustrate the benefit of our proposed dispersion engineering ap-
proach, we present here the circuit simulations of a homoge-
neous JTWPA circuit for comparison with Fig 3b and Fig. 4.
For comparability, the circuit parameters were chosen iden-
tical to those of our proposed dispersion engineered JTWPA,
apart from the homogeneous capacitance profile with constant
ground capacitance values Cn = C = 40 fF for all n = 1...N.
The resulting characteristic frequency ω0 was identical to that
of our proposed JTWPA circuit. The dispersion of this circuit,
with the dispersion relation given by Eq. (10), is low in the
frequency range 0... f2p. Therefore, the phase mismatch of the
second harmonic, ∆k2p = k2p− 2kp, is small, and the coher-
ence length of the second harmonic, ξ2p = π/∆k2p, is on the
order of 500 cells (see Fig. 6). This allows the second har-
monic to grow to high amplitudes on the order of the pump
amplitude, before the direction of power transfer reverses and
power flows back to the pump wave. This power leakage to
the second harmonic depletes the pump periodically to pow-
ers lower than 30% of its incident value Pp,in. Consequently,
the average pump amplitude, needed for efficient parametric
amplification, is significantly reduced.

Similar reasons allow a strong power transfer from the
signal and the idler tones to the up-conversion tones fp+s
and fp+i, whose amplitudes are either in the order of or
even higher than the signal and idler amplitudes, respectively.
These tones decimate the signal and the idler, so that an ex-
ponential growth of the signal is impossible and the gain is
limited to rather small values of less than 10 dB (Fig. 7, com-
pare with Fig. 8 in Ref.29). Note that the signal wave shown by
the orange line in Fig. 6 is less affected by up-conversion than
the idler wave (green line). This is due to worse phase match-
ing (shorter coherence length ξp+s = 735) than than that of its
counterpart (ξp+i = 1402) because of stronger dispersion at
higher frequencies (Eq. (10)). This explains the assymetry of
the gain profile in Fig. 7.
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Appendix B: Transfer-matrix method

The transfer-matrix method is a standard approach in
optics41 and microwave engineering46 and is particularly use-
ful for linear circuits consisting of cascaded two-ports. Here
we apply this method to the JTWPA which is a cascade of N
elementary two-ports shown in Fig. 1b. Each two-port n is
described by a transfer matrix Tn (also referred to as ABCD-
matrix)

Tn =

(
An Bn
Cn Dn

)
, (B1)

with the coefficients

An = 1− 1
2

ω2LS0Cn

1−ω2CJLS0
, (B2)

Bn =
iωLS0

1−ω2CJLS0
, (B3)

Cn = iωCn−
1
4

iω3LS0C2
n

1−ω2CJLS0
, (B4)

Dn = An (B5)

These N transfer matrices Tn are then cascaded to a system
transfer matrix

TN =

(
A B
C D

)
=
(
T κ

01 T µ

02 T κ
01 T ν

03
)N

m , (B6)

where the indices 01,02, and 03 refer to the respective ground
capacitor Cn (see Fig. 2a), the exponents κ,µ and ν are in-
tegers and denote the number of elementary two-ports of
each variant (e.g., κ = µ = ν = 5 in our circuit) in one
section, and in total there are N/m such cascaded sections,
with m = 2κ + µ + ν . The system transfer matrix can then
be transformed to a scattering matrix46 for a given reference
impedance Z0. The input reflection S11 and forward transmis-
sion S21 (for this linearized circuit S12 = S21 and S22 ≈ S11)
are given by the following expressions:

S11 =
A+B/Z0−C Z0−D
A+B/Z0 +C Z0 +D

, (B7)

S21 =
2

A+B/Z0 +C Z0 +D
. (B8)

Appendix C: Simulation setup and post processing

All simulations presented in this paper were performed by
the open-source software WRspice as transient analysis. A
WRspice netlist containing our JTWPA circuit can be found in
Ref.53. As a default initial condition, internal routines of WR-
spice set all currents through inductors and all voltages across
Josephson junctions to zero. In this way, the flux-phase rela-
tions in loops containing Josephson junctions are imposed42.
The dc bias current source is ramped up from zero to its fi-
nal value of 9.8 µA within 0.4 ns to avoid large transients.

AC sources are active from the beginning of simulation. The
transient response of the perturbation caused by the sources
propagates and takes ca. ttr = `/v = N/

√
LS0C = 3.13 ns to

reach the end of the circuit. The circuit is close to its steady
state after 10 ns. Time domain data is saved between 10 ns and
60 ns, giving a total sampling time T = 50 ns, which defines
the resolution of the Fourier transform ∆ f = 1/T = 20 MHz.
Increasing the delay time of 10 ns does not change the results
notably. The maximum time step of transient analysis is set
to ∆t = 4.0 ps. Note, that the maximum time step is chosen
so small that the adaptive time step control of WRspice (auto-
matically adapting the time step to optimize simulation time
and accuracy) is overridden. Thus, the resulting time series
is equidistant and ∆t defines the maximum frequency of the
Fourier transform, fmax = 1/2∆t = 125 GHz > fJ , f0.

In the post processing the output of WRspice, the time-
series of voltages vn(t) and currents in(t) for each individual
node n, is transformed to the frequency domain by applying a
Discrete Fourier Transform (DFT). In our implementation the
DFT is defined as

Iq,n =
1
M

M−1

∑
τ=0

in exp
(
− 2πi

M
τq
)
, q = 0, ...,M−1, (C1)

Vq,n =
1
M

M−1

∑
τ=0

vn exp
(
− 2πi

M
τq
)
, q = 0, ...,M−1. (C2)

Here M is the size of the time-series and q is the index defining
the corresponding frequencies fq = q∆ f . After DFT, we ex-
tract currents In( f = fj) = Ij,n and voltages Vn( f = fj) = Vj,n
for each tone with index j ∈ {s, i, p, p+s, p+i, 2p} and for
each individual node n. We have chosen T such that all fj co-
incide with a frequency sample q̃∆ f , where q̃ ∈ {0, ...,M−1}.

Afterwards, the scattering parameters S11 and S21 can be
generically calculated for a given frequency as follows:

S11 =
Vin−Z0Iin

Vin +Z0Iin
=

Zin−Z0

Zin +Z0
= Γin, (C3)

S21 =
Vout +Z0Iout

Vin +Z0Iin
=

2Vout

Vin +Z0Iin
, (C4)

where we used the relation Iout =Vout/Z0 and the value of the
input impedance Zin =Vin/Iin; Γin is the input reflection coef-
ficient, and subscripts in and out denote the input and output
quantities of the JTWPA circuit, i.e., the quantities at the first
and last node of the circuit, n = 1 and n = N+1, respectively.
In the simulations performed in this paper, only the forward
transmission S21 and the input reflectivity S11 are determined,
because the current sources driving the signal and pump cur-
rents are connected to the JTWPA input only (Fig. 3a). This
resembles the practical scenario of signal and pump sources
connected to the input of the JTWPA, and a passive load
(circulators, filters, further amplifier stages) at the output of
the JTWPA. It is worth mentioning, that in the presence of a
strong pump wave a JTWPA is a non-reciprocal device, i.e.,
the forward and backward transmissions of the signal are not
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identical, S21 6= S12. In the ideal case the signal is amplified
only when travelling in forward but not in backward direction.

Typically an amplifier like a JTWPA is embedded in an ex-
perimental environment having a characteristic impedance of
Z0 = 50Ω, which we chose as a reference impedance. All WR-
spice simulations performed in this research use a source (ZS)
and load (ZL) impedance ZS = ZL = Z0. However, the charac-
ertistic impedance Z of the JTWPA is generally not purely
real-valued but possesses a non-vanishing imaginary part, be-
ing a side effect of the engineered periodic loadings. Due to
the slight impedance mismatch, Z 6= Z0, there is some ambi-
guity concerning the definition of two-port power gain of the
amplifier. To account for reflections of the signal wave at the
amplifier’s input and output, the definition of the transducer
power gain46 is used, which, in the case of ZS = ZL = Z0, is

G = PL/PA = |S21|2, (C5)

where PL and PA denote the power at the load and the power
available from the source, respectively.
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