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NUMERICAL ANALYSIS OF AN ELLIPTIC-PARABOLIC PARTIAL
DIFFERENTIAL EQUATION*

JOEL N. FRANKLIN AND EUGENE t%. RODEMICH:]:

1. Introduction. G. Fichera [1] and other authors have investigated
partial differential equations of the form

02u Ou(1.1) " ai(x)
Oxi Ox - ai(x) - a(x)u f(x)

in which the matrix (aj(x)) is required to be positive semidefinite. Equa-
tions of this type occur in the theory of random processes. A numerical
analysis of some equations of this type has been given by Cannon and
Hill [9].

In this paper we consider a particular boundary value problem

1 02T(1.2)
20y Y ox 1, ]x < 1, ]Yl < ,

where we require

(1.3) T(1, y) 0 for y > 0, T(-1, y) 0 for y <0,

and

(1.4) T(x, y) ---> 0 as Yi -- .A problem of this sort wa discussed analytically by W. Fleming [2], but he
did not obtain n explicit solution for T(x, 0).
The solution T(x, y) is related to randomly-accelerated particle whose

position (t) stisfies the stochastic differential equation

(1.5) d w(t) > O,
dt

where w(t) is white Gaussian noise. If the initial position and velocity are
(0) x and ’(0) y, where Ix < 1, then T(x, y) is the expected
wlue of the first time ut which the position (t) equals +/-1.
We obtain an analytic solution for T(x, y) in terms of hypergeometric

functions and confluent hypergeometric functions. We use this analytic
solution to test the validity of numerical methods which are applicable to
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general elliptic-parabolic equations (1.1). We show that, even though the
truncation error for the difference equations does not tend to zero, never-
theless the difference methods give convergence to the true solution. Sam-
ple calculations indicate the rates of convergence of the difference methods.
Each difference method requires the solution of a large number of simul-

taneous linear difference equations. We give iterative methods for solving
these equations, and we prove that the iterations converge.

2. Derivation of the boundary value problem. Because the boundary
value problems arising in the theory of stochastic processes are relatively
unfamiliar to numerical analysts, we will now give a brief, heuristic deriva-
tion of the boundary value problem for the first-passage time T(x, y) of the
random function (t) satisfying the stochastic differential equation (1.5).
This is a tutorial derivation, for which we claim neither originality nor
rigor.

Let p(x, y, t) be the probability-density of the time at which the particle

first crosses the boundary =i= 1. Thus, p ->_ 0 and J, p dt 1. In a small

time increment At, the particle with position x and velocity y moves to the
position x + yAt, while the velocity changes from y to y + g, where g is
the random Gaussian variate

t+At

(2. dr.

By the definition of white noise, g has mean 0 and has variance At. Thus,
we may write g %/ r, where r is a standard Gaussian variate with zero
mean and unit variance.
The particle with initial position and velocity x and y will cross the

boundary in time if and only if the particle with initial position and
velocity x + At y and y + %/ r will cross the boundary in time At.
Averaging over the random variable r, we obtain the identity for small At"

e--r2]2
p(x, , t) ( +/ , + rvt, at). dr.

Expanding the integrand, we find

f-I --’Op (OPlr02py__t_._p-q--%/r,.,,q--At Oy
p= -OP)I e-’12"dr

+ o((zxt)).
Since r has integral O, and r has integral 1, we find

Op
p p-t-- At y-- 10p

20y - + o((,t)
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Dividing by/t and letting/t -- 0, we obtain the partial differential equa-
tion

Op 10p Op(2.2) 0 y - -t- - O y--- 0----
for the density p(x, y, t). Define the expected value

(2.3) T(x, y) Jo tp(z, y, t) dr.

Multiplying (2.2) by and integrating, we find

(2.4) 0 y tp dt + tp dt dt.

But, for every A > 0,

Op
dt Ap(x,y, A) + p(x, y, t) dt.

Since p 0, andsinceJ0 pdt 1 < ,we mUS have

liminf Ap(x, y, A) O.

Therefore,

t-dt= pdt= 1

and the identity (2.4) yields

OT 10T(2.5) 0 y-+ -y + 1.

When x 1, we shll hve T(x, y) 0 if y > 0; for then the prticle
is t the right-hand boundary nd is moving to the right. Similarly, we
shll hve T(-1, y) 0 if y < 0. Thus we hve obtained the boundary
vlue problem (2.2), (2.3), (2.4). Ficher hs shown that this problem is
well-posed.
To lly ny lst doubt bout the boundary vlue problem s descrip-

tion of the rndom process (t), we performed Monte Crlo clcultions
bsed solely on the stochastic differential equation. These clcultions
yielded the numerical vlue

(2.6) T(0, 0) 2.343236

with an empirical standard deviation 0.0684 for . By comparison, the
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value from the analytic solution of the boundary value problem is

(2.7) T(0, 0) 2.3120.

2.1. Similar solutions. From the solution T(x, y) for the strip between
x -1 and x 1 we can construct a solution T(x, y, a) for the strip
between x -a and x a by the identity

--1/3_(2.8) T(x, y, a) am T(a-lx, a y).

The reader will readily verify that this function also satisfies the differential
equation (2.5), and that this function equals zero when x a for y > 0,
and when x -a for y 0. In particular, we find

(2.9) T(0, 0, a) a/. T(0, 0) 2.3120am

for the expected time for a randomly accelerated particle, starting from
rest, to attain the distance a from its starting point.

3. Relation to classical Brownian motion. In
motion, we consider a particle with random velocity:

discussing Brownian

d w(t), > 0.
dt

If the initial position is x, with xl < 1, and if p(x, t) is the probability
density of the time at which first equals +/-1, the preceding type of
reasoning yields the partial differential equation

0
10p Op.
20x Ot

Multiplying this equation by and integrating, we find

1 d
0- dx

T(x) + 1.

The boundary conditions are T(=el) 0, and the solution is therefore
T() 1 ; cf. [6].

4. Analytic solution. We now consider the problem of obtaining an
analytic representation of the first passage time T(x, y). It will be obtained
as the solution of the boundary value problem

OT102T q_y q- 1 O, 1 < x < 1,(4.1)
20y

(4.2) T(x, y) bounded, T(x, y) O(ly [-1) as Y[ -- o,

T(1, y) 0, y > 0,
(4.3)

T(-1, y) 0, y < 0.
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First we show that the boundary conditions apply to T(x, y), and that the
solution of (1)-(3) is unique. Then the solution will be derived.

It follows from the stochastic differential equation 2 w(t) that for
initial conditions (x, y), the position of the particle at time is a normal
random variable with mean x ty, variance t3/3. Thus the probability
P(x, y, t) that the time of escape from the interval (- 1, 1) is greater than
can be estimated in terms of the probability of being in the interval at

time t:

(4.4) P(x, y, t) <- [31/t-3/2(x q- ty + 1)]- [31/t-3/2(x + ty 1)],

where is the Gaussian distribution function

In particular,

(4.5)

lf_ ((z) /- exp --P(x, y, t) -< min ll, (6/)1/:t-3/:},
which is enough to show that

T(x, y) f"
,10

P(x, y, t) dt

is uniformly bounded: T(x, y) <= 3(6/).
For large positive y, consider (4.4) at (2 x)/y. Both arguments

of are positive. Using the estimate

(z.) (zl) < C exp (-z/2)
0 < z < z

Z1

constant), we hve

P(x, y, (2- x)/y) < C13-/2(2 x)/y-3i2 exp [-3(2 x)-3y/2]
Qf --3/2< o exp y/18).

Since P is decreasing function of t, we hve

3CP(x, y, t) < , exp (-y/18), >= (2-- x)/y.

Using this together with (4.5), we find for y > 3,

fO
(2-’>11#

T(x, y) < 1.dt +
(-)/

3C exp y3 dt

(2-- x)/yWO[exp (--y/54)] as y .
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A similar procedure can be used to show that T(x, y) --> 0 as
(x, y) -- (1, y0), y0 > 0. By symmetry, the conditions of (4.2) and (4.3)
for negative y are also valid.
For uniqueness, we appeal to a theorem of Fichera [1]. Let two solutions

of (4.1)-(4.3) differ by u(x, y). Then

(4.6) 10u Ou
20y -i- Y- O,

and u satisfies (4.2) and (4.3). We apply Fichera’s TheoremXI [1, p. 108] to
u in the region

-a <: x a, -b y b,

where 0 < a 1, 0 b , . In the notation of Fichera, we take p 2,
w(x, y) y b. After letting a -- 1 in the result of this theorem, we
have the inequMity

Ifx,,l,,y,,(b u2 dx dy <= b f--1 [u(x’b)2 + u(x’-- b)2] dx’

which is O(b-) since u satisfies (4.2). Letting b -- , we conclude that u
is identically zero.
Now that uniqueness is known, we can make any plausible assumptions

along the way in solving (4.1)-(4.3). These will be justified if we finally
get a solution.
We notice first that T(x, y) T(-x, --y), and this relation can be

used to generate T in the whole strip -1 < x < 1 from its values in the
hull-strip y >= 0, -1 ( x ( 1. For a boundary value problem for T(x, y)
in the upper half-strip, we can take (4.1) and the conditions of (4.2) and
(4.3) for y > 0, along with

T(x, O) T(-x, O),
(4.7)

T,(x, O) --T(-x, O)

for conditions on the x-axis. Then when T(x, y) is extended to the whole
strip by symmetry, it will satisfy (4.1)-(4.3).
We express T(x, y) for y >= 0 s the sum of two functions,

(4.8) T(x, y) u(x, y) -t- v(x, y),

where u(x, y) is the solution of (4.1) with the boundary conditions

u(x, y) bounded, u(x, y) O(y-) as y -- ,(4.9)
u(1, y) 0, y > 0,
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and

(4.10) u(x, 0) 0, -1 < x < 1.

Then v(x, y) satisfies the homogeneous equation

10v(4.11)
20y

-t" y-- O.

It satisfies the boundary conditions (4.9), and to make T satisfy (4.7), we
need

v(x, O) v(-x, O) (--T(x, 0)),
(4.12)

(x, O) + (-x, O) -u(x, O) u(-x, 0).

First we shll find u(x, y).
Note that if u(x, y) is known, the function

h-u(1 h(1 x),

for 0 < 1, is lso solution of the boundary wlue problem for u(x, y).
If we identify this function with u(x, y), then

(4.13) u(x, y) (1 x)mf(z),
where

z ya/(1 x).

Inserting (4.13) into the differential equation (4.1), we get an ordinary
differential equation for f(z)

(4.14) V -t- (3 -t- z)f’ "f --z

A particular solution of this equation is f -zm, corresponding to the
solution -y of (4.1). The associated homogeneous equation is a confluent
hypergeometric equation, whose general solution can be written down.
Thus we can get the general solution of (4.14). The boundary conditions
(4.9) and (4.10) imply that

f(o) o f( ),

which makes the solution unique. All the pertinent formulas are in [3,
13.1]. We get

, (14 2Y )(4.15) u(x,y) -yWA(1-- x) yM
3’3’ 91 X

where

(4.16) A, 6/r(2/3)/r(1/3),



PARTIAL DIFFERENTIAL EQUATION 687

and M is the Kummer confluent hypergeometric function. Using the
asymptotic expansion ofM [3, Equation 13.5.1], we find that

(4.17) u(x,y)-1--x-t-y O((l-x))y
asx-- 1 ory -- .To express v(x, y) in terms of its unknown boundary vlues v(x, O)

v(x), we need a formula for the solution of (4.11) in the upper half-
plane with arbitrary values on the x-axis. This is given by

0)

if (z, ) is the solution of (4.11) which approaehes (x) as y -- 0.
Observe hat Xg(Xx, Xg), 0 < X < , also has the properties needed

for (x, ). Assuming tha these functions are he same, we

(4.19) g(x, y) --x-’h(p),
where

p -y3/x.

Inserting (4.19) in (4.11 ), we get

9
ph

t, + (3-p)h’+h O.

This is again a confluent hypergeometric equation. Its general solution
[3, 13.1] is

h(p) A.p113exp -p -A3M 1,,-p
On the line x 0, p . We need to determine h(p) separately in each
quadrant and to piece these functions together to get g(x, y). The follow-
ing conditions are certainly necessary"

h(O+/- O, h(p) -- O as p--

These conditions make all the constants but one zero, and we get

(=X)/3 exp x < 0,
(4.20) g( x, y)

[0, x >-_ 0.

This function is C in the upper half-plane. By an obvious change of vari-
able,

//1/3f_ g(x, y) dx A. dt F(1/3)t-/3e- 6/A2
2
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Thus g(x, y) (x) as y -- 0 if
2

(4.21) A.-
o (/o)"mr’’""

Notice that v(x, y) as given by (4.18) is automatically zero on the line
x lifv(,0) 0for > 1. Hence

(4.22) v(x, y) g(x , y)v() d

is the solution we are seeking for (4.11) if it is bounded and O(y-1) as
y -- . These conditions are both satisfied if v() is bounded, from the
formula (4.20). In fact,

[v(x, y)[ -< sup v() g(x , y) d
2 y-0[(1--x)my-lexp( 91-

as y - , and

v(x,y) <= sup lv()[
throughout the half-strip.
For x 0 we have

O--gO g(x’ Y) 0 I3A2( exp/)l.
Hence

IO exp ( 2 Y3)19-x v() d.

We assume that v() - 0 as - 1, an assumption which is plausible from
the probabilistic interpretation of T(x, y). This will be justified in the end
by the uniqueness of the solution of (4.1)-(4.3). Then, by integration by
parts followed by y -- 0, we get

(4.23) v,(x, O) 3A. ( x)-I/3v’() d.

The unknown function v(x) is supposed to be even aud bounded, with
v(+/-1) 0. The only remaining condition to be satisfied is the last equa-
tion of (4.12). Transforming the integral for vy(-x, 0) by the symmetry
of v, and using (4.15), we see that this equation becomes

X)-11v’()( )-’ d v’()( d
(.24) A1 [(1_ x)m+ (l+x)l/].

3A
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The integral equation (4.24) is a special case of an equation considered
by Sakalyuk [4]. The method of solution given in [4] proceeds as follows:
Let our equation be

f()(x )- d f
We consider the function

f()( X)-1/3 d
--1x1.

for complex z ( [--1, 1], where the roots are both asymptotic to the same
branch of z1/3 at infinity. For -1 x 1, let

F+(x) lim F(x + iy),
--,0-t-

F_(x) lim F(x z7 iy).

These limits exist if we suppose, for example, that f(x) is locally bounded
on (-1, 1). Then

F+(x) (1 x2)1/6

e/6 f() (x )-1/3 d -t- e-/ f()( x)-l/a d

and F_(x) is given by the complex conjugate expression. Two useful com-
binations of these functions are

(4.27) F+(x) F_(x) i(1 x:)i/g(x)

(from (4.25)) and

f()(x )--1/3 d
(4.2s)

1 (1 x:)-Z[eZF+(x) e-ZF-(x)].

Equation (4.27) is satisfied by the function

1 d (1 )Zg()F*(z)

if g() is differentiable for -1 < < 1. The function F(z) F*(z) is

Fleming [2] uses a different method of solution which leads to a different (but also
correct) integral formula.
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easily shown to be entire and bounded; hence it is a constant. In the appli-
cation to (4.24), f(x) vr(x), an odd function. Then F and F* both ap-
broach zero as z --, ; hence F F*. Using this function in (4.28), we
have

xf()(x )-ua d
--1

(4.29)
1 1 X2)-1/6 --jl de (1- g(x) -k 2@ (1 ,--x

where the Cauchy principal value of the integral at ( x is understood.
Thus the solution of (4.25) is reduced to the solution of an Abel equation.
We now apply this result to (4.24). We have

(4.30) f_x
where

(4.31)

A1v’()(x )-1/ d k(x),

(x) ( x) + ( + x)

1 1 d

By integrating along a line in the complex plane just above the real axis,
we can deduce that

d(1 + )1/6 %/ f- d( 1)1/6
2 L (f x)(-f + )."

Putting 1 2/t in this integral reduces it to the standard integral for
the hypergeometric function [3, Equation 15.3.1]. We get

f_ ( ) ( 1 3 i--x)d(1 + )/6 2-4/31/2B F 1
2

where B is the beta function. Hence

The other integral needed in (4.31) has a similar formula, obtained from
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this by changing the signs of x and . Thus

k(x) 2-4/3’-1B ( 7_g) (1-- x2)-1/

(4.32) 1 3 1-x --(l+x)f 1, 2’ 2
(I-- x)F 1,-,, 2 ’-

+ (1 X) 1/3 + (. + X) 113.

To find v(x), multiply (4.30) by (z x)-m and integrate over x from
-1 to z. On the left, we have

d v’()
(z x)Va(x )1/

)(Z).

Hence

(4.33) v(x) A /
4r/A. a-- (x )-3k() d.

To evaluate this integral, different devices are required for the various
terms in (4.32). First we consider

(4.34)

By [3, Equation 15.3.3],

F 1, g,, 2 (1 )1/6 / 7 3 1 )F ’g’’ 2

Hence, after the substitution -1 -- g(1 + x), we have

z t)_.,t,F(l 7 3 t(l+x))I(x) 2-s(1 -t- x)m dr(1 "" 2

Using the power series expansion

F ’6’2 ’z =o n!r(1/6) n+ 1/2’

the integration can be carried out term by term in terms of beta functions.
After some reduction,

I(x) 1 + x)B (contd.)
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,,=o n!r(l/6) n + /2 n + 1U6(.35)

-52-1/6B(4 65:)
Y

’2’2’ 2 --F ’6’ 6 2

These hypergeometric functions will be transformed for lter combina-
tion of I(x) with the other integrals. By the use of equations 15.3.3, 15.3.6,
nd 15.2,20 of [3], it cn be shown that

zF (1 +

g (1 z)lZ

_
7

( 7 la )=7 -/_ F(, g,z).zf g,, z g (1 z) (1 z) 1,
7

hus (4.g5) can be rewriggen as

( 7 l+z)_F(_,l,7 1-z.)(.a) ,,g, ’
Now eonsider

eplaeing ( by - in ghis integral, we see gha ghe ingegrand becomes ghe

same as gha of I(-z). Hence

(4.g8)
()-1,( ()zF( 1 a 1+()(z + )-’z( + 1, a, ,--1

Use here he integral formula [, Equagion 15..1]

( 1 g 1+) B ( 7)-1 1 dz
z-2/(1 z)l/6F 1,3,2, 2 ’g 1 z(1 +)/2’

and reverse the order of integration. The inner integral over is propor-
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tional to a contour integral in the complex plane along closed curve
around the segment -1 __< $ =< 1, and cn be evaluated in terms of the
residues of the integrand outside the curve. We obtain

d(1 +)- (x + )a(l )1/611 z(1 + )/2]

4{(i z)-, 1 1 ]- }z
z(1 x) 1

and (4.38) becomes

[(x) -[(-x)
(4.39) ( )-1 1 [ 1 --2/3+ 4B dz z-3 1- z(1- x (1- z)1

For b 0, equation 15.3.1 of [3] yields

All he germs in ghis equagion are analygie in b for Re b
b 0. Hence he equation is also valid for -1 < b < 0. In (.ag), we
have ghis ingegral for b --. Hence, after simplification,

(.o) (z) -(-z)- F ’-g’a’

The eongribugions o (4.ag) of ghe ogher pars of k() are relatively
simple. Using he subsgiguion ( -1 + (1 + z) go bring ghe integrals
ingo sgandard forms, we have

(.) (z) (_ )-( + )1 (1 +
--1

and

3.21/3(1. x)l/3F( 1 41+ x)-5’’3 2

We find, by n ppliction of equations 15.3.6 nd 15.3.3 of [3],
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by (4.39), (4.41) and (4.42). When I1(x) is eliminated by (4.36), there is
some cancellation of terms. By equation 15.3.6 of [3],

 l_x)6’ 2 + F ,1,, 2 B (1-

nd simplifying the combinations of beta functions which occur, we get

(x )-k() d 3m2-(1 x) F 1 7 1 + x
-, ,1,, 2

Hence from (4.33),

I( 1(4.43) v(x) C(1-- x) 1/6 F --g

where

(.4)

by (4.16) nd (4.21).

7

-{--f --g,l,g, 2

1+x)2
(1+F -g

4v/A 2F(1/3)

Collecting the formulas for T(x, y) in the upper half-strip, we have

T(x,y)--Y-I-AI(1-x)IIayMI-I 4’3’ 912 -xYa/
(4.45)

fl d ( 2 Y ) T(, O)+A.y
(_x)43exp 9-x

where A and A are given in (4.16) and (4.21).

T(x, O) v(x),

given in (4.43), and for y > O,
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The hypergeometric function in (4.43) has a negative second deriwtive.
Thus T(x, 0) hs the form

T(, 0) ( )(),
where re(x) is a concave, even function, which has a positive limiting value
at x 4-1. This shows that T(x, y) cannot have bounded partial deriva-
tives near (4-1, 0). To investigate the behavior of T(x, y) near (1, 0)
more closely, we first transform the hypergeometric function with rgu-
ment (1 x)/2 in (4.43), according to formul 15.3.6 of [3]:

( 1 7 1d-x) 1 ( 1 I t-x)F -,1,, 2 =F -,1,, 2- --9-- B 1 x)1/( 1 -t- x)-1/6.

Then we have

(4.46)
E ( 1 7 l--x)T(x,O) C(1- x) 16 F -,1,, 2

1 (1 11_ )1+ g F -- ,1,-, 2 +----- CB
which can be expanded in a series of increasing powers of (1 x), con-
vergent for x > 1. If we insert this series in the last term v(x, y) in (4.45),
and integrate term by term, we obtain a series expansion of v(x, y) which
converges in the interior of the upper half-strip, and which is dominated
by the series for T(x, 0).
The first terms in the expansion of (4.46) give us

Hence

(4.47)

where

4 21/6C(1 x)1 mT(x, O) - -[- 0((1 x) ).

v(x, y) [1 -t- 0((1 x)l/2)]A3 y

(_ x)4/eXp 9--x
1/6

4 216CAA=g .
This integral can be expressed in terms of the confluent hypergeometric
function of the second kind, U(a, b, z) (see [3, Formula 13.1.3]). h[aking
the substitution

1-xx-t-
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we can apply equation 13.2.6 of [3] to get

(4.48)
v(x, y) A3F ()y(1- x)-l16e-ZU(,

[1 --0((1 x)1/)],
where

91--x

This can be expressed in terms of the function M(a, b, z) by equations
13.1.3 and 13.1.27 of [3] as

v(x, y) 2V/A3 I,-F(2/ (1 x)l6M 2- Z

(’) - (1 z ,g,-z
[1 + o((

A formula similar o (.47) holds near (- 1, 0). Ig can be shown ha as
(z, ) (-1, 0),

(.0) v(z, g) Aa g
( z)

exp
9-z

This integral is asymptotically he same if he upper limi is replaced by
infinity, which gives another expression involving eonfluen hypergeomerie
funegions. Using he symmetry of T(z, ), we find gha T(z, ) has ghe

same asympogie form as given in (A9) when (z, g) 1, 0) wigh g < 0.
I can be shown ha ghe dominang germs in ghe derivagives of T(z,

near (1, 0) are given by ghe derivagives of ghe expression in (4A9) and
firsg germs in (4.45) (ghese enger only for > 0). These derivagives are so
poorly behaved ha he runeaion error for any of he difference mehods
discussed is unbounded as , g - 0. In fae, if we ake z h,
he -norm of he runeaion error for any p I becomes infinite as h 0.

Equation (4.0) gives he asympogie form of T(z, g) as (, ) 1, 0)
wih g > 0. In pargieular, his is rue on he line z -1, where we have

T(-1,g)Ag d(1 + ()-Zexp
1+

A.P .
For ghe behavior of T(z, ) as g , noe ghag v(x, ) decreases ex-
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ponentially. Thus the asymptotic form of T is given by (4.16), and

T(x, y) 1 x + O(y_4).
Y

5. The Monte Carlo solution. To obtain a value for T(0, 0) directly
from the stochastic differential equation " (t) w(t), we note that

tTAt

(t -- At) (t) - At ’(t) - ft (t -- At- r)w(-) dr,

t+A

’(t -- At) ’(t) -- ft w(r) dr.

Since Ew(v)w(s) ((r s), we find

/$ ’.At - g,
(5.1)

A’ g2,

where gl and g2 are Gaussian variates with means zero and with
covariance matrix

E [gl g]
(/t) At

Thus, we may set

(5.2)

1
g - (t)z,

1%/ z + 1/ zg2

if z and z: are uncorrelated Gaussian variates with zero means and unit
variances. Numerical samples of z and z. can be generated by the technique
of Box and Muller [10].
We can estimate T(0, 0) by the sample mean

(5.3)

whereM is some large integer, and where each T is computed independently
as follows: An increment At is picked. The numbers and ’ are set initially
equal to zero. We let

(5.4)
((n-t- 1)At) (nAt) + /,

’((n + 1) At) .’(nAt)
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where A and A are defined by (5.1) and (5.2). LetN be the first integer
for which I(N/t) >= 1. Since the first crossing took place between the
times (N 1)At and NAt, we make the estimate

(5.5) T, (N,- 1/2)At, i 1, ,M.

To estimate the accuracy of the sample mean T, we compute the empiri-
cal standard deviation of the mean by the standard formula

Using the values

(5.7) M 500,

we computed the statistics

(5.8) T 2.3432,

2"]1/2

At 0.02,

s 0.0684.

The value is within the acceptable probable deviation from the value
T(0, 0) 2.3120 computed from the analytic solution of the boundary
value problem.

6. Finite difference methods. In this section we shall describe two finite
difference methods for solving the boundary value problem for T(x, y).
In later sections we shall state the results of numerical experiments with
these methods, establish the convergence of both methods, and define and
prove the convergence of iterative schemes for solving the difference equa-
tions.
The original boundary value problem for T(x, y) is stated for an infinite

domain: Ix =< 1, [Yl <-- . For numerical purposes we consider a finite
subdomain: xl __< 1, Yl --< Y, where Y is some large number. Picking
large integers, m and n, we lay down a collection of mesh points

(6.1) (x,y.), i=O,...,m-l, j-- --n-- 1,...,n+l.

Setting Ax 2/(m -t- 1) and Ay Y/(n - 1), we let

(6.2) xi 1 - lax, y jay.

The relations between x and i, and between y and j, are illustrated in Fig. 1.

6.1. The biased difference method. The partial differential equation
1 yT - Ty/2 0 looks like a heat equation for a "temperature" T
in a rod Y < Y with "time", x, propagating to the left in Fig. 1 for y > 0,
but to the right if y < 0. Accordingly, we may use what is sometimes called
the completely implicit difference method. For the heat equation, this
method and the balanced method, to be discussed later, are discussed in
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x=-l

j--rt- 1

Fro. 1

x-1
i-m+ 1

Richtmyer and Morton [5]. The characteristic patterns of mesh points are
illustrated in Fig. 2. If we write T as an approximation to T(x, y), the
difference equations are

T{+I T/ 1 T/"+1- 2T/+ T/-
l+y

(6.3+ Ax (Ay)2
=0

for i 0, 1, ...,m, j 1,2, ...,n;

1 Ti 2T + T((6.3 1-t- (Ay)2
0 for i 1, .-.,m;

T{+I- T/ 1 +1- 2T+1+ T+Il+y. +- =0ax (au) 

for i 0,1, ...,m, j --n, .--,-- 1.

The boundary conditions for T/are also illustrated in Fig. 2. We require

(6.4a) T+ 0, j 0,.-., n, and T0 0, j 0,...,-n.

For y Y, we could set T 0, but we prefer to use the asymptotic form
of the solution. For large y Y, the particle under random acceleration
has a large speed to the right, and it may be expected to cross the right-
hand boundary in a time distance/speed (1 x)/Y. Thus,

(6.5a) T(x, Y) m 1 --X

Y
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T

T free

T-0

The biased method

T free

and similarly

(6.5b)

T (l+
FIG. 2

T(z, Y) 1 x
Y

The asymptotic forms (6.5) also follow from the analytic solution in 4
Correspondingly, we set

r n+l 1 xi T{--I 1 -t- x{(6.4b) { y y i= 0,...,m -t- 1.

Equations (6.3) and (6.4) define the biased difference method.

6.2. The balanced difference method. We define another difference
scheme by the characteristic mesh pattern

(6.6)

This mesh pattern, when it is applied to the heat equation, yields the
Crank-Nicholson method [5]. Using the abbreviations

(6.7) i 1 (T{ 4_ T{+l/2 +1/2 2T{+/. 4-

we define the balanced method by the difference equations

1 + y-T{+- T{ 1 T{+/.
(6.Sa) Ax + (Ay)

=0

for i 0, ...,m, j --n, ...,n.
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For j 0, we shall later require a stronger condition, to be given in formula
(6.8b). In a closed interior subdomain the biased method has truncation
error O(/x + (/y)2), whereas the balanced method has truncation error
O((Ax) -t- (Ay)2). Unfortunately, as we shall note later, these estimates
do not hold near the points x =t=l, y 0.
For x :t=l, we require

(6.9a) Tm+l 0, j 1,...,n, and T0 0, j -1, ,-n.

ToNote that we do not require Tm+l 0 and 0, as we did in (6.4a)
for the biased method. For y + Y we again use the asymptotic boundary
values

,p+ 1 x ,--n-- 1 -t- X i 0,’’" m - 1.(6.9b) - y y

In the biased method, formula (6.3) presents 2n(m + 1) + m equations
for the unknowns T with

l,...,n for i--- 0,...,m,
(6.10) j 0 for i 1,...,m,

-1,...,-n for i 1,...,m- 1.

In the balanced method, formula (6.8a) presents (m 4- 1) (2n + 1) equa-
tions for the unknowns T with

1,...,n for i= 0,...,m,
(6.11) j 0 for i 0,...,m-l- 1,

--1, ,--n for i 1,-.-,m+ 1.

Formula (6.11) contains 2n(m + 1) - (m + 2) pairs of indices. Thus,
we have one more unknown than we have equations. To remedy this
defect, we replace (6.8a) for j 0 by the equations

1 i2T(6.85) 1- -0, i= 0, .-.,m-l- 1.
2 (Ay)

This formula implies formula (6.8a) or j 0; but the converse is not true.

6.3. The balanced method with averaging. We shall see later that the
balanced method yields numbers Ti which are not very good approxima-
tions to the true values T(xi, y). However, the average values T+/----- (T -t- T+)/2 provide excellent approximations to the true values
T(x+/, y).

7. lumerical experience. From the analytic solution for y 0,
3/6 I ( 1 7 l--x)T(x,O) 2F(1/3)

(1 x2)/ F --5,1,, 2

( 1-t- F - l,-g 2
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TABLE 1

0.0
0.2
0.4
0.6
0.8

Analytic T(x, O)

2.3120
2.289
2.216
2.076
1.813

Biased T(x, O)

2.1513
2.125
2.042
1.878
1.554

Balanced without
averaging T(x, O)

2.4750
2.115
2.409
1.850
2.171

TABLE 2

0
2/11
4/11
6/11
S/ll
10/11

Analytic T(x, O)

2.3120
2.293
2.233
2.123
1.933
1.550

Balanced with averaging T(x, O)

2.3192
2.268
2.246
2.088
1.980
1.432

it is easy to compute exact values. We shall use these values to check the
biased method and the balanced method with and without averaging. The
best method appears to be the balanced method with averaging. The biased
method is less accurate, and the balanced method without averaging is
the least accurate. Since T(x, y) =- T(-x, -y), we only record the results
for0 =<x 1.
For the biased method and for the balanced method without averaging

we took

Y 20, Ax 2/10, Ay 20/101.
The results, along with the values of T(x, 0) from the analytic solution,
are given in Table 1.
For the balanced method with averaging we took

y 20, Ax 2/11, Ay 20/101.
Here the values were computed at the midpoints xi+l/ The results are
given in Table 2.

8. Convergence of the biased method. Convergence is hard to prove for
our problem because, as the mesh is refined, the truncation error does
not tend to zero. In [9] Cannon and Hill give a proof of convergence for
the biased method which assumes that the true solution T(x, y) has con-
tinuous derivatives of fourth order in the closed domain x -<- 1, Y --< Y.
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R

Fro. 3

An examination of the analytic solution derived in 4 shows that, for x
near 4-1, T(x, 0) behaves like (1 x) 1/. Thus, T(x, y) does not even
have bounded derivatives of first order in the closed domain.
Let L be the differential operator

0 1 0(8.1) L --y
Ox 20y

and let L be the corresponding difference operator for the biased method
described in 6, where h Ax and where/y is some function of h which
tends to zero as h -- 0. In this notation, the true solution T(x, y) and the
approximate solution T satisfy the equations

(8.2) LT(x, y) 1, LhT,= 1.

For a rectangle Ix =< 1, Yl =< Y, we define the boundary set B to
be the points (x, y) for which y 4- Y, or for which x 1 and y ->- 0,
or for which x -1 and y -< 0. SeeFig. 3. We define the set Bhto
consist of the mesh points (x, y.) lying on B.
Cannon and Hill showed that L-1 is a positive operator: If Lu >- 0

in the rectangle, and if u >= 0 in Ba then u >= 0 in the rectangle. In fact,
if u attains a negative minimum, and if (x, y.) is a point with maximum
y at which the minimum u is attained, then uj+l > uj, and the differ-
ence equations yield a contradiction.
For example, if y < 0, we would have

i ,+ U
j-1

_
1 --2ujWL u_ - -y

Ax (Ay)2 < 0,

which contradicts the assumption Lu >-- O. Exactly this line of reasoning
has been used to prove the positivity of the inverse operator for the com-
pletely implicit difference method for the het equation; cf. [5, p. 48].
We now use majorization to conclude that

(8.3) ]u,[ =< i + ti(Y2- y.:)
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if ]Lhufi in the rectangle and if ui[ _-< B on Bh. In fact, since
L(y2) --1, the numbers

s u; + + (Y’ y,-=)

are greater than or equal to 0 on B, and Ltvf >= O. Therefore, vf >= 0
in the rectangle. The same is true of the numbers w formed by re-
placing u by -u in the expression for v; and (8.3) follows.

Incidentally, the inequality (8.3) shows that the original difference
equations for Tf have one and only one solution. Otherwise, by the alterna-
tive of linear algebra, there would be a vector (uf) 0 with Lu O,
and with u 0 on Bh. Taking rib 0 in (8.3), we have a contra-
diction.
We are now ready to prove convergence. Given e > 0, we shall show

that there exists a number Y0(e) so large that, if Y >= Y0(e), and
if h < ho(, Y), then T T(x, y.) < 4e at all mesh points in the
rectangle x __-< 1, Y[ =< Y-
We pick Y0 Y0(e) so large that, for x _-< 1,

(8.4) T(x, Y) 1 x 1 + x
y < e and T(x,-Y) y < e

if Y Y0. Now let Y be fixed at any value greater than or equal to Y0
In the rest of the proof we are concerned only with the convergence of
T" to T(x, yy) in the bounded rectangle Ix[ =< 1, [y[ _<_ Y.
By definition, the truncation error is

L,T(x, y) LT(x, y) LhT(x, y) 1.

Unfortunately, the truncation error does not tend to zero as the mesh
parameter h -+ 0 because T(x, y) is not sufficiently smooth in the closed
rectangle. We remedy this difficulty by finding a family of functions
T(x, y, a) with the properties

(8.5) T(x, y, a) is smooth for

(8.6) T(x, y, a) --+ T(x, y) as

(8.7) LT(x, y, a) + LT(x, y)

[xi _-< 1, lyl Y

a-+l q-0,

as a--+l d-0.

if a > 1,

Such functions T(x, y, a) are given by the similar solutions

(8.8) T(x, y, a) amT(a-x, a-/ay), a > 1,

constructed in 2. We have smoothness because [a-lxl _-< a- < 1 for
x -<- 1. We have T (x, y, a) -+ T (x, y) by the continuity of T(x, y) in the

closed rectangle. And for (8.7) we even have LT(x, y, a) 1 LT(x, y)
for each a > 1.
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We pick a > 1 so smll that, for xl <= 1 nd yl <-- Y,

(s.9)

Hving fixed a, we pick h0 so smll that, for ll mesh points,

(8.10) LT(x, y a) LT(x, y a)

for ll h h0. This is possible because T(x, y, a) hs derivatives of ll
orders in the closed rectangle.
We now define

(8.11) u T T(x y,

On the boundary B, we hgve, by (8.4) nd (8.9),

(8.12) ]u] A e+ e 2e on B.
Moreover, we hve

Lul LT LT(x, y,

(s.3)

]LT(x, y, a) LT(x, y, a)
y-2Tking e in the inequMity (8.3), we find

(s.4) ul A + (Y" y") A 3.

We now find

T- T(x,

3 + 4.

9. Convergence of the balanced method. In this section we shll prove
convergence in the mean for the blnced method with verging. For
rectangle Ix] A 1, ]y] A Y nd for mesh defined s in 6, we define

the inner product (u, v) nd the norm u for mesh functions u, v s

(u, ,) E E (u)(),
(9.1) =0

Let h be mesh prmeter, sy h Ax; nd let y be some function of
h which tends to zero s h - 0. Typically, Ay some constant times h.
Let L be the differential operator

0 1 0L oU-’
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and letL be the corresponding difference operator for the balanced method
defined in 6. Thus,

(9.2) LT(x, y) 1 and LT-- 1,

where T(x, y) is the true solution of the boundary value problem, and
where T is the balanced difference solution satisfying the approximate
boundary conditions prescribed in formulas (6.9). Given e > 0, we shall
show that there is a number Y0() such that, if Y >= Y0(), and if
h =< h0(, Y), then

(9.3) T+I/.- T(xi+l/2, yj) [[ < 18e.

Here we have used the abbreviation T+I/. 1/2 (T+I + T). But by
T(x+/2, y) we mean the exact value of T(x, y) at the point
(x, + (Ax)/2, y).
Notation. If u is given for i 0, m + 1 and for Ji =< n + 1,

we define

u+/2=(+l+u), i=0,1,...,m, Jl =<n+l,

+1 ./ i 0, 1, m, j --n 1, ,n,AUg+l/2 u,i+ll2 Ui+l/2

./ u u./- i= 0,1 m, j=--n, n+l,VUi+l]2 i+1/2 i+1/2

(9.4) Ui+l/2 i+1/2 2Ui+1/2 - Ui+l/2, i O, 1, "", m, [j n,

u+ ui l u+/, i= O, 1, m, ]j[_--<n,Mu --yj Ax 2 (hy)

IMu for j # O,
Lu= 1 u (i=O,... re+l) forj= O;

2 (Ay)

B the set of points (x, y) with y d=Y

or withx landy > 0

or withx -landy <0,

B the mesh points (x, y./) on B,

fl(u) max u for (x, y) in B.

We shall first prove an inequality which shows that II u+/2 is small if
Mu is small and if B(u’) is small. We shall prove that

(9.5) Ya fUi+l/2 Y(8 + )B2(u,
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From the inequality (9.5), the existence and uniqueness of the solution
T to LT 1, with given values for T on B, follow from the alterna-
tive of linear algebra" Otherwise, there would be. some nonzero vector

Mu/with(u) 0 and with Lu 0. But Lu 0 implies u 0,
and then (9.5) implies u+/ 0 for i 0, ..., m and ]j[ n. Now

0 implies u 0 for all j 0, since

1 1u/= (-)-u+, u+ o, j > o, i o,_
1

u/ (-) .+/: uo 0, j < o, i m + l.

LNow we use the equation u, 0 to obtain

1 U(-)u (u+ 0, i= 0,1, ,m + l.

Hence, the vector u is zero.
Now we shall prove the inequality (9.5). Let w y Y. Then
w 2(Ay), nd w(+) 0. Therefore,

e(a) u,+,’ E ,’u+,’’+ e-+ -)
(9.)

, + [(u+,)],

where the boundary term

--n--l Wn n+l(9.7) w +/2 Ui+l/2

But the difference operators , A, and V satisfy

(9.s) [(u)] 2uu+ (u)+ (Vu).
Since u+/ is related to Mu+/ by the identity

1 i y1 u( +i- u)2(Ay). Ui+l/2 M,u --we find, using ui+li(u+i u) {(u+l) (u)}/2,

2u+;u+l/ -4(ay) y (u (u)

Since w (y) Y 0, we have from (9.8),

.] 2wu .2
’to Ui+l/2 . i-1/2{)
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Now (9.6) yields

< ,-4(Ay) uw ui+l/Mh +/

2 (aY) %{ (uL) (u,)}.Ax

If we sum this inequMity for i 0, m nd multiply by Ax, we
find, using the inner product notation (9.1),

Y
Ui2Ay I! ui+, ,x 4Ay(w u,+/, Ma

(9.9) =0

-2(av) E %{( )u+ (ud)}.
Since w 0, we have

(u+) (u0)} < E (-w , u. + + wy(uo).
Sincew (y)- Y (Y-Ay)- Y -2YAy + (Ay), we
hw from 9.7)"

[Lu+I2) + ku+ie) J.

Division of formul (9.9) by 2hy now yields

(9.o) 2( u (- .)y;(u+w u+v,M +/) + Ay w i

+ Ay wy(uo).
Formul (9.10) is difference nlogue on the inequality of Ficher"

Y

Y

f i" ( i )(9.11) 2 - (y Y)u. -yu, u dz dy

Y

)uu (, ) u + ’)(-)u’(- 1, ) a,
Y

which holds for every function (, ) in.
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Since the boundary sums in (9.10) contain only points of B, on which
we assume [u/[ -_< /, we find

(9.12) u+/2 _-< 4Yfl M y2

i
r 1 y4(9.13) Zy _, (Y2 y)y < (Y y)y dy

since the sum on the left is the trapezoidal sum approximating the integral
on the right, in which the integrand has a negative second derivative.
Moreover,

2( Mu+/ u -2wMu/)
(9.14)

_- Ui+I/2II + 2Y

since (a, b) ([[ a ]] + I]b [l), nd since w] Y. The last three
inequalities yield

U+I/2

which implies the required inequality (9.5).
It is now easy to complete the proof of convergence in the mean. Choose

e > 0. Now choose Y0 Y0(e) _>_- 1 so large that, for all Y >- Y0,

(9.15) T(x, + Y) Y < eY-2 for Ix l-< 1.

It is possible to do this because of the asymptotic formula

1 Tx_ O(y-4) as Y--*(9.16) T(x, .4-Y) y

which holds for the true solution T(x, y) derived in 4. Now let Y be
fixed at some value greater than or equal to Y0 As in the preceding section,
choose a so near 1 -t- 0 that the similar solution T(x, y, a) satisfies

(9.17) T(x,y,a) T(x,y) l< /Y’, Ixi -< 1, lyl Y.

Since T(x, y, a) is smooth, and since LT(x, y, a) 1, we can choose h0
so small that, for all mesh points in the rectangle,

(9.18) LhT(xi, y, a) 11 <
if h < h0(e, Y). We can also choose h0 so small that

(9.19) [T(x, yi, a) + T(xi+, yi, a)]/2 T(xi+/, yi, a) < elY.
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Having fixed Y, a and h, we define

(9.20) uis= Ti- T(x ,ys ,a), i=0,1,..-,m-t-1, [j[ =<n+l,

where T is the solution of the balanced difference problem. We then
have the identity, for i 0, 1, m and Jl -< n - 1,

T+/ T(x+/ y)

(9.21)
u+/: + [T(xi, y a) + T(x+ y, a)]/2

T(x+/ ,y, a) + T(xi+/, y, a)

T(x+/ y)

For any vector v we have

1/2(9.22) ]l v, (v’DAxAY 4Y max
i=O

since (m + 1)&x 2 and (2u + 1)&y 2Y- Ay. From (9.17), (9.19)
and (9.21), we now conclude

+,/, + 4Y(UY + IY)
(9.3)

<11 +,i + s.
Now olyh to bound +i II. O th boundary B,,, by (9.15)

nd (9,17),

(9.24) max ud < 2U Y:.
Moreover, Sor 0 i nd Jl , wh

LT MT 1

and, by (9.18),

MT(z, y, a) 1 < elY.
Therefore, Mu < elY, and

(9.5) Mud li < 4UY.
The inequality (9.5) now yields

y3 y4 y2)u,+/ y(s + )(2UY) + 4
(9.2)

9.4e + 4.16e 100e.
From (9.23) we now find the required inequality (9.3). This completes
the proof of convergence in the mean for the balanced difference scheme
with averaging.
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10. Solution of the biased difference equations. In the biased method,
which is described ia 6, we have to solve 2n(m 1) m inhomogeneous
linear equations for an equal number of unknowns T’. If the values T,
corresponding to y 0, were known, the values T for j > 0 could be
calculated by solving the completely implicit parabolic difference equations

T+I- T" _t 1 T’+1- 2T + T-1

(10.1) 1 /
Ax (Ay) --0, j > 0.Y

The values T+I 0, j > 0, are given, and the values T+ (1 x)/Y
are also given. The implicit equations (10.1) are first solved for i m,
j 1, 2, n. Then they are solved for i m 1, j 1, 2, n,
etc., until finally they are solved for i 0, j 1, 2, n. The technique
of doing this is described in Richtmyer and Morton [5, p. 200]. Similarly,
the equations

T’+ T-T+I- T_t + 2T+ -t- +(10.2) 1 + Ax (Ay) 0, j < 0,y.

could be solved. But now we would proceed from left to right:
i 0, 1, ..., m. Of course, owing to the symmetry to our particular
problem, we would not need to calculate T for j < 0, since T T=i_
Thus the problem is solved if we can find the central values T, i 1, m.
These values are required to solve the equations

1Tl- 2T T(-i)

(10.3) 1 -t- (/y) 0, i 1,..., m.

10.1. Direct method. Let U] be the solution of the inhomogeneous
equations (10.1), (10.2), where we give the boundary conditions

(10.4) U 0,

(10.5) U+ Ud- O,

(10.6) Ui:l:(n.{-1) .1 :t: x
Y

i 0,1,... ,rot 1.

Let V V(k) solve the homogeneous equations formed from (10.1)
and (10.2) by omitting the l’s, and let

(10.4’) V(]) k, i 1, 2, ..., m,

(10.5’) V,+(k) Vo-(k) O, j O, 1,..., n,

(10.6’) V:(+) O, i 0,1,...,m+ 1.

We do this for/ 1, m.



12 JOEL N. FRANKLIN AND EUGENE R. RODEMICH

We now look for T as a linear combination

(10.7) T

Every such linear combination satisfies all the conditions required of T
except possibly the condition (10.3) for j 0. The condition (10.3) gives
m equations for the m unknowns c, c, which are just the unknown
values T, T. These equations are nonsingular; otherwise, by the
alternative of linear algebra, there would be a solution H to the corre-
sponding homogeneous problem with H not all zero. But this would
violate the maximum principle which holds for the biased difference method.

10.2. Iterative method. We have not used the direct method for any
of our calculations, although it looked promising. For both the biased
and unbiased methods, we have used iterative schemes. For the biased
method, we guess values for T, i 1, m. We then use the equations
(10.1) and (10.2) to calculate corresponding values for T with j > 0
and j < 0. Then (10.3) is used to compute an improved guess"

(10.8) new T (Ay) -t- (T, + T()/2, i 1,..., m.

This process is repeated until some convergence test

(10.9)
i=1

is passed.
Now we shall prove the convergence of the iterations. Our linear iterative

process is a law of the form

(10.10) (new T) M. (old T) -t- f,

where M is some m X m matrix, and where f is some vector arising from
the l’s in the difference equations and from the nonzero boundary values
for y -4-Y. The true value for T satisfies

(10.11) (true T) M. (true T) -4- f.
Subtracting this equation from the preceding equation, we find

(10.12) (new error) M. (old error).

Letting v new error, u old error, we see that v arises from u by an
iteration in which all inhomogeneous terms contributing to f are replaced
by zero.

Let us, therefore, begin with an initial guess u u. Using the homo-
geneous difference equations for j > 0, we compute u for j > 0, and
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similarly we compute u’ for j < 0. Now the homogeneous equations for
j 0, coming from (10.3), yield

-1(10.3) v (u) + u, )/2, i , ..., m.

Assume that the maximum norm u max ]ui[ > 0. By the strong
maximum principle for the completely implicit parabolic difference equa-
tions for j > 0, we have the strict inequality

(10.14) max ui()[ < max ui u [[.
We have the same inequality for j < 0. Using j =t= 1, we find from (10.13),

(10.15) max [v < (max u + max [u I)/2 u !1.
Since v Mu, according to (10.12) we hve just proved that

(10.16) M < 1,
where M is the regular matrix norm

(10.17) il i max
iuI.____ max

This proves the couvergence of the iterations, since we have after r itera-
tions

(rth error) M (0th error),

rth error =< M 0th error

11. Solution of the balanceddifference equations. If T+1/, i 0, m
were known, the balanced difference method would present a set of Crank-
Nicholson difference equations propagating from right to left where y
> 0, and propagating from left to right where y < 0. The technique for
solving these equations is well known [5, p. 200].
As discussed in the preceding section, a direct method can be employed;

but here we shall only discuss an iterative method. We begin with a guess
for T+l/. i O, m. We then use the Crank-Nicholson equations

(11.1)
1 -]- y Ti+l Ti 1 T+1/

Ax + (Ay)2 =0,

j= 1,2,.-.n,
j --n,... ,-- 1,

along with the boundary conditions

Tm+l T0-i 0,
(11.2)

m(+l) 1 :V x+/2
1i+1/2 Y

i 0,1,"" ,m,
i 0,1,... ,m,

j- i, ,n,

i 0, ...,m,
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to compute corresponding values for T with j 0. We then compute
T for i 0, m -t- 1 from the equations

1 T -2T -5 T-(11.3) 1+ (Ay)
0

and from these values for T we compute

(11.4) new Ti+/ (Ti 4- T+1/2)/2, i 0, ..-, m.

In practice, the last two formulas are replaced by
-1(11.3’) new T+I/. (Ay) -5 (Ti+/ -5 T+/.)/2, i O, ..., m.

This process is repeated until some convergence test

T+n old <T+,/
i=0

is pssed.
The process (11.1), (11.2), (11.3’) implicitly defines an m m matrix

M and an m-component vector f such that

(11.6) (new T+/.) M (old T+I/.) -t- f,

where f arises from the inhomogeneous terms 1, (1 q: x)/Y, and (Ay)
in 11.1 ), 11.2), 11.3’ ). Setting

T
(11.7)

(new T,.+/.) (true -+1/) q- v,

(old oI +.) (true T+I) + u,

we have

(11.8) v Mu.
2] 1/2Using the norm u [ (+1/ we shall prove convergence by

showing that M < 1, where M is the regular matrix norm

(11.9) M max
Mu ]l max

v II

To do this, we only need to show that v < u ll if u I! 0.
To compute v from u, we apply the homogeneous process corresponding

and ending withto (11.1), (11.2), (11.3’), beginning with u u+/,
v v+/. We first compute numbers u+n for j 0 from the homo-
geneous equations

-0, [Jl-1,2,...,n.YJ Ax 2 (Ay)
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Multiplying these equations by u+1/2, and summing for i 0,
we find forj 1, n,

YJ [("u+) (uo)]+2(x)

Since y > 0 and um+l 0, we find

Ui+ll2 Ui+l/2 >- O,
i----O

1
Ui+l/2 "i+1/2 0.

2(Ay) 4=0

j 1,2, ,n.

Summing these inequalities for j 1, n, and using the homogeneous
n+lboundary values u+/ 0, we find

Ui-}-1/2 U-}-I/2 iq-1/2 i+1/2) 2]
__

0.

In other words,

,/) < uu+/ +/ u#+
=o =o =o

Since u+x/2) ], concludeu,+U,+l/ < [(u,+/) + we

(11.10) E ) ).Ui+/2

Using the sme reasoning for j < O, where y < 0 and Uo O, we find

(11.11)
0 =0 i=0

Since u+n 0, the double sum in (11.10) is positive unless
u+/ O. Therefore, we hve the strict inequality

(.2) u+) < (u,+/)
0 i0

and likewise

(11.13) -1(Ui+ll2) < Z )2.(Ui+l/2
i’O i=O

But from (11.3) we have
--1

v+/ (u+. + u+/)/2, i O, ...,m.

The strict inequalities (11.12) and (11.13) now yield the required result

(11.14) If’ - Z:
i=0 i=0
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