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Abstract—In this paper, the coupled mode theory is used to analyze
apodized fiber Bragg gratings (FBGs). Since the profile of gratings
varies with the propagation distance, the coupled mode equations
(CMEs) of apodized FBGs are solved by the fourth-order Runge-Kutta
method (RKM) and piecewise-uniform approach (PUA). We present
two discretization techniques of PUA to analyze the apodization profile
of gratings. A uniform profile FBG can be expressed as a system
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of first-order ordinary differential equations with constant coefficients.
The eigenvalue and eigenvector technique as well as the transfer matrix
method is applied to analyze apodized FBGs by using PUAs. The
transmission and reflection efficiencies calculated by two PUAs are
compared with those computed by RKM. The results show that the
order of the local truncation error of RKM is h−4, while both PUAs
have the same order of the local truncation error of h−2. We find
that RKM capable of providing fast-convergent and accurate numerical
results is a preferred method in solving apodized FBG problems.

1. INTRODUCTION

Fiber Bragg gratings have been used for spectral filtering, dispersion
compensation, wavelength tuning, and sensing in optical communica-
tion and optoelectronics [1–3]. Since apodized fiber Bragg gratings
(FBGs) have superior filtering performance and high side lobe sup-
pression, apodized FBGs have been widely developed and applied in
optical fiber technology Various apodization profiles, such as Gaussian,
positive hyperbolic-tangent, quadratic-sine etc. have been studied in
literatures [4–7].

A typical 5-mm long FBG has a grating length of up to
ten thousand grating periods at the wavelength of 1500 nm. A
straight-forward application of the full-wave method [8–13] requires
tremendous computer resources in order to sufficiently discretize 3-
D (vectorial) field along an FBG fiber. It is possible, for example,
to modify the recently published coupled transverse-mode integral-
equation (CTMIE) method [11–13] to accurately model the complex
reflection and transmission coefficient matrices. Each grating period
is first sliced into fifty to one hundred vertical sections to reduce the
artificial reflection due to step discretization [13]. Then within each
section, four Green’s function kernels are constructed from fiber core
and as many as cladding modes as needed. As a result, only up to
a few grating periods can be computed by CTMIE method. Hence,
significant modification of CTMIE is needed to compute apodized
FBGs.

Under the principle of the full wave theory, the coupled mode
theory (CMT) was developed to analyze “optically large” waveguide
structure such as the FBG. CMT captures the main parts of rapidly
changing forward and backward propagating phases in an analytic
expression and leaves us to deal only with the coupling of slowly
varying amplitude envelope functions. These envelope functions satisfy
the first-order coupled ordinary differential equation (ODEs) which is
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called coupled mode equations. Under CMT, the original full-wave
3D problem is reduced to solving 1-D coupled ODE with boundary
conditions on two ends. Consequently, CMT becomes the most
common theoretical technique for analyzing uniform FBGs [2]. We
believe CMT is also suitable for analyzing the apodized FBG problem.

Recently, we presented a rigorous numerical analysis of the
uniform FBG problems with both the eigenvalue and eigenvector
technique (EVVT) and RKMs on CMEs with sufficiently high number
of core and cladding modes in each fiber direction [14]. RKM was the
method of choice for CMEs with z-dependent coefficients. We show
that the original inhomogeneous CMEs can be re-casted as constant
coefficient ODEs by changing variables. Thus, the ODEs with constant
coefficient can be easily and accurately (in numerical sense) solved by
EVVT.

Since the structure of apodized FBGs is more complicated than
that of uniform FBGs, there are many methods presented to explore
the performance of apodized FBGs [14–17]. In this paper, we use CMT
to analyze apodized FBGs. Because the profile of gratings depends
on the propagation distance, unlike uniform FBGs, the system of the
ODEs for apodized FBGs can not be expressed as a system of constant
coefficients ODEs by changing variables. This increases the difficulty
of analyzing apodized FBGs when compared with analyzing uniform
FBGs. The system of the ODEs with z-dependent coefficients can
be solved by numerical methods such as RKM [2, 18–20] or Adams-
Moulton method (AMM) [21]. Because RKM has benefits of possessing
faster convergent rate and being more stable than AMM, in this paper,
we choose the fourth-order RKM to solve ODEs with twenty-five fiber
modes in each direction. Although RKM was proposed for apodized
FBGs in [2], it used only one forward and one backward core modes
and ignored core-cladding mode interaction. As far as we know,
the detailed algorithmic procedure, accuracy of the solutions and the
performance properties of RKM on modeling an apodized FBG have
not been discussed in published references. It is the goal of this paper
to conduct a thorough error analysis and the convergent rate tests of
RKM and two PUA methods on tapered apodized FBGs.

The piecewise-uniform approach (PUA) with transfer matrix
method (TMM) is a commonly used numerical technique to simulate
apodized grating structures by CMT [4–7]. For traditional PUA, the
apodization profile of gratings is discretized into numerous uniform
grating sections. To reduce the complexity of the problem, a simplified
CMT considers only the coupling between a forward core mode and
a backward core mode [4–6]. In this study, the contra-directional
coupling between core modes and cladding modes are considered [14].
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Although this intuitive PUA has been the chosen method to
calculate apodized FBG problems, it needs more numerical work than
does RKM. This is because within each uniform FBG section, the
transfer matrices still need to be solved by either the modified EVVT
method [14] or by RKM. To avoid using modified EVVT we propose
the second simplified discrete technique of PUA, where the position of
each section is directly substituted into the original CMEs. Since each
section of gratings is solved by EVVT the transmission and reflection
spectra of apodized FBGs can be obtained by TMM. We compare
and analyze the transmission and the reflection efficiencies and their
relative error using RKM with those using the two PUAs.

2. THE COUPLE MODE THEORY

2.1. The Gaussian-apodized FBG

The refractive index of the fiber grating is described as follows:

n (r, z) =





n1 + n1σ(z) + n1σ(z)m cos (2πz/Λ) r ≤ r1

n2 r1 ≤ r ≤ r2

n3 r2 ≤ r

, (1)

where Λ is the grating period n1, n2 and n3 are the refractive indices
of the core, cladding and the surrounding region, respectively. n1σ(z)
is the dc index change, n1σ(z)m cos(2πz/Λ) is the ac index change
and m is the fringe visibility of the index change. In this paper,
since the FBGs are apodized, σ(z) is expressed as a function of
a propagation distance. The induced index function n1σ(z) of the
Gaussian apodization can be written as:

n1σ(z) = n1σdc exp
(
−4 ln(2)z2

FWHM2

)
0 < z < L, (2)

where z is the position of the grating, L is the grating length, and
FWHM is the full width at half maximum for induced index function.
Fig. 1 shows the induced index change along the fiber axis for Gaussian-
apodized structure.

2.2. The Couple Mode Equation

The magnitudes of electromagnetic waves for the ith mode in the fiber
can be expressed as

~U+
i (r, φ, z) = Ai(z) · ~Φi(r, φ) · exp (iβiz) , (3a)

~U−
i (r, φ, z) = Bi(z) · ~Φi(r, φ) · exp (−iβiz) , (3b)
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Figure 1. Diagram of the induced index change of Gaussian-apodized
grating structure with the fringe visibility m set to one.

where ~U+
i (r, φ, z) and ~U+

i (r, φ, z) are the magnitudes of forward and
backward waves with Ai(z) and Bi(z), the corresponding amplitude
functions, ~Φi(r, φ), the two-dimensional 3-D vector field function, and
βi is the propagation constant of the ith mode.

The couple mode equations of apodized FBGs can be written as
dA0

dz
= +iκ0(z)A0 + i

m

2
κ0(z)B0 exp (−i2δ0z)

+i
∑

ν

m

2
κv(z)Bv exp (−i2δvz) , (4)

dB0

dz
= −iκ0(z)B0 − i

m

2
κ0(z)A0 exp (+i2δ0z)

−i
∑

ν

m

2
κvAv(z) exp (+i2δvz) , (5)

dAv

dz
= +i

m

2
κv(z)Bco exp (−i2δvz) for ν = 1, · · · , n, (6)

dBv

dz
= −i

m

2
κv(z)Aco exp (+i2δvz) for ν = 1, · · · , n. (7)

where A0(z) is the amplitude for the transverse core mode field
traveling to the +z direction, B0(z) is the amplitude for the transverse
core mode field traveling to the −z direction. Aν(z) and Bν(z) are
amplitudes for the νth cladding mode (v = 1, . . . , n). δ is a small-
detuning parameter and κ is the coupling coefficient. The parameters
δ0, δv, κ0 and κv are defined as follows:

δ0 =
1
2

(
2β0 − 2π

Λ

)
, (8)

δv =
1
2

(
β0 + βv − 2π

Λ

)
, (9)
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κ0(z) =
ωε0n

2
1σ(z)
2

∫ 2π

0
dϕ

∫ r1

0
rdr

(
|Eco

r |2 +
∣∣Eco

ϕ

∣∣2
)
, (10)

κv(z) =
ωε0n

2
1σ(z)
2

∫ 2π

0
dφ

∫ r1

0
rdr

(
Ecl

r Eco∗
r + Ecl

φ Eco∗
φ

)
, (11)

where β0 is the propagation constant of the core mode, βv is the
propagation constant of the vth cladding mode, Er and Eφ are
electric fields of transverse components and ω is the angular frequency.
Different from the uniform FBGs, σ(z) is a function of z for the
apodized FBGs, and κ0 and κv are a function of the propagation
distance as well. The couple mode equations (CMEs) can be expressed
as a matrix form:

d
⇀

Y

dz
=

d

dz

[
⇀

A
⇀

B

]
=

[
U11(z) U12(z)
U21(z) U22(z)

]
·
[

⇀

A
⇀

B

]
= U(z) · ⇀

Y , (12)

where
⇀

A = [A0, . . . , An]T and
⇀

B = [B0, . . . , Bn]T are the
amplitude vectors propagating in the forward and backward directions,
respectively, and the elements of

⇀

A and
⇀

B are Av and Bv, v = 0, . . . , n,
respectively. The amplitude vector ~Y includes

⇀

A and
⇀

B. The matrix
U is a function of the propagation distance z. The elements of sub
matrices U11, U22, U12 and U21 are given below

U11(z) =




iκ0(z) 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


 = −U22(z),

U12(z) =
im

2




κ0(z)e−i2δ0z · · · κn(z)e−i2δnz

... 0 0
κn(z)e−i2δnz 0 0


 , and

U21(z) =
−im

2




κ0(z)ei2δ0z · · · κn(z)ei2δnz

... 0 0
κn(z)ei2δnz 0 0


 .

(13)

These sub-matrices are functions of propagation distance z makes (12)
a system of first-order ODEs with z-dependent coefficients.

3. PIECEWISE-UNIFORM APPROACH

Since the index change nσ(z) of the FBGs is a function of z (see
Equation (2)), by applying PUA we divide the grating region 0 < z < L
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into M -uniform FBG sections. The position of the i-th section is
denoted by zi = (i− 1)×L/M where i = 1, . . . , M. In this paper, two
discrete methods are presented to solve the apodized grating problems
and are described as follows:

(1) Note that κv(z), ν = 0, . . . , n in Equation (13) is a function of
nσ(z) (z) and varies with the propagation distance. The first
discretization method, labeled as PUA1, intuitively assumes that
the apodization grating consist of multiple uniform gratings. The
midpoint approximation is applied to express nσ(z) and κv(z) of
each section. An index change of the i-th section is nσ(zi), where
zi = (i− 1)× L/M for i = 1, . . . , M. Although nσ(zi) and κv(zi)
are constants the coefficients of ODEs in Equation (13) contain
exponential terms exp(±i2δγz) for ν = 0, . . . , n. Therefore,
Equation (12) is a system of ODEs with z-dependent coefficients.
By changing variables [14], Equation (12) of each section is
expressed as a system of ODE with constant coefficients and can
be solved by EVVT.

(2) Since the parameters δ0 and δν are relatively small compared with
the propagation constant βν the exponential term exp(±i2δνz)
changes only a few percent over the sub grating section. The
second way to discrete gratings, labeled as PUA2, is to directly
substitute the position of the i-th section zi into all of the
elements of Equation (13), including κv(zi) and exp(±i2δγzi).
Since all elements in Equation (13) are constant we can directly use
EVVT to solve Equation (12) without carrying out the additional
changing variables step of Reference [14].

Using the above discretization procedures, all elements of U matrix in
Equation (12) become constants, and Equation (12) forms coupled
first-order ordinary differential equations with constant coefficients.
Both approaches in the i-th section can be solved by EVVT [14]. The
amplitude vector function

⇀

Y i(z) of the section i is expressed as:

⇀

Y i(z) =
2n∑

m=1

cm · ⇀
pm · eλmz =




p11e
λ1z · · · p1,2neλ2nz

...
. . .

...
p2n,1e

λ1z · · · p2n,2neλ2nz







c1
...

c2n




= Qi(z) · ⇀

Ci, (14)

where λm and ⇀
pm = [ P1,i · · · P2n,i ]T are the m-th eigenvalue

and its corresponding eigenvector of matrix U in (12).
⇀

Ci is the
unknown eigenfunction coefficient vector which is determined by the
boundary conditions. By matching the boundary condition at each
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section interface, the amplitudes of modes should be continuous across
the interface of sections:

⇀

Y i+1(zi) =
⇀

Y i(zi).

The above equation can be written as

Qi+1(zi) ·
⇀

Ci+1 = Qi(zi) ·
⇀

Ci. (15)

By using the transfer matrix method, the coefficient vector of the
(i + 1)-th section can be written in terms of the coefficient vector of
the i-th section:

⇀

Ci+1 = Qi+1(zi)
−1 ·Qi(zi) ·

⇀

Ci = Gi(zi) ·
⇀

Ci. (16)

The amplitudes at z = L can be expressed as
⇀

Y (L) = QM (L) · ⇀

CM

= QM (L) ·GM−1(zM−1) ·
⇀

CM−1

= QM (L) ·GM−1(zm−1) . . .G1(z1) ·Q0(0)−1 · ⇀

Y (0)

= GPUA ·
⇀

Y (0), (17)

where GPUA is a transform matrix of the stepwise-uniform approach.

4. RUNGE-KUTTA METHOD

Runge-Kutta method (RKM) is the most commonly used numerical
method to solve the initial value problem of the ordinary differential
equation such as (12). Assume that the grating region 0 < z < L
is divided by m points. The distance between two adjacent points is
h = L/m. By applying Runge-Kutta method, the intermediate RK
matrices K1i, K2i, K3i and K4i inside the i-th fiber section can be
expressed as

K1i = h · U(z = L0 + i× h), (18)
K2i = h · U(z = L0 + i× h + h/2) · (I + K1i/2), (19)
K3i = h · U(z = L0 + i× h + h/2) · (I + K2i/2), (20)
K4i = h · U(z = L0 + i× h + h) · (I + K3i). (21)

The matrix Ri for this fiber section is written as

Ri = I + (K1i + 2K2i + 2K3i + K4i)/6, (22)

where I is a unit matrix. The amplitude at point zi+1 can be obtained
from amplitude at point zi by using this matrix. We have,

⇀

Y ((i + 1)h) = Ri ·
⇀

Y (ih). (23)
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By repeating Equation (23) for all sub-sections, the amplitudes at
z = L can be expressed as

⇀

Y (L) =
⇀

Y (Mh) = RM−1 ·
⇀

Y ((M − 1)h)

= RM−1 ·RM−2 ·
⇀

Y ((M − 2)h)

= RM−1 ·RM−2 · . . . ·Ri ·Ri−1 . . .R0 ·
⇀

Y (0)

= GRKM · ⇀

Y (0). (24)

where matrix GRKM is a transfer matrix of Runge-Kutta method.
To calculate transmission and reflection coefficients, (17) and (24)

can be written as[
⇀

A(L)
⇀

B(L)

]
=

[
G11 G21

G21 G22

][
⇀

A(0)
⇀

B(0)

]
, (25)

where G11, G12, G21 and G22 are submatrices of either GPUA in (17)
or GRKM in (24). Assume that core mode is incident from z = 0, and
no reflection wave exists at z = L.

⇀

A(L), the transmission amplitude
vector at z = L and

⇀

B(0), the reflection amplitude vector at z = 0 can
be expressed as

⇀

B(0) = G−1
22 ·

⇀

B(L)−G−1
22 ·G21 ·

⇀

A(0), (26)
⇀

A(L) =
(
G11 −G12 ·G−1

22 ·G21

) · ⇀

A(0) + G12 ·G−1
22 ·

⇀

B(L). (27)

We can obtain the transmission and reflection efficiencies of the core
mode:

T =
|A0(L)|2
|A0(0)|2 = |A0(L)|2 , R =

|B0(0)|2
|A0(0)|2 = |B0(0)|2 . (28)

5. RESULTS AND DISCUSSION

A step index fiber is considered in this paper. The FBG is assumed
to be made of a single mode fiber. For fiber structure, the radius of
core and cladding are r1 = 2.5µm and r2 = 62.5µm, respectively. The
corresponding refractive indices are n1=1.458 and n2 = 1.45. Consider
a Gaussian apodization profile of gratings with the grating period of
Λ = 0.53 µm. The maximum value of induced-index change n1σ(z) is
2.8×10−3, the FWHM = 4mm, the fringe visibility of the index change
in Equation (1) is 1, and the total length of the FBG is L = 4 mm [1, 2].

We choose PUA1 to calculate the spectrum of apodized FBGs.
Figs. 2(a) and 2(b) show the transmission spectrum and reflection
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spectrum of Gaussian-apodized FBGs calculated by PUA1 (solid line)
and RKM (dashed line). One core mode and twenty-four cladding
modes are calculated in this analysis. The grating region is divided
by 1000 sections by PUA1, while the step number of RKM is 1000.
Notably, the transmission and reflection spectra of apodized FBGs are
not symmetric at the resonant region. The 3 dB resonant region is from
1539.92 nm to 1541.70 nm, and the 3 dB bandwidth is 1.78 nm. For the
reflection spectrum, there are high sidelobes at short wavelength of the
resonant region, while very low sidelobe is at the long wavelength side.
The sidelobe suppression at the long wavelength side is 95.36% at the
wavelength of 1542.02 nm. The first sidelobe at the short wavelength
side occurs at the wavelength of 1539.87 nm with the reflection
efficiency of 0.993. The high sidelobes at the short wavelength are
caused by the dc index change of Gaussian apodization [1]. Note that
the contra-directional cladding mode coupling occurs at the wavelength
less than 1539 nm in Fig. 2(a) because both the transmitted and
reflected powers in Figs. 2(a) and 2(b) are decreased.

Since the apodized FBG problem is difficult to calculate, for the
sake of simplicity, many published results considered only the coupling
between a forward core mode and a backward core mode [4–6]. In
this paper we consider a total of 25 modes (1 core mode and 24
cladding modes) in CMEs (4)–(7). The comparison of the transmission
and reflection spectra between 1 mode and 25 modes are displayed in
Figs. 3(a) and 3(b), respectively, by using RKM with 1000 steps. We
find that both spectra computed from considering 1 mode slightly shift
0.03 nm toward the short wavelength when compared with those from
25 modes. The spectra in Figs. 3(a) and 3(b) in the long wavelength
side are similar, whereas the transmission spectra are very different
in Fig. 3(a) due to the contra-directional cladding mode coupling for
the wavelength less than 1539 nm. It is because the effective indices
of cladding modes increase with decreased wavelengths. When the
forward core mode is coupled with the backward cladding modes, the
transmission efficiencies decrease. On the other hand, the coupling
power does not transfer the forward power to backward core mode.
Therefore, the reflection efficiency of the core mode remains low.
Figs. 4(a) and 4(b) show that a significant error of the transmission
spectrum occurs without considering cladding mode coupling.

The differences of transmissivity and reflectivity calculated by
PUA1 and RKM are shown in Figs. 4(a) and 4(b), respectively. The
relative difference at resonance is less than those off resonance. The
differences in the resonant region are less than 10−9 and 10−8 for the
transmission and reflection efficiencies, respectively. The maximum
differences of transmissivity and reflectivity in Fig. 4 occur at the
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(a)

(b)

Figure 2. (a) The transmission spectrum of Gaussian-apodized
gratings, (b) the reflection spectrum of Gaussian-apodized gratings.
The solid line is calculated by PUA, the dash line is calculated by
RKM.

wavelength of 1539.92 nm, which locates at the edge of the resonant
region (the short wavelength side). Both differences of transmission
and reflection are less than 6.5 × 10−5. It is apparently that the
numerical errors of transmission and reflection are mainly caused by
the coefficients of A0 and B0 in (12), ∓(m/2)κ0(z) exp(±i2δ0z). Since
the exponential term exp(±i2δ0z) varies faster than κ0(z), it dominates
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Figure 3. (a) The transmission spectrum and (b) the reflection
spectrum of Gaussian-apodized gratings calculated by RKM with the
fundamental core mode and with a total of 25 modes (one fundamental
mode and 24 cladding modes).

the numerical error in the calculation. At resonance, the parameter of
the core mode δ0 in (8) approaches zero. The coefficients of A0 and
B0 in (12) are near constants. Therefore, A0 and B0 can be calculated
with small numerical error.

Since all calculated transmission and reflection powers approach
to those by RKM with large step numbers, high step RKM can provide
more accurate solutions than the other methods. We choose the
transmissivity and reflectivity obtained by RKM for 20000 steps as the
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reference results at 1539.92 nm. This point is chosen as the reference
because it is accurate to 12 decimal places. The wavelength is chosen
because of the maximum error occurred in Fig. 4. Figs. 5(a) and 5(b)
show the errors of transmission and reflectivity calculated by PUA1,
PUA2 and RKM as a function of the number of divided regions for
PUA and step number for RKM. The errors are caused by insufficient
discretization in both the PUA and RKM methods. They are defined
as the difference between calculated values and the reference results

(a)

(b)
Wavelength (nm)

Wavelength (nm)

1538

Figure 4. (a) The difference of the transmission efficiencies between
the PUA1 and RKM, (b) the difference of the reflection efficiencies
between the PUA1 and RKM.
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(a)

(b)

Figure 5. (a) The error of transmissivity by RKM, PUA1 and PUA2
as a function of step numbers at wavelength of 1539.92 nm, (b) the
error of reflectivity by RKM, PUA1 and PUA2 as a function of step
numbers at wavelength of 1539.92 nm.

(RKM with 20000 steps).
As shown in Fig. 5, the truncation error of transmissivity and

reflectivity for PUA1, PUA2 and RKM decrease with increased section
number or step number. Compare Figs. 5(a) with Fig. 5(b). The
calculated errors of PUA1, PUA2 and RKM for the transmission
efficiency (Fig. 5(a)) and the reflection efficiency (Fig. 5(b)) are very
similar. For RKM, when the step size h in Figs. 5(a) and 5(b) is
decreased by 10−1, the local truncation error decreases to 10−4 times.
That indicates the order of the local truncation error is h−4. The
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rate of convergence for RKM (or the local truncation error of RKM)
can also be denoted as O(h−4). The truncation error is the same as
theoretical results of the fourth-order RKM. On the other hand, both
PUA1 and PUA2 in Figs. 5(a) and 5(b) have similar decreased slopes
and represent the same local truncation error of h−2 when the step
number is greater than 100. It is noted that the error of PUA2 is
about 100 times of the error of PUA1. At the step number of 10000,
for example, the error of reflectivity of PUA2 is 5.66× 10−5, while the
error of PUA1 is 5.98× 10−7.

Table 1 lists the propagation constants βν and FBG parameters
κν , δν of the core mode and the first nine cladding modes. We can find
that δν is about two thousandth of κν for ν = 0. Although PUA2 is an
easy and simple method to discretize the apodized FBG, the numerical
error is acceptable and decreasing as we increase the steps. That
means for PUA2, the constant approximation of the exponential terms
exp(±i2δνz) in (12) does not produce significant numerical errors. It is
because the maximum value of 2δνL/2π in Table 1 is less than fifteen.
Since exp(±i2δνz) fluctuates at most fifteen cycles over the entire FBG
length (L = 4mm), as shown in Fig. 5, a number of 100 discrete
sections of PUA2 are sufficient to obtain reasonable numerical results
(about 7 points per wavelength). At the step number of 100, the error
of reflectivity of PUA1 and PUA2 are 5.98 × 10−5 and 5.71 × 10−3,
respectively. In general, PUA2 requires fewer numerical tasks than
PUA1. It provides acceptable numerical solutions in most apodized
FBG design projects. We also find that RKM has larger error than
PUA1 when the step size is less than 100 which is quite inadequate to

Table 1. The propagation constant βv and FBG parameters κν , δν at
λ = 1539.92 nm. The unit is given in MKS system (M−1).

ν mode βv × 10−6 κv × 10−6 δν × 10−3

0 HE1-1 5.92449 6.474421 −3.0479

1 HE1-2 5.91608 0.299193 −7.2513

2 EH1-1 5.91573 0.542415 −7.4276

3 HE1-3 5.91536 0.741188 −7.6090

4 EH1-2 5.91479 0.896998 −7.0610

5 HE1-4 5.91416 1.014942 −8.2091

6 EH1-3 5.91339 1.101888 −8.5966

7 HE1-5 5.91249 1.164313 −9.0451

8 EH1-4 5.91158 1.207436 −9.4995

9 HE1-6 5.91036 1.235133 −10.1121
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sample the sinusoidal amplitude fluctuation due to κν term in CMT
Equations (4)–(7). The RKM and PUA1 have similar truncation error
at the step number/section number of 200.

6. CONCLUSIONS

In this paper, the couple mode theory is applied to analyze the
Gaussian-apodized FBGs. Runge-Kutta method and the piecewise-
uniform approach are used to calculate the transmission and reflection
efficiencies of Gaussian-apodized FBGs. Two discretization methods,
PUA1 and PUA2, are proposed to discretize the apodization profile of
gratings.

We present the transmission and reflection spectra of Gaussian-
apodized FBGs and compare the difference of the results calculated
by PUA and RKM. Since the results by PUA1 and PUA2 approach
those by RKM with 10000 steps, the results by RKM of 10000 steps are
chosen as the reference number. The calculated results show that the
order of the local truncation error for RKM is h−4. The RKM produces
accurate results with fast convergent rate. The numerical procedure for
RKM can be easily developed to analyze apodized FBGs. Therefore,
RKM is a preferred method in solving apodized FBG problems when
high numerical accuracy is required. On the other hand, the convergent
rates of PUA1 and PUA2 are both O(h−2). At the section number of
100 and beyond, the errors of PUA2 for the transmission and reflection
efficiencies are 100 times larger than those of PUA1 at the wavelength
of 1539.92 nm. Nevertheless, PUA2 is a simpler method than PUA1,
and can provide acceptable numerical results in most cases.
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