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Abstract: Despite the recycling challenges in ionic fluids, they have a significant advantage over
traditional solvents. Ionic liquids make it easier to separate the end product and recycle old catalysts,
particularly when the reaction media is a two-phase system. In the current analysis, the properties of
transient, electroviscous, ternary hybrid nanofluid flow through squeezing parallel infinite plates
is reported. The ternary hybrid nanofluid is synthesized by dissolving the titanium dioxide (TiO2),
aluminum oxide (Al2O3), and silicon dioxide (SiO2) nanoparticles in the carrier fluid glycol/water.
The purpose of the current study is to maximize the energy and mass transfer rate for industrial and
engineering applications. The phenomena of fluid flow is studied, with the additional effects of the
magnetic field, heat absorption/generation, chemical reaction, and activation energy. The ternary
hybrid nanofluid flow is modeled in the form of a system of partial differential equations, which are
subsequently simplified to a set of ordinary differential equations through resemblance substitution.
The obtained nonlinear set of dimensionless ordinary differential equations is further solved, via the
parametric continuation method. For validity purposes, the outcomes are statistically compared to an
existing study. The results are physically illustrated through figures and tables. It is noticed that the
mass transfer rate accelerates with the rising values of Lewis number, activation energy, and chemical
reaction. The velocity and energy transfer rate boost the addition of ternary NPs to the base fluid.

Keywords: ternary hybrid nanofluids; activation energy; Darcy–Forchheimer flow; electroviscous
effect; electric potential; parametric continuation method
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1. Introduction

The squeezing flow is important in lubrication equipment, polymer processing, mold-
ing compaction, and injection, all of which use hydrodynamical technologies generated
from moving surfaces. Jackson [1] highlights the connection between loaded bearings and
compressing flow operation in engines, which includes the occurrence of adhesion. Muham-
mad et al. [2] describe the unsteady squeezed flow of a hybrid nanofluid (HNF), made up of
CNTs and CuO, using a numerical technique. The fluid velocity improves as the squeezing
intensity and volume fraction of nanomaterials increases. Ramesh et al. [3] explore the
unsteady squeezing flow of hydromagnetic and Casson NFs using enclosed parallel disks.
Selimefendigil et al. [4] conduct a numerical analysis of nanofluid forced circulation inside
a branching channel, under the effect of a constant magnetic flux. Xu et al. [5] study stable
power law NF flow, including gyrotactic microorganisms that transmit energy between two
parallel plates. Shuaib et al. [6] use 3D flow characteristics to display a 3D NF flow across
two contemporaneous circular plates. Their purpose is to see how magnetic induction
affects NF flow with heat transmission qualities in the long run. To examine the MHD
NF flow through extendable spinning discs, Ahmadian et al. [7] employ the numerical
approach bvp4c. The disc stretching process, according to the findings, opposes the flow
tendency. Bilal et al. [8] consider the effects of MHD and EHD parameters on the flow of
water-based hybrid NFs across two circular plates. With the growing Reynolds number,
magnetic, and electric effects, heat transmission is estimated to rise [9,10]. Khan et al. [11]
use Fourier’s and Fick’s laws to explore the channel flow of a second-grade viscoelastic
fluid between two plates, formed by a vibrating wall with mass and energy transport
characteristics. Alsallami et al. [12] develop an Maxwell nanofluid flow with arrhenius
activation energy over a rotating disk. Dawar et al. [13] deploy freshwater as a conventional
fluid across two surfaces in order to study copper oxide and copper nanoparticles. The
results demonstrate that the particulate concentration factor has a dual influence on velocity
distribution. Some recent studies are found in [14–17].

A hybrid nanofluid is a new type of fluid that outperforms when compared to regular
fluids, such as ethyl alcohol, water, nanofluids, and ethylene, during energy transitions.
HNFs have a huge spectrum of thermal properties, including the ability to freeze at high
temperatures [18–20]. Hybrid NFs are used in energy generation, heat transfers, heat pumps,
air conditioners, the automotive industry, electrical appliances, turbines, nuclear reactors,
broadcasting, spacecraft, and biotechnology [21]. Coolant and freezing solutions containing
ethylene glycol and water provide significant advantages, such as reducing corrosion and
acid deterioration, as well as suppressing the growth of most bacteria and fungi. In the
industry, ethylene glycol and water mixes are referred to as glycol concentrates, mixtures,
solutions, and compounds. We employed the TiO2, SiO2, and Al2O3 NPs in the working
fluid in this study. TiO2 is a white inorganic material that has been used for over a century
in a variety of foodstuffs [22]. It is the brightest and whitest pigment known, with reflective
qualities, and the ability to absorb and scatter UV radiation [23,24]. Silica is one of the most
abundant class of compounds, and because of its inexpensive cost of manufacture, high
surface area, and wettability, it has the potential to be an outstanding choice for commercial
usage [25,26]. Zhang et al. [27] inspect the entropy maximization in a hydromagnetic HNF
flow of SiO2 and (MoS2 (molybdenum disulfide) NPs flowing toward a stretchy surface.
Ahmed et al. [28] inspect the Ag–MgO HNF flow with heat propagation generated by a
curved spinning disc that rotates in three dimensions, both vertically and horizontally.
Chu et al. [29] evaluate flow kinematics and heat transfer from the perspective of TiO2 and
Al2O3 NPs used to rise the thermal characteristics of the base fluid. The efficiency of an
HNF containing TiO2 and MWCNTs is analyzed by Chu et al. [30]. Long et al. [31] assess
the covalent bonding reactivity of a hybrid ferrofluid flow containing Fe3O4 and CoFe2O4
NPs, in both crosswise and streamwise positions. They made CoFe2O4 NPs with a well-
defined mesoporous dominant structure using hybrid CoFeHCF (hexacyanoferrate) NPs as
a substrate. Their research shows a new way to make CoFe2O4 nano catalysts for pollutant
degradation and promotes the usage of CoFeHCF in the ecosystem. Ullah et al. [32] develop
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a theoretical formulation for a nonlinear magnetic TiO2 NF flow through an expanding
cylinder Darcy-permeable medium. Shah et al. [33] provide a concise overview of most
of TiO2′s notable properties, as well as a summary of innovative thermal applications,
including its high refractive index, overwhelmingly high boiling and melting points, high
stiffness and hardness, ability to absorb or reflect ultraviolet radiation, and photocatalytic
nature. Recently, many researchers reported significant contributions to ternary hybrid
nanofluid flow [34–37].

Magnetism is one of the key significant features of engineering and drug distribution
due to its wide range of applications; heat exchangers, clutches, and compressors, to name
a few major commodities, are all modified by the combination of flowing fluid under a
magnetic field [38–40]. Magnetic fields have the potential to regulate and make the working
temperature of a number of industrial devices more convenient. Magnetic fields are used
in interplanetary and extremely high magneto applications, as well as in aerodynamics and
chemical chemistry. The strength and scattering of the applied magnetics have an impact
on the flow behavior. To describe the flow properties under the upshot of magnetic flux,
many researchers committed to fluid mechanics. Hayat et al. [41] look at how specific heat
and a produced magnetosphere affected the sinusoidal flow of an HNF flow, via a lateral
tube. Raza et al. [42] examine the effect of a molybdenum disulfide nanofluid exchanger
and MHD on free convective flow through a channel. Dezfulizadeh et al. [43] explore the
performance of MHD ternary HNF flow in a thermal exchanger, using a unique compound-
perverted turbulator and spiral rotors. Per the PEC indices, the twisted spinning bar with
ellipsoidal surface obstacles has the maximum exergy effectiveness, increasing by 7% in Re,
to 12,000. References [44–46] contains some recent literature on MHD HNF.

The present study aimed to numerically examine the cumulative influence of the
electromagnetic force, chemical reaction, suction/injection, inertia force, activation energy,
ionized fluid, and magnetic field on the squeezing flow of ternary hybrid nanofluids across
parallel plates. We supposed that the lower plate is permeable and stretching with a uniform
velocity. For this purpose, the phenomena were modeled and formulated in the form of a
system of PDEs, which are solved through the parametric continuation method. The results
are shown through figures and tables. In the above-described, ionized, ternary nanofluid
model, the effects of activation energy, heat source, and chemical reactions in the uses of
ternary hybrid nanofluid are the main novelty of the proposed model. Furthermore, in the
next section, the problem was articulated, resolved, and discoursed.

2. Governing Equations

The ternary hybrid nanofluid flow across two parallel infinite plates, consisting of
titanium dioxide, silicon dioxide, and aluminum oxide is reported. The flow mechanism

is graphically depicted in Figure 1. The upper plate is located at y = h(t) =
√

(1−αt)νb f
b ,

which fluctuates downwards with the velocity dh
dt = −α

2

√
νb f

b(1−αt) . The lower plate is

permeable, which allows suction/injection effect, signified as Vw = −V0
(1−αt) . Both plates are

assumed at constant temperatures T1 and T2. The lower plate is expanding with the linear
velocity uw = −bx

(1−αt) . Furthermore, the time-dependent magnetic field is characterized as

H = B0
(1−αt) . The basic flow equations are communicated as [47–49]:

∂u
∂x

+
∂v
∂y

= 0, (1)

∂U
∂t

+ u
∂U
∂x

+ v
∂U
∂y

=
µhn f

ρhn f

∂2U
∂y2 −

σhn f

ρhn f
H2U −

µhn f

ρhn f

U
K∗
− FrU2 −

(
n+ − n−

)BK2µhn f

ρhn f

∂W
∂x

, (2)

∂2W
∂x2 +

∂2W
∂y2 =

K
2
(
n+ − n−

)
, (3)
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∂n+

∂t
+ u

∂n+

∂x
+ v

∂n+

∂y
=

µhn f

ρhn f Sc

(
∂2n+

∂y2 +
∂W
∂x

∂n+

∂x
+

∂W
∂y

∂n+

∂y
+ n+ ∂2W

∂y2

)
, (4)

∂n−

∂t
+ u

∂n−

∂x
+ v

∂n−

∂y
=

µhn f

ρhn f Sc

(
∂2n−

∂y2 +
∂W
∂x

∂n−

∂x
+

∂W
∂y

∂n−

∂y
+ n−

∂2W
∂y2

)
, (5)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
Khn f(

ρCp
)

hn f

∂2T
∂y2 +

Q0(
ρCp

)
hn f

(T − T0), (6)

∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 +

DT
T1

∂2T
∂y2 − k2

r (C− C0)

(
T

T∞

)n
exp

(
− Ea

κT

)
. (7)
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Figure 1. Electroviscous fluid flow across two parallel plates. 
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Figure 1. Electroviscous fluid flow across two parallel plates.

Equation (1) is the continuity equation, Equation (2) is the momentum equation
with electroviscous and uniform magnetic effect, Equation (3) is the Poisson equation,
Equations (4) and (5) are Nernst–Planck equations, while Equations (6) and (7) are the
energy and mass distribution equations, respectively.

In Equations (1)–(7), n− and n+ are the negative and positive charged ions; U = ∂v
∂x −

∂u
∂y

are the associate’s condition for the upper and lower plate; T and C are the temperature and

the concentration, respectively; Fr = C∗b√
K∗

is the porous media non-inertial coefficient, where
K* and C∗b are the permeability factor and drag force constant, respectively; Q0 is the heat

generation term; K2 = 2z2e2n0
ε0εkbT is the inverse Debye factor; W is the electric potential of ions;

and B = ρk2T2ε0ε

2z2e2µ2 is fixed at a constant temperature. Ea is the activation energy, and kT is the

chemical reaction rate. Furthermore,
(
ρCp

)
Thn f , µThn f , σThn f , κThn f and ρThn f are the

heat capacity, dynamic viscosity, electrical conductivity, thermal conductivity, and density of
ternary HNF, respectively.

The boundary conditions are:

u = λ1
bx

(1−αt) , v = − V0
(1−αt) , T = T1, C = C1, W = 0, n− = n+ = 0 at y = 0

u = 0, v = − dh(t)
dt , T = T2, C = C2, W = x

l2(1−αt) , n− = n+ = α
νb f

(1−αt) at y = h(t). (8)

The similarity variables are:



Micromachines 2022, 13, 874 5 of 15

Ψ =

√
bυb f

(1−αt) x f (η), u = bx
(1−αt) f ′(η), v = −

√
bυb f

(1−αt) f (η), θ(η) = T−T1
T2−T1

, φ(η) = C−C1
C2−C1

,

W = x
l2(1−αt)P(η), n− = α

υb f (1−αt) H(η), n+ = α
υb f (1−αt)G(η), η = y

√
b

υb f (1−αt) .
(9)

Therefore, the transformed set of ODEs is:

f iv =
ϑ1

ϑ2

(
Sq
2
(
η f ′′′ + 3 f ′

)
− f f ′′′ + f ′ f ′′ − Fr f ′′ 2

)
− ϑ3

ϑ2
M f ′′ + K∗1 f ′′ + BK2RH(G− H), (10)

p′′ = −1
2

K2δ1(G− H), (11)

g′′ =
ϑ1

ϑ2

(
Sq
2
(
ηg′ + 2g

)
− f g′

)
Sc− 1

δ1

(
g′p′ − K2δ1

2

(
g2 − gh

))
, (12)

h′′ =
ϑ1

ϑ2

(
Sq
2
(
ηh′ + 2h

)
− f h′

)
Sc− 1

δ1

(
h′p′ − K2δ1

2

(
gh− h2

))
, (13)

θ′′ =
ϑ4

ϑ35

(
Sq Pr

2
ηθ′ − Pr f θ′ − Pr

ϑ4
Qθ

)
, (14)

φ′′ =
Sq Le

2
ηφ′ − Le f φ′ − Nt

Nb
ϑ4

ϑ5

(
Sq Pr

2
ηθ′ − Pr f θ′ − Pr

ϑ4
Qθ

)
− Scσ(1 + δθ)nφ exp

(
− E

1 + δθ

)
. (15)

Here, ϑ1 =
ρThn f

ρb f
, ϑ2 =

µThn f
µb f

, ϑ3 =
σThn f

σb f
, ϑ4 =

(ρCp)Thn f
(ρCp)b f

, ϑ5 =
κThn f

κb f
. M is the

magnetic term, Pr is the Prandtl number, Sq is the squeezing constraint, K∗1 is the local
porosity term, λ > 0 is the stretching parameter for the lower plate (λ = 0) for the fixed
plate), Fr is the Forchheimer number, Sc is the Schmidt number, Nt is the thermophoresis
constant, S is the suction/injection term, Le is the Lewis number, Q is the heat source/sink
term, Nb is the Brownian motion constant, E is the Arrhenius activation energy coefficient,
and σ is the chemical reaction term, defined as:

M =
σb f B2

0
bρb f

, Pr =
µb f Cpb f

κb f
, Sq = α

b , K∗1 =
υb f (1−αt)

K∗b , Sc =
µb f

ρb f D , Nt = DT(T2−T1)
T1υb f

,

S = V0
lb , Le =

υb f
DB

, δ1 = α2

l2 , Q = Q0
b(ρCp)b f

, Nb = DB(C2−C1)
υb f

, E = Ea
κT∞

, σ =
k2

T
c .

(16)

The transform boundary conditions are:

f ′(0) = λ, f (0) = S, θ(0) = δ, φ(0) = ω, p(0) = 0, g(0) = 0, h(0) = 0 at y = 0
f ′(1) = 0, f (1) = Sq

2 , θ(1) = 1, φ(1) = 1, p(1) = 1, h(1) = 1, g(1) = 1 at y = 1.

}
(17)

The Nusselt number and the skin friction are characterized as:

Re1/2
x C fu =

µThn f
µb f

f ′′ (1), Re1/2
x C fl

=
µThn f

µb f
f ′′ (0),

Re−1/2
x Nuu = − κThn f

κb f
θ′(1), Re−1/2

x Nul = −
κThn f

κb f
θ′(0).

 (18)

where Rex = xUw
υb f

.

3. Numerical Solution

This section shows how to use the algorithm of the numerical scheme to solve the
numerical solutions of the suggested mathematical model. The main steps for dealing with
the parametric continuation method scheme and future direction are as follows [50–57]:
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Step 1: Simplifying the modeled equations to 1st order:

}1 = f , }2 = f ′, }3 = f ′′ , }4 = f ′′′ , }5 = p, }6 = p′, }7 = g,
}8 = g′, }9 = h, }10 = h′, }11 = θ, }12 = θ′, }13 = φ, }14 = φ′.

}
(19)

By putting Equation (19) in Equations (10)–(15) and (17), we achieve:

}′4 =
ϑ1

ϑ2

(
Sq
2
(η}4 + 3}2)− }1}4 + }2}3 − Fr}2

3

)
− ϑ3

ϑ2
M f ′′ + K∗1}3 + BK2R}9(}7 − }9), (20)

}′6 = −1
2

K2δ1(}7 − }9), (21)

}′8 =
ϑ1

ϑ2

(
Sq
2
(η}8 + 2}7)− }1}8

)
Sc− 1

δ1

(
}8}6 −

K2δ1

2

(
}7

2 − }7}9

))
, (22)

}′10 =
ϑ1

ϑ2

(
Sq
2
(η}10 + 2}9)− }1}10

)
Sc− 1

δ1

(
}10}6 −

K2δ1

2

(
}7}9 − }9

2
))

, (23)

}′12 =
ϑ4

ϑ35

(
Sq Pr

2
η}12 − Pr}1}12 −

Pr
ϑ4

Q}11

)
, (24)

}′14 =
Sq Le

2
η}14 − Le}1}14 −

Nt
Nb

ϑ4

ϑ5

(
Sq Pr

2 η}12 − Pr
}1}12 − Pr

ϑ4
Q}11

)
− Scσ(1 + δθ)n}13 exp

(
− E

1 + δ}11

)
. (25)

with the corresponding boundary conditions:

}2(0) = λ, }1(0) = S, }11(0) = δ, }13(0) = ω, }5(0) = 0, }7(0) = 0, }9(0) = 0 at y = 0
}2(1) = 0, }1(1) =

Sq
2 , }11(1) = 1, }13(1) = 1, }5(1) = 1, }7(1) = 1, }9(1) = 1 at y = 1.

}
(26)

Step 2: Introducing the embedding parameter p:

}′4 =
ϑ1

ϑ2

(
Sq
2
(η}4 + 3}2)− }1(}4 − 1)p + }2}3 − Fr}2

3

)
− ϑ3

ϑ2
M f ′′ + K∗1}3 + BK2R}9(}7 − }9), (27)

}′6 = −1
2

K2δ1(}7 − }9), (28)

}′8 =
ϑ1

ϑ2

(
Sq
2
(η}8 + 2}7)− }1(}8 − 1)p

)
Sc− 1

δ1

(
}8}6 −

K2δ1

2

(
}7

2 − }7}9

))
, (29)

}′10 =
ϑ1

ϑ2

(
Sq
2
(η}10 + 2}9)− }1(}10 − 1)p

)
Sc− 1

δ1

(
}10}6 −

K2δ1

2

(
}7}9 − }9

2
))

, (30)

}′12 =
ϑ4

ϑ35

(
Sq Pr

2
η}12 − Pr}1(}12 − 1)p− Pr

ϑ4
Q}11

)
, (31)

}′14 =
Sq Le

2
η(}14 − 1)p− Le}1}14 −

Nt
Nb

ϑ4

ϑ5

(
Sq Pr

2 η}12 − Pr
}1}12 − Pr

ϑ4
Q}11

)
− Scσ(1 + δθ)n}13 exp

(
− E

1 + δ}11

)
. (32)

Step 3: Differentiating by parameter ‘p’:

V′ = ∆V + R, (33)

where ∆ is the coefficient matrix.
V =

d}i
dτ

(34)

where i = 1, 2, . . . , 11.
Step 4: Apply the Cauchy principal:

V = aU + W, (35)
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where W and U are the indefinite vector functions.

U′ = aU, (36)

W ′ = ∆W + R, (37)

By putting the approximate solution Equation (26) into the original Equation (24),
we obtain:

(aU + W)′ = ∆(aU + W) + R, (38)

Step 5: Solving the Cauchy problems:

Ui+1 −Ui

∆η
= ∆Ui+1,

Wi+1 −Wi

∆η
= ∆Wi+1. (39)

Finally, we obtain:

Ui+1 = (I − ∆∆η)−1Ui, Wi+1 = (I − ∆∆η)−1(Wi + ∆ηR). (40)

4. Results and Discussion

This section reveals the physical description of the obtained results in form of figures
and tables for velocity, energy, and mass transfer profiles versus several physical constraints.
The default parametric values used for the simulation of modeled equations are: φ1 = φ2 =
φ3 = 0.01, S = 1.0, Fr = 0.5, S = 1.0 & −1.0, Sc = 0.1, Le = 0.4, Sq = 0.5, E = 1.0, M = 0.3,
Nt = Nb = 0.1, σ = 0.5, and Q = 0.2. The following observations are noticed.

Velocity Profile (f ′(η)):
Figure 2a–e displays the tendency of velocity profile(f ′(η)) versus suction parameter

S > 0, Darcy–Forchheimer Fr, magnetic field M, injection S < 0, and volume friction of
ternary nanoparticles Ψ = (φ1 = φ2 = φ3), respectively. Figure 2a–c shows that the velocity
field is lessened with the upshot of suction parameter, Darcy–Forchheimer, and magnetic
field. Physically, the rising effect of the suction factor diminishes the motion of fluid
particles, which causes a reduction in the velocity profile, as shown in Figure 2a. The
permeability of the plate surface enhances with the variation of the Darcy effect, which
also encourages more suction from the plate surface and, as a result, fluid velocity (f ′(η))
declines, as depicted in Figure 2b. The resistive force, which is created due to the magnetic
effect M, opposes the fluid motion, similarly also deducing the velocity boundary layer, as
shown in Figure 2c.

Figure 2d,e illustrate that the velocity distribution accelerates with the flourishing
values of injection and volume friction of ternary nanoparticles. Physically, due to the
injection effect of fluid particles, the fluid moves fast; as a consequence, the velocity of fluid
flow elevates, as elaborated in Figure 2d. The addition of ternary nanoparticles (TiO2, SiO2,
Al2O3) to the base fluid magnifies its thermal conduction, which also causes the inclination
in the velocity field, as revealed in Figure 2e.

Electric Field (g(η), h(η)):
Figure 3a–d report the presentation of the electric field (g(η), h(η)) profile versus the

Schmidt number Sc, and squeezing term Sq, respectively. The kinetic viscosity of fluid
enhances with the effect of the Schmidt number, which diminishes the molecular dissemi-
nation, and causes the lessening of the electric field (g(η), h(η)), as shown in Figure 3a,b.
The influence of the squeezing variable fluctuates the fluid particles, which enhances its
velocity, and as a result, the electric profile is also boosted, as elaborated in Figure 3c,d.
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Fr, (c) magnetic field M, (d) injection S < 0, and (e) volume friction of ternary nanoparticles
Ψ = (φ1 = φ2 = φ3).

Energy Profile θ(η):
Figure 4a–c represents the tendency of energy profile θ(η) versus the heat source Q,

volume friction of ternary nanoparticles Ψ, and injection S < 0 constraints, respectively.
As a consequence of the heat generation term, thermal energy is generated inside the
fluid flow, which causes the elevation of the energy profile θ(η), as seen in Figure 4a.
Figure 4b illustrates that the inclusion of nanomaterials (TiO2, SiO2, Al2O3) in the base
fluid augments the thermal conduction of the base fluid, as well as reduces the average
heat capacity, because the specific heat capacity of ethylene glycol/water is much higher
than ternary nanoparticles. This is why the energy propagation rate of ternary nanofluid
magnifies with the rising quantity in the concentration of nanoparticles Ψ. The energy
transfer rate of ternary NFs declines with the upshot of the injection term, as shown
in Figure 4c.
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Mass Profile φ(η):
Figure 5a–e displays the trend of mass profile φ(η) versus Le, Nt, Nb, activation energy E,

and chemical reaction rate σ, respectively. Figure 5a–c elaborates that the transfer rate boosts
with the rising values of Lewis number, which remarkably declines with the upshot of Nt and
Nb. Physically, the molecular diffusion rate reduces with the variation of Le, which results in
the reduction in the concentration boundary layer, as seen in Figure 5a. Furthermore, we are
interested in investigating the influence of Nb and Nt on the flow mechanism, as these are two
important factors that govern nanofluid movement. Brownian motion is a haphazard motion
occurring as a result of nanomaterials in a fluid flow. Brownian motion is more powerful in
fluids with low viscosity and elevated heat, as well as in fluids with tiny particles. However,
their effect reduces the mass proportion ratio, as manifested in Figure 5b,c. The increment
in activation energy constraint E and chemical reaction term dramatically elevate the mass
transmission ratio, as publicized in Figure 5d,e. The effect of both factors accelerates the
kinetic energy inside the fluid, which encourages fluid particles to move fast; as a result, the
concentration profile of ternary nanofluid enhances.
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Tables 1 and 2 expose the experimental values of the base fluid (ethylene glycol/water)
and ternary nanoparticles (TiO2, SiO2, Al2O3), and the physical model of ternary hybrid
nanofluid, respectively. Table 3 reveals the statistical assessment of current results with
the available work for validity purposes. It is perceived that both results show the best
settlement. Furthermore, the influence of magnetic term and suction constraints enhances
the skin friction of both the upper and lower plate. Table 4 exhibits the comparative
valuation of present outcomes with the published literature for the Nusselt number−(θ′(1)).

Table 1. The experimental values of silicon dioxide
(
φ1 = φSiO2

)
, titanium dioxide

(
φ2 = φTiO2

)
and

aluminum oxide
(
φ3 = φAl2O3

)
[58].

Base Fluid & Nanoparticles ρ (kg/m3) k (W/mK)) Cp (j/kg K) σ (S/m)

C2H6O2-H20 1063.8 0.387 3630 0.00509
TiO2 4250 8.953 686.2 2.38 × 106

SiO2 2270 1.4013 3630 3.5 × 106

Al2O3 6310 32.9 773 5.96 × 107

Table 2. The physical model for ternary hybrid nanofluid [23].

Viscosity µThn f
µ f

= 1
(1−φSiO2 )

2.5(1−φTiO2 )
2.5(1−φAl2O3 )

2.5 ,

Density ρThn f
ρ f

=
(
1− φTiO2

)[(
1− φTiO2

){(
1− φAl2O3

)
+ φAl2O3

ρAl2O3
ρ f

}
+ φTiO2

ρTiO2
ρ f

]
+ φSiO2

ρSiO2
ρ f

,

Specific heat (ρcp)Thn f

(ρcp) f
= φSiO2

(ρcp)SiO2
(ρcp) f

+
(
1− φSiO2

)
(
1− φTiO2

){(
1− φAl2O3

)
+ φAl2O3

(ρcp)Al2O3
(ρcp) f

}
+φTiO2

(ρcp)TiO2
(ρcp) f




Thermal conduction

kThn f
khn f

=

(
kAl2O3+2khn f−2φAl2O3 (khn f−kAl2O3 )
kAl2O3+2khn f +φAl2O3 (khn f−kAl2O3 )

)
, khn f

kn f
=

(
kTiO2+2kn f−2φTiO2 (kn f−kTiO2 )
kTiO2+2kn f +φTiO2 (kn f−kTiO2 )

)
,

kn f
k f

=

(
kSiO2+2k f−2φSiO2 (k f−kSiO2 )
kSiO2+2k f +φSiO2 (k f−kSiO2 )

)
,



Electrical conductivity

σThn f
σhn f

=

1 +
3
(

σAl2O3
σhn f

−1
)

φAl2O3(
σAl2O3

σhn f
+2
)
−
(

σAl2O3
σhn f

−1
)

φAl2O3

, σhn f
σn f

=

1 +
3
(

σTiO2
σn f
−1
)

φTiO2(
σTiO2

σn f
+2
)
−
(

σTiO2
σn f
−1
)

φTiO2

,

σn f
σf

=

1 +
3
(

σSiO2
σf
−1
)

φSiO2(
σSiO2

σf
+2
)
−
(

σSiO2
σf
−1
)

φSiO2




Table 3. The comparative assessment of present outcomes with the published literature for upper
and lower plate skin friction (f ”(1), f ”(0)).

Parameters f”(1) f”(0)

M S Khashi’ie et al. [47] Present Work Khashi’ie et al. [47] Present Work

0.0 0.5 4.7132028 4.7132043 −7.4101525 −7.4101542
1.0 4.7391165 4.7391176 −7.5906177 −7.5906188
4.0 4.8201511 4.8201533 −8.1113342 −8.1113363
9.0 4.9647698 4.9647787 −8.9110956 −8.9110978

0.0 1.8423469 1.8423476 −4.5868911 −4.5868933
0.3 3.6535948 3.6535969 −6.6646620 −6.6646632
0.6 5.3911475 5.3911494 −8.8524442 −8.8524453
1.0 7.5933262 7.5933283 −11.9475843 −11.9475941
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Table 4. The comparative assessment of present outcomes with the published literature for Nusselt
number –(θ′(1)).

Parameter Khan et al. [59]
(Numerical) Present Work Khan et al. [59]

(Analytic) Present Work

Sq −(θ′(1)) −(θ′(1)) −(θ′(1)) −(θ′(1))
0.0 −0.8443 −0.8452 −0.8438 −0.8445
0.2 −0.8791 −0.8880 −0.8783 −0.8794
0.4 −0.9151 −0.9162 −0.9140 −0.9153
0.6 −0.9523 −0.9542 −0.9511 −0.9532
0.8 −0.9908 −0.9916 −0.9914 −0.9935
1.0 −1.0306 −1.0317 −1.0310 −1.0332

5. Conclusions

We studied the properties of transient, electroviscous, ternary hybrid nanofluid flow
through squeezing parallel infinite plates. The ternary HNF was manufactured by adding
the TiO2, SiO2, and Al2O3 to the conventional fluid glycol/water. The ternary hybrid
nanofluid flow was modeled in the form of the system of partial differential equations,
which were subsequently simplified to a set of ODEs through resemblance substitution.
The obtained nonlinear set of dimensionless ODEs is further solved via the parametric
continuation method. The key findings are:

• The velocity field f ′(η) is reduced with the effect of the suction parameter, Darcy–
Forchheimer, and magnetic field.

• The flourishing values of injection and volume friction of ternary nanoparticles (TiO2,
SiO2, Al2O3) accelerate the velocity distribution.

• The electric field (g(η), h(η)) declines with the upshot of Schmidt number Sc, while
enhancing with the increment of squeezing term Sq.

• The thermal energy field θ(η) is elevated versus the variation of heat source and the
inclusion of nanomaterials to the base fluid, while reducing with injection effect.

• The mass allocation rate boosts with the rising values of Lewis number, activation
energy constraint E, and chemical reaction, while declines with the upshot of ther-
mophoresis and Brownian motion.
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