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NUMERICAL ANALYSIS OF AUGMENTED PLANE WAVE METHODS

FOR FULL-POTENTIAL ELECTRONIC STRUCTURE CALCULATIONS*
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Abstract. This paper investigates the augmented plane wave methods which are widely used in

full-potential electronic structure calculations. These methods introduce basis functions that describe

different regions using different discretization schemes. We construct a nonconforming method based on

this idea and present an a priori error analysis for both linear Schrödinger type equations and nonlinear

Kohn−Sham equations. Some numerical experiments are presented to support our theory.
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1. Introduction

Electronic structure theory describes the energies and distributions of electrons, which plays a fundamen-
tal role in many different fields: materials science, biochemistry, solid-state physics, and surface physics. The
most widely used technique, which achieves so far the best compromise between accuracy and efficiency, is
Kohn−Sham (KS) density functional theory (DFT) [28, 32]. For a system consisting of M nuclei (located at
Rk ∈ �3 with charge Zk ∈ �, k = 1, . . . ,M) and N electrons, the KS-DFT model with local density approxi-
mation (LDA) gives rise to the following KS equations

HΦφi = λiφi, i = 1, . . . , N, (1.1)

where the KS orbitals Φ = {φ1, . . . , φN} ∈ (H1(�3))N satisfy the orthonormality conditions

∫

�3

φiφj = δij , and

λ1 ≤ λ2 ≤ . . . ≤ λN are the lowest N eigenvalues of HΦ. The Hamiltonian HΦ in (1.1) is given by

HΦ = −
1

2
∆ + Veff(ρΦ(r)) with Veff(ρΦ(r)) = vext(r) + vH(ρΦ(r)) + vxc(ρΦ(r)), (1.2)
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where ρΦ(r) =

N∑

i=1

|φi(r)|
2 is the electron density, veff(ρΦ(r)) represents the effective potential, vext(r) =

−
M∑

k=1

Zk

|r − Rk|
is the electrostatic potential generated by the nuclei, vH(ρΦ(r)) =

∫

�3

ρΦ(r′)

|r − r′|
dr′ is the Coulomb

potential representing interactions between the electrons, and vxc(ρΦ(r)) is the exchange-correlation potential.
A self-consistent field (SCF) iteration algorithm is commonly resorted to for this nonlinear problem. In each
iteration of the algorithm, a Hamiltonian HΦ̃ is constructed from a trial electronic state Φ̃, and a linear eigen-
value problem is then solved to obtain the low-lying eigenvalues. In this paper, we will focus on the periodic
versions of the KS models. In the periodic setting, the simulation domain is no longer �3, but a unit cell Ω of
some periodic lattice of �3. In the periodic KS framework, periodic boundary conditions are imposed to the KS
orbitals at the boundary of the simulation cell Ω, which is the standard method to compute condensed phase
properties with a limited number of atoms in the simulation cell.

In studies of the electronic structure of periodic solids, it is nature to use plane wave basis functions which cor-
respond to Bloch functions labeled by the k-vector of the first Brillouin zone. A pseudopotential approximation
(see, e.g. [39]) is always combined with the plane wave method, since in full-potential calculations, an extremely
large number of plane waves are needed to describe the cusps [24, 27] and the rapid oscillations of the electron
density. The pseudopotential approximations remove the core electrons, replace them and the strong ionic po-
tential by a smooth pseudopotential that acts on a set of pseudo wave functions rather than the true valence
wave functions, and hence allow the wave functions to be expanded using a much smaller basis set. Although
the pseudopotentials give satisfactory results in most cases, they sometimes fail, and to our best knowledge,
a mathematical analysis of the pseudopotential approximations is still lacking. The full-potential calculations
can be regarded as a benchmark for the pseudopotential calculations. Moreover, the core electrons have to be
considered sometimes and are responsible for many properties. Therefore, the full-potential calculations are
necessary in practice, where more efficient basis sets than plane waves shall be used.

One of the most commonly used methods in full-potential calculations is the augmented plane wave (APW)
method [39,45], which is among the most accurate methods of performing electronic structure calculations for
crystals. The APW method was originally proposed by Slater [47] in 1937. In spite of its demanding compu-
tational cost due to the energy dependency, it has been widely and successfully used (see e.g. [20]). Several
improvements of the basis set were tried to get rid of the energy dependency, the first really successful one
was the linearization scheme introduced by Andersen [3] in 1975, leading to the linearized augmented plane
wave (LAPW) method [31]. It was further developed by including local atomic orbitals (LAPW+lo) to have
enough variational flexibility in the radial basis functions [38,44,46]. Several widely used quantum chemistry and
solid-state physics softwares are based on these methods such as Exciting [54], FLEUR [53], and WIEN2k [55].

In the APW method, the unit cell Ω is partitioned into two types of regions (the so-called “muffin-tin”
division [39], see Fig. 1): (i) spheres Ci centered at atomic sites Ri with radius Ri, in which the effective
potential is assumed to be symmetric, i.e. Veff(ρΦ(r)) = V (|r − Ri|); (ii) the remaining interstitial region D .
The basis functions consist of augmentations of plane waves as follows

|Ω|−
1
2 eik·r →

⎧
⎪⎨
⎪⎩

|Ω|−
1
2 eik·r in D ,

∑

lm

αk

lmχl(ri, ε)Ylm(r̂i) in Ci,
(1.3)

where ri = r − Ri, r = |r|, r̂ = r/r, Ylm(r̂) denotes the spherical harmonic functions on S2, χl(r, ε) is the
solution of the radial Schrödinger equation at energy parameter ε

−
1

2r2
d

dr

(
r2

dχl

dr

)
+

(
l(l + 1)

2r2
+ V (r) − ε

)
χl = 0, (1.4)

and the coefficients αk

lm are determined such that each angular component of the basis function is matched
through the spherical surface (see Sect. 3). The philosophy of the APW method is a procedure for solving the
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Figure 1. The “muffin-tin” division of the unit cell Ω into spheres Ci centered at atoms and
interstitial region D .

KS equations of a many-electron system by introducing a basis set that is in some ways the “best of both
worlds”. The smoothly varying parts of the wave functions between the atoms are represented by plane waves,
and the rapidly varying parts near the nuclei are represented by radial atomic functions time spherical harmonics
inside the sphere around each nucleus.

The purpose of this paper is to construct a discretization method based on the idea of the (L)APW method in
order to provide a numerical analysis for full-potential electronic structure calculations. As far as we know, there
is no numerical analysis concerning the APW method in literature. We shall first consider linear Schrödinger type
eigenvalue problems with an effective potential, which appear in each step of the SCF iterations. Afterwards we
extend the analysis to the nonlinear KS equations under certain reasonable coercivity assumptions. Our analysis
shows that, in principle, the (L)APW approach can provide super algebraic and nearly exponential convergence
for full-potential calculations. This explains why the (L)APW codes are frequently used for sufficiently accurate
electronic structure calculations from a numerical point of view.

Standard plane wave and finite element methods for numerically solving (1.1) are based on variational princi-
ples, which consist in constructing a finite dimensional subspace of the Sobolev space H1(Ω). Such conforming
methods have been extensively studied for linear problems (see, e.g. [5, 14]). In contrast, the (L)APW basis
functions are not continuous on the spherical surface due to the truncation of angular momentums in (1.3),
so the finite dimensional approximation space no longer lies in H1(Ω). Therefore, one gets a nonconforming
method by using the (L)APW basis functions. There are a lot of existing results on analysis of the nonconform-
ing finite element methods for solving linear elliptic problems, see e.g. [17, 30, 36, 48]. The advantages of the
nonconforming idea lie in: (i) coupling different variational discretizations so as to take profit of the efficiency
of each of them; (ii) more flexible and economical adaptive procedures as the refinements can be made on the
subdomain where it is needed. The nonconforming idea in the APW method is also highly related to the mortar
methods, which match incompatible grids with a suitable variational operator ensuring an optimal transmission
of information between adjacent subdomains (see, e.g. [8–10]).

The KS equations form a nonlinear integro-differential eigenvalue problem with multiple eigenvalues to be
considered, for which the numerical analysis is a difficult task. To our best knowledge, there are only a handful of
very recent works concerning this problem, see, Cancès et al. [13], Chen et al. [16] and Suryanarayana et al. [49],
and none of these numerical analysis can be applied to the APW method. In this paper, we shall establish the
convergence of the eigenpair approximations and obtain an a priori error estimate, using the techniques that
are related to the arguments in [13,16,34]. The results in this paper deal with the a priori error analysis, while
the a posteriori error analysis is even more challenging and shall be investigated in our future works.

An outline of this paper is as follows. In Section 2, we state the model problem and some regularity results.
In Section 3, we construct a nonconforming method analogous to the (L)APW methods with a complete basis
set and obtain an a priori error estimate for linear eigenvalue problems. Further, the (L)APW methods are
investigated under this framework and a numerical analysis is given. In Section 4, we give an a priori error
estimate for ground state solutions of the nonlinear KS equations. In Section 5, we present several numerical
experiments to support our theoretical results. Finally, some concluding remarks are made in Section 6.
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2. Preliminary

Throughout this paper, we shall use C to denote a generic positive constant which may stand for different
values at its different occurrences and is independent of the discretization parameters. For convenience, the
symbol � will be used. The notation A � B means that A ≤ CB for some constant C that is independent of
the discretization parameters. For r ∈ �3, we shall denote by r = |r| and r̂ = r/r. Moreover, we shall denote∑∞

l =0

∑l
m =−l by

∑
lm, and

∑L
l =0

∑l
m =−l by

∑L
lm for simplicity.

Let Ω ⊂ �3 be the simulation domain with periodic boundary conditions. We denote by R the periodic lattice,
and by R∗ the dual lattice. For simplicity, we assume that Ω = [− ℓ

2 ,
ℓ
2 ]3 (ℓ > 0), R = ℓ�3, and R∗ = 2π

ℓ �
3. For

k ∈ R∗, we denote by ek(r) = |Ω|−1/2eik·r the plane wave with wave vector k. The family {ek}k∈R∗ forms an
orthonormal basis set of

L2
#(Ω) = {u ∈ L2

loc(�
3) : u is R-periodic}.

For all u ∈ L2
#(Ω), we have

u(r) =
∑

k∈R∗

ûkek(r) with ûk = |Ω|−1/2

∫

Ω

u(r)e−ik·rdr.

We introduce the Sobolev spaces of R-periodic functions

Hs
#(Ω) =

{
u(r) =

∑

k∈R∗

ûkek(r) :
∑

k∈R∗

(1 + |k|2)s|ûk|
2 < ∞

}
,

where s ∈ �+ and k = |k|. For K ∈ �, we define

VK =

⎧
⎨
⎩vK ∈ L2

#(Ω) : vK(r) =
∑

k∈R∗,|k|≤ 2π
ℓ K

ckek(r)

⎫
⎬
⎭ .

For all s ∈ �+ and each v ∈ Hs
#(Ω), the best approximation of v in VK for Hr-norm (r ≤ s) is

ΠKv =
∑

k∈R∗,|k|≤2π
ℓ K

v̂kek(r).

The more regular v, the faster the convergence of this truncated series to v: for real numbers r and s with
0 < r ≤ s, we have

‖v −ΠKv‖Hr
#(Ω) = min

vK∈VK

‖v − vK‖Hr
#(Ω) � Kr−s‖v‖Hs

#(Ω) ∀ v ∈ Hs
#(Ω). (2.1)

As a model problem, we consider the following Schrödinger type linear eigenvalue problem, which can be
viewed as a linearization of (1.1): find λ ∈ � and u ∈ H1

#(Ω) such that ‖u‖L2(Ω) = 1 and

a(u, v) = λ(u, v) ∀ v ∈ H1
#(Ω), (2.2)

where the bilinear form a : H1
#(Ω) ×H1

#(Ω) → � is defined by:

a(u, v) =
1

2

∫

Ω

∇u · ∇v +

∫

Ω

Veffuv (2.3)

with the effective potential Veff being a smooth potential except at the positions of nuclei (see (2.7)).
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It is sufficient for us to consider the system with a single nucleus located at the origin, the algorithms and
analysis of which can be easily generalized to multi-nuclei systems. Throughout this paper, we shall denote
by C the sphere centered at the origin, by R the radius of the sphere, by Γ the spherical surface, and by D the
interstitial region.

Note that the plane wave approximations of (2.2) can not achieve as good convergence rate as (2.1) due to
the cusps of electron density at the nuclear positions (see, e.g. [22–24]). In our analysis, we rely on the regularity
result in weighted Sobolev space for Schrödinger type eigenvalue problems, which is developed in [21]. This type
of analysis has been introduced to investigate singularities of boundary value problems in conical domains with
corners and edges, we refer to [6, 19, 26] for more details. In our case the geometry is fairly simple, while the
singular electrostatic potential generated by the nuclei fits perfectly in this treatment.

Let � ∈ L2
#(Ω) be a continuous function such that �(r) = r in the neighborhood of 0, � ∈ C∞

loc(�
3 \ S) with

S = ℓ�3 being the set of singular points of �, and �(r) > 0 for r ∈ �3 \ S. We define the kth weighted Sobolev
space with index γ by

Kk,γ(Ω) =
{
u ∈ L2

#(Ω) : �|α|−γ∂αu ∈ L2
#(Ω) ∀ |α| ≤ k

}
, (2.4)

where k ∈ � and γ ∈ �. Note that the difference between the Sobolev space Hk(Ω) and the weighted Sobolev
space Kk,γ(Ω) only lays in the introduction of weight function �|α|−γ . Consider a subspace of Ks,γ(Ω) consisting
of functions with the asymptotic expansions

u(r) ∼
∑

j∈�0

cj(r̂)r
j as r → 0, (2.5)

where cj belongs to the finite dimensional subspace Mj = span{Ylm, 0 ≤ l ≤ j, |m| ≤ l} ⊂ C∞(S2). We define
the weighted Sobolev spaces with asymptotic type (2.5) as

K
k,γ(Ω) =

⎧
⎨
⎩u ∈ Kk,γ(Ω) : u(r) − ω(r)

N∑

j=0

cj(r̂)r
j ∈ Kk,γ+N (Ω), ∀ N ∈ �

⎫
⎬
⎭ , (2.6)

where ω(r) is a smooth cut-off function, i.e. ω = 1 near 0 and ω = 0 outside some neighborhood of 0. More

precisely, u(r) − ω(r)
∑N

j=0 cj(r̂)r
j in Definition (2.6) should be the periodic extension of the function defined

on Ω by this expression.

Definition 2.1. A function u is called asymptotically well behaved if u ∈ K ∞,γ(Ω) for γ < 3/2.

We shall make the assumption on the effective potential that

Veff(r) = vext(r) + vH(ρ(r)) + vs(r) with vs ∈ C∞
# (Ω), (2.7)

where vext(r) is a periodic function that equals −Z/|r| (Z ∈ �) in the neighborhood of 0, and belongs to
C∞

loc(�
3 \ S), ρ is an asymptotically well behaved function, and

C∞
# (Ω) = {v ∈ C∞

loc(�
3) : v is R-periodic}.

Here, vH(ρ(r)) denotes the R-periodic Coulomb potential generated by the R-periodic electron density ρ:

vH(ρ(r)) = 4π
∑

k∈R∗\{0}

|k|−2ρ̂kek(r). (2.8)

The following lemma concerning the regularity of the eigenfunctions of (2.2) is heavily used in our analysis, the
proof of which is given in ([21], Thms. 1, 4 and Prop. 1).



760 H. CHEN AND R. SCHNEIDER

Lemma 2.2. If u is an eigenfunction of (2.2) with Veff satisfying (2.7), then u is asymptotically well behaved.

Lemma 2.3. For any s > 0 and k ∈ �, k > s + 3
2 , if u ∈ K k,γ(Ω) with γ < 3/2, then the restriction of u to

C satisfies u|C ∈ Hs([0, R] × S2).

Proof. For any s > 0, we take k > s+
3

2
, and express the function u ∈ K k,γ(Ω) as

u(r) = ω(r)

m∑

j=0

cj(r̂)r
j + Φm+1(r), (2.9)

where Φm+1 ∈ Kk,β(Ω) with β <
3

2
+ m. For sufficiently large m, Φm+1 ∈ Kk,k(Ω). Therefore, we have from

the Definition (2.4) that

∑

|α|≤k

∫

C

�2|α|−2k|∂αΦm+1|
2 < ∞.

This implies Φm+1 ∈ Hk(C ). According to Sobolev’s lemma, we have Hk(C ) ⊂ Cs(C ) for s < k−
3

2
, and hence

Φm+1 ∈ Hs([0, R] × S2).

Note that the first part of (2.9) already belongs to C∞([0, R]× S2), we obtain u|C ∈ Hs([0, R]× S2), which
completes the proof. �

The following lemma will be used in our analysis, which states the relationship between two Sobolev norms.

Lemma 2.4. If v ∈ H1(C )
⋂
H1([0, R] × S2), then there exists a constant C such that

‖v‖H1(C ) ≤ C‖v‖H1([0,R]×S2).

Proof. Since in spherical coordinates

∆ =
1

r2
∂

∂r

(
r2

∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂2φ
, (2.10)

where the last two terms multiplied by r2 is ∆S2 , i.e. the Laplace–Beltrami operator on S2. We have

‖v‖2
H1(C ) = −

∫

C

v∆v +

∫

Γ

v
∂v

∂r

∣∣∣∣
r=R

+

∫

C

v2

=

∫ R

0

r2dr

∫

S2

(
v2 +

(
∂v

∂r

)2
)

−

∫ R

0

dr

∫

S2

(v∆S2v)

≤ R2

∫

S2

‖v‖2
H1([0,R]) +

∫ R

0

‖v‖2
H1(S2)dr

≤ C‖v‖2
H1([0,R]×S2),

where Green’s formula is used for the second equality. This completes the proof. �
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3. Error estimates for linear Schrödinger type equations

In this section, we shall consider a nonconforming approximation of (2.2) and extend the analysis to the
(L)APW methods. We introduce the broken Sobolev space

H#δ(Ω) =
{
v ∈ L2

#(Ω) : v|C ∈ H1(C ), v|D ∈ H1(D)
}

(3.1)

equipped with the broken Sobolev norm

‖v‖δ = ‖v‖H1(C ) + ‖v‖H1(D).

Define the subspace H#L(Ω) ⊂ H#δ(Ω) by

H#L(Ω) = {v ∈ H#δ(Ω) : b(v, ψ) = 0, ∀ ψ ∈ ML} , (3.2)

where ML = span{Ylm, 0 ≤ l ≤ L, |m| ≤ l} and the bilinear form b : L2
#(Ω) × L2(S2) → � is given by

b(v, ψ) =

∫

Γ

ψ(v+ − v−)dΓ

with v± being the traces of v taken from outside and inside the sphere, respectively.

Note that Definition 2.1 and Lemma 2.3 imply that an asymptotically well behaved function belongs to
Hs([0, R] × S2) in the sphere and Hs(D) in the interstitial region for any s > 0. For simplicity of notation, we
introduce the space

H̃s
L(Ω) = {v ∈ H#L(Ω) : v|D ∈ Hs(D), v|C ∈ Hs([0, R] × S2)}

with the induced norm

‖v‖H̃s
L(Ω) = ‖v‖Hs(D) + ‖v‖Hs([0,R]×S2).

3.1. A nonconforming method

Define the space of functions on D expanded in plane waves

PK(D) =

⎧
⎨
⎩u ∈ H1(D) : u(r) =

∑

|k|≤ 2π
L K

ckek(r)|D

⎫
⎬
⎭

and the space of functions on C expanded in polynomial times spherical harmonics

BNL(C ) =

{
u ∈ H1(C ) : u(r) =

L∑

lm

N∑

n=0

cnlmχn(r)Ylm(r̂)

}
,

where {χn}
N
n =0 forms a basis set of the space of polynomials on [0, R] with degree at most N . Let

SK
NL(Ω) =

{
u ∈ L2

#(Ω) : u|C ∈ BNL(C ) and u|D ∈ PK(D)
}

(3.3)

and ̺ = min{K,N,L}. We may assume throughout this paper that ̺ ≥ C max{K,N,L}.
Based on the above constructions, we have the nonconforming approximation space

V̺(Ω) = H#L(Ω) ∩ SK
NL(Ω), (3.4)
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which does not lie in H1
#(Ω). The nonconforming approximation of (2.2) is: find λ̺(= λK

NL) ∈ � and

u̺(= uK
NL) ∈ V̺ such that ‖u̺‖L2(Ω) = 1 and

aδ(u̺, v) = λ̺(u̺, v) ∀ v ∈ V̺, (3.5)

where the bilinear form aδ(·, ·) : H#δ(Ω) ×H#δ(Ω) → � is given by

aδ(u, v) =
1

2

∫

C

∇u · ∇v +
1

2

∫

D

∇u · ∇v +

∫

Ω

Veffuv. (3.6)

Since vext ∈ L2
#(Ω) and

∫

Ω

vH(ρ)uv ≤ CH‖ρ‖L2(Ω)‖u‖L2(Ω)‖v‖L2(Ω) (CH is a constant, see [13], (3.17)), we

have from (2.7) that for all v ∈ H#δ(Ω),

aδ(v, v) ≥
1

2
‖∇v‖2

L2(C ) +
1

2
‖∇v‖2

L2(D) − ‖vext‖L2(Ω)‖v‖
1/2
L2(Ω)‖v‖

3/2
L6(Ω)

−CH‖ρ‖L2(Ω)‖v‖
2
L2(Ω) − ‖vs‖L∞(Ω)‖v‖

2
L2(Ω)

≥ C‖v‖2
δ − ν‖v‖2

L2(Ω), (3.7)

where C and ν are positive constants. Using a shift of the bilinear form aν
δ (u, v) = aδ(u, v) + ν(u, v), (3.5) is

equivalent to
aν

δ (u̺, v) = (λ̺ + ν)(u̺, v) ∀ v ∈ V̺

with the same (λ̺, u̺). Therefore, we may assume afterwards without loss of generality that there exists C > 0,
such that

aδ(v, v) ≥ C‖v‖2
δ ∀ v ∈ H#δ(Ω). (3.8)

Note that (3.8) together with the fact H1
#(Ω) ⊂ H#δ(Ω) implies a(v, v) ≥ C‖v‖H1

#(Ω) for all v ∈ H1
#(Ω).

To obtain the a priori error estimate of the nonconforming approximations, we shall first construct a basis
set of V̺. Let {χn}N

n=0 be a basis set that spans the space of polynomials on [0, R] with degree at most N and
satisfies (see, e.g. Fig. 2)

χn(R) = 0 for n = 0, . . . , N − 1, and χN (r) =
r

R
· (3.9)

Note that the subspace B̃NL ⊂ BNL defined by

B̃NL =

{
u ∈ H1

0 (C ) : u(r) =

L∑

lm

N−1∑

n=0

cnlmχn(r)Ylm(r̂)

}

is a finite dimensional subspace of H1
0 (C ).

Define

ωk(r) =

⎧
⎪⎪⎨
⎪⎪⎩

|Ω|−
1
2 eik·r in D ,

L∑

lm

βk

lmχN (r)Ylm(r̂) in C ,

where the coefficients

βk

lm = |Ω|−1/24πiljl(kR)Y ∗
lm(k̂)/χN(R) (3.10)
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0 R

χ0

0 R

χ1

0 R

χN−1

0 R

χN· · ·

Figure 2. Schematic plots of radial basis functions χn(r) n = 0, . . . , N satisfying (3.9).

are determined by the continuity constraint in (3.2) together with the scattering expansion [40]

eik·r = 4π
∑

lm

iljl(kr)Y
∗

lm(k̂)Ylm(r̂). (3.11)

Set Ṽ̺ = B̃NL ⊕ span{ωk(r) : |k| ≤ K}. It is obvious from the definition of ωk that Ṽ̺ ⊂ V̺, which together
with the fact

dim(V̺) = dim(PK) + dim(BNL) − dim(ML) = dim(PK) + dim(B̃NL) = dim(Ṽ̺)

implies V̺ = Ṽ̺. Having a set of basis functions that span V̺, we can derive the error for the best approximation
in this finite dimensional space.

Lemma 3.1. If u ∈ H̃s
L(Ω) for s > 3/2, then there exists a constant C such that

inf
v̺∈V̺

‖u− v̺‖δ ≤ C̺−(s−3/2)‖u‖H̃s
L(Ω). (3.12)

Proof. Split u into two parts u = u1 + u2 such that

u1(r) =

{
u(r̂R) ·

r

R
in C

u in D
and u2 = u− u1 ∈ H1

0 (C ),

where u(r̂R) is the trace of u|C on Γ . We approximate these two parts separately.
To approximate u1, we shall first extend u|D smoothly into the sphere C . Note that u can be represented by

u(r) =
∑

lm

ulm(r)Ylm(r̂)

around the sphere surface with ulm(r) =

∫

S2

u(r)Ylm(r̂). We can define

ũ(r) =

⎧
⎨

⎩

u(r) in D ,
∑

lm

ϕlm(r)Ylm(r̂) in C , (3.13)

where ϕlm(r) = τ(r)

s̄+1∑

n=1

cnulm(R +
1

n
(R − r)) with s̄ being the ceil integer of s, cn being the coefficients such

that

s̄+1∑

n=1

(−
1

n
)kcn = 1 (k = 0, 1, . . . , s̄), and τ ∈ C∞([0, R]) satisfying τ = 0 in [0, R

3 ] and τ = 1 in [2R
3 , R]. We

observe by a direct calculation that u ∈ Hs(D) leads to ũ ∈ Hs(Ω), and

‖ũ‖Hs(Ω) ≤ βs‖u‖Hs(D), (3.14)
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where the constant βs is only related to s, R and ‖τ‖Hs[0,R]. Let

c̃k = |Ω|−1/2

∫

Ω

ũ(r)e−ik·rdr and v1 =
∑

|k|≤K

c̃kωk. (3.15)

We have from (3.14) that

‖u1 − v1‖H1(D) = ‖ũ−
∑

|k|≤K

c̃kek‖H1(D) ≤ ‖ũ−
∑

|k|≤K

c̃kek‖H1(Ω)

≤ CK−(s−1)‖ũ‖Hs(Ω) ≤ CβsK
−(s−1)‖u‖Hs(D). (3.16)

Using Lemma 2.4, the definition of ωk, and the trace theorem, we have

‖u1 − v1‖H1(C ) � ‖u1 − v1‖H1([0,R]×S2)

= ‖χN(r)
(
u(r̂R) − v1(r̂R)|C

)
‖H1([0,R]×S2)

� ‖u− v1|C ‖H1(Γ )

� ‖v1|C − v1|D‖H1(Γ ) + ‖u− v1|D‖H1(Γ )

� L−(s−3/2)‖v1‖Hs(D) + ‖u− v1‖H3/2(D). (3.17)

Using the same argument as that in (3.16), we can derive

‖u− v1‖H3/2(D) � K−(s−3/2)‖u‖Hs(D),

which together with (3.16) and (3.17) leads to

‖u1 − v1‖δ ≤ C(L−(s−3/2) +K−(s−3/2))‖u‖Hs(D). (3.18)

For approximation of u2, we define the projection PN : H1([0, R]) → ΨN = span{χn, 0 ≤ n ≤ N − 1}
satisfying

(∇(v − PNv),∇ψ) = 0 ∀ ψ ∈ H1([0, R])

and the projection PL : L2(S2) → ML = span{Ylm, 0 ≤ l ≤ L, |m| ≤ l} by

PLϕ(r̂) =

L∑

lm

ϕ̌lmYlm(r̂) with ϕ̌lm =

∫

S2

ϕ(r̂)Ylm(r̂).

Define the projection �NL : H1([0, R] × S2) → ΨN ×ML by �NL = PN ◦ PL. Using standard error estimates
for polynomial and spherical harmonics approximations, we obtain that for any u2 ∈ H1

0 (C ) ∩Hs([0, R] × S2),

‖u2 − �NLu2‖H1([0,R]×S2) ≤ C(L−(s−1) +N−(s−1))‖u2‖Hs([0,R]×S2) ∀ s > 1. (3.19)

Taking v2 = �NLu2, we have from Lemmas 2.4 and (3.19) that

‖u2 − v2‖H1(C ) ≤ ‖u2 − v2‖H1([0,R]×S2)

≤ C(L−(s−3/2) +N−(s−3/2))‖u2‖Hs−1/2([0,R]×S2) ∀ s > 3/2. (3.20)

Note that

‖u2‖Hs−1/2([0,R]×S2) ≤ ‖u‖Hs−1/2([0,R]×S2) + ‖u(r̂R)
r

R
‖Hs−1/2([0,R]×S2)

� ‖u‖Hs−1/2([0,R]×S2) + ‖u‖Hs−1/2(Γ )

� ‖u‖Hs([0,R]×S2) + ‖u‖Hs(D).
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We can derive (3.12) by taking (3.18), (3.20) and the fact v1 + v2 ∈ V̺ into account. This completes the
proof. �

Remark 3.2. We shall mention that the error estimate obtained in Lemma 3.1 may not be optimal, one would
expect ̺−(s−1) instead. The reason lies in that the approximation of u we construct in the proof is not a direct
projection onto the finite dimensional space V̺. Instead, we project u|D onto PK , and the approximation of u|C
in the sphere is partially determined by the approximation outside the sphere through the surface Γ . This
process may lead to a loss of accuracy.

Nevertheless, if the function u has sufficiently high regularity (for instance, if u is asymptotically well behaved,
then s can be arbitrarily large by Lem. 2.2), then we may be satisfied with this convergence rate.

Define the operator T : L2
#(Ω) → H1

#(Ω) such that for f ∈ L2
#(Ω),

a(Tf, v) = (f, v) ∀ v ∈ H1
#(Ω). (3.21)

Then (2.2) is equivalent to the operator form Tu = λ−1u. We also define the operator T̺ : L2
#(Ω) → V̺ such

that for f ∈ L2
#(Ω),

aδ(T̺f, v) = (f, v) ∀ v ∈ V̺. (3.22)

We have that (3.5) is equivalent to T̺u̺ = λ−1
̺ u̺. Note that T and T̺ are well-defined due to (3.8). One can

prove that T and T̺ are self-adjoint operators on L2
#(Ω) and satisfy the following lemma.

Lemma 3.3. If Tf ∈ H̃s
L(Ω) for s > 3/2 and f ∈ L2

#(Ω), then there exists a constant C such that

‖Tf − T̺f‖δ ≤ C̺−(s−3/2)‖Tf‖H̃s
L(Ω). (3.23)

Proof. Let u = Tf and u̺ = T̺f . Processing in a standard way (see, e.g. [11, 12, 42]), we get

‖u− u̺‖δ ≤ C

(
inf

v̺∈V̺

‖u− v̺‖δ + sup
v̺∈V̺

aδ(u− u̺, v̺)

‖v̺‖δ

)
(3.24)

and

aδ(u− u̺, v̺) = b(v̺, ϕ− ψL) ∀ v̺ ∈ V̺, ∀ ψL ∈ ML

with ϕ =
∂u

∂n
, which together imply

‖u− u̺‖δ ≤ C

(
inf

v̺∈V̺

‖u− v̺‖δ + sup
v̺∈V̺

inf
ψL∈ML

b(v̺, ϕ− ψL)

‖v̺‖δ

)
· (3.25)

The first term in the right-hand side of (3.25) is the best approximation error, which has been obtained in
Lemma 3.1. The second term is nothing else than the consistency error, which indicates the variational crime
committed by the nonconforming discretization.

For the consistency error, we have

inf
ψL∈ML

b(v̺, ϕ− ψL) = inf
ψL∈ML

∫

Γ

(v+
̺ − v−̺ )(ϕ− ψL)

≤ inf
ψL∈ML

‖v+
̺ − v−̺ ‖H1/2(Γ )‖ϕ− ψL‖H−1/2(Γ )

≤ CL−(s−1)(‖v+
̺ ‖H1(C ) + ‖v−̺ ‖H1(D))

∥∥∥∥
∂u

∂n

∥∥∥∥
Hs−3/2(Γ )

≤ CL−(s−1)‖v̺‖δ‖u‖Hs(D), (3.26)

where the trace inequality is used.
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Taking (3.12), (3.25) and (3.26) into account, we obtain (3.23), which completes the proof. �

Denote by ϑ(T ) the spectrum and ρ(T ) the resolvent set respectively of the solution operator T . For any
z ∈ � in ρ(T ), we define the resolvent operator Rz(T ) = (z − T )−1. Let λ−1 be an eigenvalue of T and γ be
a circle in the complex plane centered at λ−1, which does not enclose any other point of ϑ(T ). We define the
operators E and E̺ by

E = E (λ−1) =
1

2πi

∫

γ

Rz(T )dz, E̺ = E̺(λ
−1) =

1

2πi

∫

γ

Rz(T̺)dz.

If K,N,L are sufficiently large, then E and E̺ are the spectral projectors (relative to λ−1) of T and T̺

respectively.

To evaluate the distance between eigenspaces, we need a suitable notation. Let X and Y be two closed
subspaces of H#L(Ω). We define (see, e.g. [41])

δ̂(X,Y ) := sup
x∈X, ‖x‖L2(Ω)=1

inf
y∈Y, ‖y‖L2(Ω)=1

‖x− y‖δ

and denote the gap between X and Y by

Æ(X,Y ) = max{δ̂(X,Y ), δ̂(Y,X)}.

The following theorem is the main result of this section, which states the convergence rate of the nonconforming
eigenpair approximations.

Theorem 3.4. Let λ be an eigenvalue of (2.2) with dim(R(E )) = m, where R denotes the range. If (2.7)
is satisfied and ̺ is sufficiently large, then there exist m eigenvalues λ1,̺, . . . , λm,̺ of (3.5) such that for any

s > 3/2,

sup
1≤i≤m

|λ− λi,̺| + Æ(R(E ),R(E̺)) ≤ Cs̺
−(s−3/2), (3.27)

where Cs is a constant depending on s.

Proof. Similar to (2.10), we have

−
1

2
∆ + Veff = −

1

2r2

[
∂

∂r

(
r2

∂

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂2φ
− 2r2Veff

]

in spherical coordinates. For operators of this form, one can apply the regularity results in ([19], p. 257, Thm. 9
and (8.137)). More precisely, for any f ∈ L2

#(Ω), we have Tf ∈ H̃2
L(Ω) and

‖Tf‖H̃2
L(Ω) ≤ C‖f‖L2(Ω). (3.28)

For any f ∈ L2
#(Ω), we have the following very rough L2-error estimate

‖(T − T̺)f‖L2(Ω) ≤ ‖Tf − T̺f‖δ � ̺−1/2 ‖Tf‖H̃2
L(Ω) � ̺−1/2‖f‖L2(Ω), (3.29)

where Lemmas 3.3 and (3.28) are used. Therefore, we have

lim
̺→∞

‖T − T̺‖L (L2
#(Ω),L2

#(Ω)) ≤ C lim
̺→∞

̺−1/2 = 0. (3.30)
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Using (3.30) and the result in Theorem 1 of [41], we have the convergence of the eigenvalues (i.e., there exist
m eigenvalues λ1,̺, . . . , λm,̺ of (3.5) such that lim

̺→∞
|λ− λi,̺| = 0, i = 1, . . . ,m) and

Æ(R(E ),R(E̺)) � ‖T − T̺‖L (R(E ),H#δ(Ω)). (3.31)

It is now only necessary for us to estimate the right-hand side of (3.31). Using Lemma 3.3, the regularity
results in Lemma 2.2, 2.3, and the fact Tv = λ−1v for v ∈ R(E ), we have

‖T − T̺‖L (R(E ),H#δ(Ω)) ≤ sup
v∈R(E ),‖v‖L2(Ω)=1

‖Tv − T̺v‖δ

≤ C̺−(s−3/2) sup
v∈R(E ),‖v‖L2(Ω)=1

‖v‖H̃s
L(Ω)

≤ Cs̺
−(s−3/2) ∀ s >

3

2
· (3.32)

This completes the estimate for Æ(R(E ),R(E̺)).
For eigenvalue estimate, we obtain by a simple calculation that

λ̺ − λ = aδ(u− u̺, u− u̺) − λ(u− u̺, u− u̺) + 2D̺ (3.33)

with the consistency error

|D̺| = |aδ(u, u̺) − λ(u, u̺)| =

∣∣∣∣
∫

Γ

∂u

∂n
(u+

̺ − u−̺ )

∣∣∣∣

≤ inf
ψL∈ML

∥∥∥∥
∂u

∂n
− ψL

∥∥∥∥
H−1/2(Γ )

‖u+
̺ − u−̺ ‖H1/2(Γ )

≤ CL−(s−1)‖u‖Hs(D)‖u̺‖δ, (3.34)

where similar argument as that in (3.26) is used.
For any eigenpair (λi,̺, ui,̺) of (3.5) with 1 ≤ i ≤ m, we can find an eigenfunction u ∈ R(E ) and ‖u‖L2(Ω) = 1,

such that ‖ui,̺ −u‖̺ ≤ C̺−(s−3/2). This together with (3.33) and (3.34) leads to |λ−λi,̺| ≤ C̺−(s−3/2), which
completes the proof of (3.27). �

3.2. APW method

The APW method can be viewed as a modified method of the nonconforming scheme under the assumption
that the effective potential is spherically symmetric inside the atomic sphere C , say Veff(r) = V (r) for r ≤ R.
It replaces the radial basis function χN (r) by χl(r, E), which is the regular solution of the following radial
Schrödinger equation with parameter E:

−
1

r2
d

dr

(
r2

dχl

dr

)
+

(
l(l + 1)

r2
+ V (r) − E

)
χl = 0 ∀ r ∈ [0, R]. (3.35)

The approximation space is V E
KL = span{ωE

kL}|k|≤K with

ωE
kL(r) =

⎧
⎪⎪⎨
⎪⎪⎩

|Ω|−
1
2 eik·r in D ,

L∑

lm

αk

lmχl(r, E)Ylm(r̂) in C ,
(3.36)
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where the coefficients αk

lm are determined by the expansion (3.11) as

αk

lm = 4πiljl(kR)Y ∗
lm(k̂)/χl(R,E) (3.37)

so that the constraint in (3.2) is satisfied. Since the effective potential is spherically symmetric, {ωE
kL(r)}|k|<K

are solutions of the Schrödinger type equation inside the sphere, but only with the eigenvalue E. Consequently,
E must be set equal to the eigenvalue to be calculated. This leads to a nonlinear eigenvalue problem: find
λKL ∈ � and 0 �= uKL ∈ V λKL

KL , such that

aδ(uKL, v) = λKL(uKL, v) ∀ v ∈ V λKL

KL , (3.38)

where aδ(·, ·) is given by (3.6). Solving (3.38) is a very computationally demanding procedure. Using the root-
tracing method (see, e.g. [39]), one has to choose a parameter E, solve the radial Schrödinger equation to
obtain the APW basis functions and set up the matrix elements. The determinant has to be computed, which
is expected to vanish according to (3.38) but does not with an incorrect parameter. One has to vary the trial
parameters in an appropriate domain to numerically find the zeros of this determinant (see [44] or Example 2 in
Sect. 5). This is the main drawback of the APW method, which works for simple systems with a few eigenvalues
only.

Another, less serious, difficulty of the APW method is the so-called asymptote problem (see [45]): the eigen-
value dependent APW basis functions must be evaluated for a large number of parameters, and sometimes one
might hit a parameter E for which χl(R,E) equals zero at the spherical surface. Inserting this in (3.37) will
yield infinite coefficients αk

lm and can not match the basis functions at the spherical surface. Therefore, we shall
always assume that χl(R,E) ≥ α with some constant α > 0 for any l ∈ �, which can be achieved by varying
the radius of the atomic sphere.

In the following, we shall give a convergence analysis of the APW approximations. Note that we search the
eigenvalue approximations in a finite domain that contains the eigenvalues to be calculated (in fact, we can
derive that for each L, {λKL}K∈� is a non-increasing sequence bounded below by lim

K,N→∞
λK

NL with λK
NL being

the eigenvalue of (3.5)). Consequently, we have limiting points in this domain when K and L go to infinity.
Let λ∞ be any accumulation point, i.e., there exists a subsequence of eigenpairs, which we still denote by
{(λKL, uKL)}K,L∈�, such that

lim
K,L→∞

|λKL − λ∞| = 0. (3.39)

We have from (3.8) that

λKL = aδ(uKL, uKL) ≥ C‖uKL‖
2
δ,

which implies that {uKL}K,L∈� is bounded in H#δ. Banach-Alaoglu Theorem yields that there exists a weakly
convergent subsequence {uKjLj}j∈�, such that

uKjLj ⇀ u∞ in H#δ(Ω) as j → ∞ (3.40)

for some u∞ ∈ H1
#(Ω). For simplicity of notation, we shall denote the sequence {(λKjLj , uKjLj )}j∈� by

{(λj , uj)}j∈� afterwards. Using Sobolev’s imbedding theorem, we have that uj converges to u∞ in Lq(Ω)
for 1 ≤ q < 6, which leads to

lim
j→∞

∫

Ω

Veff(r)(u2
∞ − u2

j)dr = 0. (3.41)

Therefore, we derive from (3.39) and (3.41) that ‖uj‖δ → ‖u∞‖δ, which together with (3.40) yields

uj → u∞ in H#δ(Ω).
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Theorem 3.5. If Veff(r) is a spherically symmetric potential in C and satisfies (2.7), then the limiting pair

(λ∞, u∞) is an eigenpair of (2.2), that is

a(u∞, v) = λ∞(u∞, v) ∀ v ∈ H1
#(Ω). (3.42)

Moreover, for the sequence of eigenpairs {(λj , uj)}j∈� that converges to (λ∞, u∞), there exists a constant Cs

such that

|λ∞ − λj | + ‖u∞ − uj‖δ ≤ Cs(K
−(s−1)
j + L

−(s−1)
j ), (3.43)

where s > 1 and j is sufficiently large.

Proof. Since Veff(r) = V (r) and χl(r, λj) satisfies the radial Schrödinger equation, we have that for uj ∈ V
λj

KjLj
,

there holds
(
−

1

2
∆ + Veff

)
uj = λjuj in C . (3.44)

Denote by aC (w, v) =
1

2

∫

C

∇w ·∇v+

∫

C

Veffwv and aD(w, v) =
1

2

∫

D

∇w ·∇v+

∫

D

Veffwv. For any v ∈ C∞
# (Ω),

we have

aδ(uj , v) − λj(uj , v) = aδ(uj , vj) − λj(uj , vj) + aδ(uj , v − vj) − λj(uj , v − vj)

= aC (uj, v − vj) + aD(uj , v − vj) − λj(uj , v − vj)

=
1

2

∫

Γ

∂uj|C
∂n

(v − vj |C ) + aD(uj , v − vj) − λj

∫

D

uj(v − vj)

�
(
‖v − vj‖H1(D) + ‖vj|C − vj |D‖H1/2(Γ )

)
‖uj‖δ ∀ vj ∈ V

λj

KjLj
,

where (3.44) is used for the third equality. Note that for any v ∈ C∞
# (Ω), we can find vj ∈ V

λj

KjLj
such that

‖v − vj‖H1(D) → 0 as j → ∞. This together with the fact lim
j→∞

‖vj |C − vj |D‖H1/2(Γ ) = 0 leads to

lim
j→∞

aδ(uj , v) − λj(uj , v) = 0 ∀ v ∈ C∞
# (Ω). (3.45)

Since C∞
# (Ω) is dense in H1

#(Ω), we have that (3.45) holds for all v ∈ H1
#(Ω).

Note that

|a(u∞, v) − λ∞(u∞, v)| = |aδ(u∞, v) − λ∞(u∞, v)|

≤ |aδ(u∞ − uj , v)| + |λ∞(u∞ − uj , v)| + |(λj − λ∞)(uj , v)| + |aδ(uj , v) − λj(uj , v)|

� ‖u∞ − uj‖δ + |λ∞ − λj | + |aδ(uj , v) − λj(uj , v)| ∀ v ∈ H1
#(Ω).

Using (3.45), the convergence of uj → u∞ in H#δ(Ω) and λj → λ∞, we can conclude (3.42).

Define the operator Tj : L2
#(Ω) → V

λj

KjLj
such that for f ∈ L2

#(Ω),

aδ(Tjf, v) = (f, v) ∀ v ∈ V
λj

KjLj
. (3.46)

Let γ be a circle in the complex plane centered at λ−1
∞ , which does not enclose any other point of ϑ(T ). Define

the spectral projector of Tj by

Ej = Ej(λ
−1
∞ ) =

1

2πi

∫

γ

Rz(Tj)dz.
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Note that the convergence of eigenvalues implies that any open set in the complex plane containing ϑ(T ) contains
ϑ(Tj) for sufficiently large j. Therefore, Rz(Tj) is well defined and bounded on γ for sufficiently large j. Since

Rz(T ) −Rz(Tj) = Rz(Tj)(T − Tj)Rz(T ),

we have from the definition of spectral projector that

‖E − Ej‖L (R(E ),H#δ(Ω)) ≤ C‖T − Tj‖L (R(E ),H#δ(Ω)).

Therefore it is now only necessary for us to estimate ‖T −Tj‖L (R(E ),H#δ(Ω)). For simplicity of notation, we will
denote (λ∞, u∞) by (λ, u) in the following.

Let ũ be the extension of u|D given as in (3.13) and c̃k = |Ω|−1/2

∫

Ω

ũ(r)e−ik·rdr. Define

Ij,λu =
∑

|k|≤Kj

c̃kω
λ
kLj

and Ij,λju =
∑

|k|≤Kj

c̃kω
λj

kLj
. (3.47)

Since Tu = λ−1u for u ∈ R(E ), we obtain from (3.24) that

‖Tu− Tju‖δ � ‖u− Ij,λju‖δ + sup
vj∈V

λj
KjLj

a(Tu− Tju, vj)

‖vj‖δ
· (3.48)

The first term on the right-hand side of (3.48) is estimated by

‖Ij,λju− u‖δ ≤ ‖Ij,λju− u‖H1(D) + ‖Ij,λju− Ij,λu‖H1(C ) + ‖Ij,λu− u‖H1(C ). (3.49)

Using similar arguments as those in the proof of Lemma 3.1, we have

‖Ij,λju− u‖H1(D) ≤ CK
−(s−1)
j ‖u‖Hs(D). (3.50)

Note that similar to (3.44), Ij,λu and Ij,λju satisfy the following equations
(
−

1

2
∆+ Veff

)
Ij,λu = λIj,λu and

(
−

1

2
∆+ Veff

)
Ij,λju = λjIj,λju in C . (3.51)

Since (3.47) implies that Ij,λu = Ij,λju on Γ from both inside and outside the sphere, we have
{(

− 1
2∆ + Veff − λj

) (
Ij,λu− Ij,λju

)
= (λ− λj)Ij,λu in C ,

Ij,λu− Ij,λju = 0 on ∂C .
(3.52)

From the assumption on the asymptote problem, we have that λj is not an eigenvalue of the problem
{(

− 1
2∆+ Veff

)
v = λv in C ,

v|∂C = 0.

Therefore, we have from (3.52) that

‖Ij,λu− Ij,λju‖H1(C ) � |λ− λj |‖Ij,λu‖L2(C ) � |λ− λj |(‖u‖L2(C ) + ‖Ij,λu− u‖L2(C )). (3.53)

Similarly, we have from (− 1
2∆+ Veff − λ)(Ij,λu− u) = 0 in C that

‖Ij,λu− u‖H1(C ) ≤ C‖Ij,λu|C − u‖H1/2(Γ )

≤ C(‖u− Ij,λu|D‖H1/2(Γ ) + ‖Ij,λu|C − Ij,λu|D‖H1/2(Γ ))

≤ C(K
−(s−1)
j + L

−(s−1)
j )‖u‖Hs(D). (3.54)
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Therefore, we obtain from (3.49), (3.50), (3.53) and (3.54) that

‖Ij,λju− u‖δ � (K
−(s−1)
j + L

−(s−1)
j + |λ− λj |)(‖u‖Hs(D) + ‖u‖L2(C )). (3.55)

For the second term on the right-hand side of (3.48), we can obtain

sup
vj∈V

λj
KjLj

a(Tu− Tju, vj)

‖vj‖δ
� L

−(s−1)
j ‖u‖Hs(D) (3.56)

by using similar argument as that in (3.26). Taking the regularity results of Lemma 2.2, 2.3, (3.48), (3.55)
and (3.56) into account gives rise to

‖T − Tj‖L (R(E ),H#δ(Ω)) ≤ C(K
−(s−1)
j + L

−(s−1)
j + |λ− λj |). (3.57)

Using (3.33), we have |λ− λj | � ‖T − Tj‖2
L (R(E ),H#δ(Ω)) +Dj, where |Dj | � L

−(s−1)
j can be obtained by using

the same argument as that in (3.34). This together with (3.57) and the fact λj → λ leads to (3.43), which
completes the proof. �

Remark 3.6. In contrast to the basis functions we construct in Section 3.1, the APW method uses different
radial basis functions for different angular components by solving (3.35). With this type of basis functions, we
see from Theorem 3.5 that a half order is not lost in the estimate compared with Lemma 3.3 and Theorem 3.4.

Remark 3.7. When the radiusR is well chosen, the assumption of spherically symmetric potential is reasonable
for a lot of systems, e.g. close-packed crystals [39]. That is why the APW method has been successfully used in
many computations.

3.3. LAPW(+lo) methods

We shall discuss LAPW(+lo) methods in this subsection. Since the accuracies of LAPW(+ lo) methods
depend heavily on the parameters chosen by experience, we can not prove the convergence of numerical approx-
imations but only provide some conjectures on the error estimates.

The LAPW method uses the combination of χl(r, E) and its energy derivative χ̇l(r, E) with a fixed parame-
ter E as the radial basis function. The energy derivative is defined by

χ̇l(r, E) =
∂

∂ε
χl(r, ε)|ε=E ,

where χl is kept normalized to the same value in the sphere (the properties of χ̇l(r, E) can be read in [3,39,45]).

The approximation space is Ṽ E
KL = span{ω̃E

kL}|k|≤K with

ω̃E
kL(r) =

⎧
⎪⎪⎨

⎪⎪⎩

|Ω|−
1
2 eik·r in D ,

L∑

lm

[
αk

lmχl(r, E) + βk

lmχ̇l(r, E)
]
Ylm(r̂) in C .

(3.58)

The coefficients αk

lm and βk

lm are determined by (3.11) requiring that the basis functions match both the value
and slope (in the weak sense of (3.2)). The LAPW method provides flexible basis functions to properly describe
eigenfunctions that correspond to eigenvalues near E. In contrast to the APW method, this scheme allows us
to obtain all eigenvalues by solving a linear eigenvalue problem.

Using the result of Theorem 3.5, it is only necessary for us to estimate the error introduced by linearization,
say, the difference between the LAPW radial basis function with fixed parameter E

χ̃l(r, E) = αlχl(r, E) + βlχ̇l(r, E) (3.59)
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and the APW radial basis function χl(r, λKL). This is done by assuming that the APW radial basis functions
χl(r, λKL) and the LAPW combination (3.59) have the same logarithmic derivatives with respect to r at the
spherical surface (see [3, 31, 39]), i.e.

χ′
l(r, λKL)

χl(r, λKL)

∣∣∣∣
r=R

=
χ̃′

l(r, E)

χ̃l(r, E)

∣∣∣∣
r=R

· (3.60)

Let σ = |λKL − E|. It has been analyzed in [3, 31] that under the Assumption (3.60), the difference between
χ̃l(r, E) and χl(r, λKL) is of order σ2, i.e.

‖χ̃l(r, E) − χl(r, λKL)‖H1([0,R]) � σ2.

Using similar arguments as those in the proof of Theorem 3.5, we may obtain the following a priori error
estimate of LAPW approximations (λ̃KL, ũKL)

‖u− ũKL‖δ ≤ Cs(K
−(s−1) + L−(s−1) + σ2), (3.61)

|λ− λ̃KL| ≤ cs(K
−(s−1) + L−(s−1) + σ4) (3.62)

for some eigenpair (λ, u) of (2.2) and any s > 1.

Remark 3.8. The a priori error estimates (3.61) and (3.62) rely on the Assumption (3.60), which has not been
proved (see a comment in [33]). Nevertheless, the numerical experiments in Section 5 support the exponential
convergence rates.

Although the error of the eigenvalue approximation relies on the choice of E, the high order of σ in (3.62)
results in that the LAPW method forms a good basis set over a relatively large eigenvalue region. In most
materials, it is quite adequate to choose E near the center of the region of eigenvalues to be computed. However,
in a few instances, there is no single choice of E that is adequate for all the eigenvalues that must be considered.
Then the eigenvalue region may be divided into a few windows and separate computations with different
parameters should be carried out for each.

In order to have enough variational flexibility in the radial basis functions, the LAPW+lo method adds new
local basis functions to the LAPW method. The approximation space is spanned by {ω̃E

kL}|k|≤K given in (3.58)
and local orbitals {ϕi}1≤i≤N as

ϕi(r) =

⎧
⎪⎪⎨

⎪⎪⎩

0 in D ,

L∑

lm

[αi,lmχεi(r, εi) + βi,lmχ̇εi(r, εi)]Ylm(r̂) in C ,
(3.63)

where the coefficients αi,lm and βi,lm do not depend on k, but are determined by the requirement that ϕi is
zero at the sphere boundary and normalized. Note that different parameters εi can be chosen so that different
states can be described simultaneously.

As shown by the numerical experiments in [38], the LAPW+lo method converges practically to identical
result as the LAPW method, but allows a significantly smaller basis set (up to 50%) and thus reduces the
computational cost drastically.

4. Error estimates for Kohn−Sham equations

We have given an a priori error estimate for linear Schrödinger type eigenvalue problems in the previous
section. In this section, we shall investigate the nonlinear KS equations (1.1), considering the convergence and
a priori error estimate of the nonconforming approximations.
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We shall introduce some notations first. For � ∈ �N×N , we denote its Frobenius norm by |�|. Define

H ≡ (H1
#(Ω))N = {(φ1, φ2, . . . , φN ) : φi ∈ H1

#(Ω), i = 1, 2, . . . , N},

which is a Hilbert space associated with the induced norm ‖Φ‖1,Ω =

(
N∑

i=1

‖φi‖
2
H1(Ω)

)1/2

. In our discussion, we

shall use the following spaces:

SN×N = {M ∈ �N×N : MT = M}, AN×N = {M ∈ �N×N : MT = −M},

and

� = {Φ ∈ H : 〈ΦTΦ〉 = IN×N} with 〈ΦTΨ〉 =

(∫

Ω

φiψj

)N

i,j=1

∈ �N×N .

For any Φ ∈ H, we may decompose H into a direct sum of three subspaces (see, e.g. [18, 37]):

H = SΦ ⊕AΦ ⊕ T Φ, (4.1)

where SΦ = ΦSN×N , AΦ = ΦAN×N , and T Φ =
{
Ψ ∈ H : 〈ΨTΦ〉 = 0 ∈ �N×N

}
.

For the nonconforming framework, we define HL = (H#L(Ω))N with the induced norm ‖ · ‖δ,Ω, and �L =
{Φ ∈ HL : 〈ΦTΦ〉 = IN×N}. For any Φ ∈ HL, the space HL can be decomposed into three subspaces like (4.1)

HL = SΦ
L ⊕AΦ

L ⊕ T Φ
L . (4.2)

We also need the discrete space V̺ = (V̺(Ω))N ⊂ HL, where ̺ and V̺ are defined in Section 3.1.

Remark 4.1. Following [18, 43], we can use Grassmann manifold to interpret the equivalence classes of or-
thonormal bases spanning the same N -dimensional subspace. Define the equivalence class of Φ by

[Φ] = {Ψ ∈ �L : Ψ = ΦU, U is an orthogonal matrix}.

T Φ
L is the tangent space of the Grassmann manifold at [Φ].

4.1. Abstract Kohn–Sham model and nonconforming discretization

The ground state solutions of the periodic KS-LDA model can be obtained by minimizing the KS energy
functional

E(Φ) =
1

2

N∑

i=1

∫

Ω

|∇φi(x)|2dx+

∫

Ω

vext(x)ρΦ(x)dx +
1

2
D(ρΦ, ρΦ) +

∫

Ω

E(ρΦ(x))dx (4.3)

with respect to KS orbitals Φ = {φi}N
i=1 ∈ H under the orthogonality constraints 〈ΦTΦ〉 = IN×N . The function

E(ρ) denotes the exchange-correlation energy per unit volume in an electron gas with density ρ and E ′(t) = vxc(t).
D(ρΦ, ρΦ) models the periodic electron-electron Coulomb energy, where

D(f, g) = 4π
∑

k∈R∗\{0}

|k|−2f̂∗
k ĝk.

The existence of a minimizer of the energy functional can be found in [1, 35]. The Euler–Lagrange equation
associated with the minimization problem is

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(HΦφi, v) =

⎛

⎝
N∑

j=1

λijφj , v

⎞

⎠ ∀ v ∈ H1
#(Ω), i = 1, 2, . . . , N,

∫

Ω

φiφj = δij ,

(4.4)
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where Λ ≡ (λij)
N
i,j=1 =

(∫

Ω

φjHΦφi

)N

i,j=1

is the Lagrange multiplier and

(HΦu, v) =
1

2

∫

Ω

∇u · ∇v +

∫

Ω

(vext(r) + vH(ρΦ(r)) + vxc(ρΦ(r))) uv

with vH(ρΦ(r)) defined by (2.8). Note that the Lagrange multiplier Λ can be diagonalized since the energy
functional and the Hamiltonian are invariant under any unitary transform of the KS orbitals, i.e., for any
Φ ∈ �,

E(Φ) = E(ΦU) ∀ U = (uij)
N
i,j=1 ∈ ON×N , (4.5)

where ON×N is the set of orthogonal matrices.
To obtain the a priori error estimate of the nonconforming approximations, we shall represent the KS equation

in the following setting. Define

Y = �N×N ×H

with the associated norm ‖(Λ,Φ)‖Y = |Λ|+‖Φ‖1,Ω for (Λ,Φ) ∈ Y . We may rewrite (4.4) as a nonlinear problem:

F ((Λ,Φ)) = 0 ∈ Y ∗, (4.6)

where F : Y → Y ∗ is given by

〈F ((Λ,Φ)), (	, Γ )〉 =

N∑

i=1

⎛

⎝HΦφi −
N∑

j=1

λijφj , γi

⎞

⎠+

N∑

i,j=1

χij

(∫

Ω

φiφj − δij

)
(4.7)

with 	 = (χij)
N
i,j=1 ∈ �N×N and Γ = (γ1, γ2, . . . , γN ) ∈ H. The Fréchet derivative of F at (Λ,Φ) : Y → Y ∗ is

defined by

〈F ′
(Λ,Φ)((
, Ψ)), (	, Γ )〉 = a(Λ,Φ)(Ψ, Γ ) −

N∑

i,j=1

(μijφj , γi) +

N∑

i,j=1

χij

∫

Ω

(ψiφj + φiψj) (4.8)

with (
, Ψ) ∈ Y (
 = (μij)
N
i,j=1 ∈ �N×N , Ψ = (ψ1, ψ2, . . . , ψN ) ∈ H), (	, Γ ) ∈ Y , and

a(Λ,Φ)(Ψ, Γ ) =

N∑

i=1

(
1

2
(∇ψi,∇γi) + (Vextψi, γi) + (E ′(ρΦ)ψi, γi) +D(ρΦ, ψiγi)

−

⎛
⎝

N∑

j=1

λijψj , γi

⎞
⎠+

⎛
⎝2φiE

′′(ρΦ)

N∑

j=1

φjψj , γi

⎞
⎠+

N∑

j=1

2D (φjψj , φiγi)

⎞
⎠ . (4.9)

We shall then address the nonconforming form of (4.6). Let

YL = �N×N ×HL

with the associated norm ‖(
, Ψ)‖YL = |
| + ‖Ψ‖δ,Ω and FL : YL → Y ∗
L be the operator defined by

〈FL((ΛL, ΦL)), (	L, ΓL)〉 =
1

2

N∑

i=1

(∫

C

∇φL,i∇γL,i +

∫

D

∇φL,i∇γL,i

)

+

N∑

i=1

((vext + vH(ρΦL) + vxc(ρΦL))φL,i, γL,i) −
N∑

i=1

⎛
⎝

N∑

j=1

λL,ijφL,j , γL,i

⎞
⎠

+

N∑

i,j=1

χL,ij

(∫

Ω

φL,iφL,j − δij

)
∀ (ΛL, ΦL), (	L, ΓL) ∈ YL. (4.10)
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We denote the derivative of FL at (ΛL, ΦL) ∈ YL by F ′
L,(ΛL,ΦL) : YL → Y ∗

L as

〈F ′
L,(ΛL,ΦL)((
L, ΨL)), (	L, ΓL)〉 = aδ

(ΛL,ΦL)(ΨL, ΓL) −
N∑

i,j=1

(μL,ijφL,j , γL,i)

+

N∑

i,j=1

χL,ij

∫

Ω

(ψL,iφL,j + φL,iψL,j) ∀ (
L, ΨL), (	L, ΓL) ∈ YL, (4.11)

where the bilinear form aδ
(Λ,Φ)(Ψ, Γ ) is defined as (4.9) by replacing (∇ψi,∇γi) with

∫

C

∇ψi∇γi +

∫

D

∇ψi∇γi.

For numerical discretization of (4.6), let

Y̺ = �N×N × V̺

and F̺ : Y̺ → Y ∗
̺ be defined as the restriction of FL to Y̺:

〈F̺((Λ̺, Φ̺)), (	̺, Γ̺)〉 = 〈FL((Λ̺, Φ̺)), (	̺, Γ̺)〉 ∀ (Λ̺, Φ̺), (	̺, Γ̺) ∈ Y̺.

The nonconforming approximation of (4.6) can be written as

F̺((Λ̺, Φ̺)) = 0 ∈ Y ∗
̺ . (4.12)

We denote the derivative of F̺ at (Λ̺, Φ̺) by F ′
̺,(Λ̺,Φ̺) : Y̺ → Y ∗

̺ , which is the restriction of F ′
L,(Λ̺,Φ̺) to Y̺.

Note that there are infinitely many solutions of (4.6) and (4.12) due to (4.5). We shall define

�Φ
L = {Ψ ∈ �L : ‖Ψ − Φ‖0,Ω = min

U∈ON×N
‖ΨU − Φ‖0,Ω} for Φ ∈ �

to get rid of the redundancy (see [13]). In our analysis, the following lemma will be used, whose proof is given
in [13, 37].

Lemma 4.2. If Φ ∈ �, then Ψ ∈ �Φ
L can be represented by

Ψ = Φ+ ΦS +W

with W ∈ T Φ
L and S ∈ SN×N .

4.2. A priori error estimates of the nonconforming approximations

Given (Λ,Φ) ∈ SN×N × �, we define

XΦ = SN×N × (SΦ
L ⊕ T Φ

L ) ⊂ YL

and

XΦ,̺ = SN×N × (V̺ ∩
(
SΦ

L ⊕ T Φ
L

)
) ⊂ Y̺.

We assume here and hereafter that y0 ≡ (Λ0, Φ0) is a ground state solution of (4.4), where Λ0 = (λ0,ij)
N
i,j=1

and Φ0 = (φ0,1, . . . , φ0,N ). We shall derive the existence of a unique local discrete solution y̺ ∈ XΦ0,̺ of (4.12)
in the neighborhood of y0 and further obtain the a priori error estimate.

Our analysis will be carried out under the following two assumptions:

A1. There exists a constant α ∈ (0, 1] such that |E ′′(t)| + |tE ′′′(t)| � 1 + tα−1 ∀ t > 0.

A2. There exists a positive constant γ depending on (Λ0, Φ0) such that for any L,

aδ
(Λ0,Φ0)

(Ψ, Ψ) ≥ γ‖Ψ‖2
δ,Ω ∀ Ψ ∈ T Φ0

L . (4.13)
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Remark 4.3. The assumption A2 is true for a symmetric bilinear form ã(u, v) = (Au, v) if the operator A
has N lowest eigenvalues λ1, . . . , λN and there is a gap between the lowest Nth eigenvalue and the (N + 1)th
eigenvalue (see, e.g. [13, 43]).

Under the framework of Grassmann manifold [18, 43], the assumption A2 can be viewed as imposing the
elliptic condition on aδ

(Λ0,Φ0)
(·, ·) on the tangent space.

The following lemma will be used in our analysis, which can be proved under the assumption A1 by using
the same arguments as those in ([13], Lem. 4.6 and [16], Lem. 2.1).

Lemma 4.4. Let y1 = (Λ1, Φ1) and y2 = (Λ2, Φ2) ∈ YL satisfy ‖y1‖YL + ‖y2‖YL ≤ C̄. If the assumption A1 is

satisfied, then there exists a constant CF depending on C̄ such that

‖FL(y1) − FL(y2)‖Y ∗

L
≤ CF ‖y1 − y2‖YL ∀ y1, y2 ∈ YL. (4.14)

Moreover, there is a constant C′
F such that

‖F ′
L,y1

− F ′
L,y2

‖L (YL,Y ∗

L ) ≤ C′
F

(
‖y1 − y2‖

α
YL

+ ‖y1 − y2‖
2
YL

)
∀ y1, y2 ∈ YL. (4.15)

Lemma 4.5. If the assumption A2 is satisfied, then F ′
L,y0

: XΦ0 → X∗
Φ0

is an isomorphism.

Proof. It is sufficient to prove that equation

F ′
L,y0

((
, Ψ)) = (�, g) (4.16)

is uniquely solvable in XΦ0 for every (�, g) ∈ X∗
Φ0

. To this end we define the following bilinear forms aΦ0 :
HL ×HL → � and bΦ0 , cΦ0 : HL × �N×N → � by

aΦ0(Ψ, Γ ) = aδ
(Λ0,Φ0)

(Ψ, Γ ) ,

bΦ0(Ψ, 	) =

N∑

i,j=1

χij (φ0,i, ψj) ,

cΦ0(Ψ, 	) =

N∑

i,j=1

χij ((φ0,i, ψj) + (φ0,j , ψi)) .

Using (4.11), we may rewrite (4.16) as follows: find 
 ∈ SN×N and Ψ ∈ SΦ0

L ⊕ T Φ0

L such that

⎧
⎪⎪⎨
⎪⎪⎩

aΦ0(Ψ, Γ ) − bΦ0(Γ,
) = (g, Γ ) ∀ Γ ∈ SΦ0

L ⊕ T Φ0

L ,

cΦ0(Ψ, 	) =

N∑

i,j=1

χijηij ∀ 	 ∈ SN×N .
(4.17)

For any given 	 ∈ SN×N , we can choose Ψ̃ = Φ0	, and thus

cΦ0(Ψ̃ , 	) = 2

N∑

i,j=1

|χij |
2, (4.18)

where 〈ΦT
0 Φ0〉 = IN×N is used. Note that a simple calculation leads to

‖Ψ̃‖δ,Ω = ‖Φ0	‖1,Ω �

⎛
⎝

N∑

i,j=1

|χij |
2

⎞
⎠

1/2

‖Φ0‖1,Ω. (4.19)
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By taking into account (4.18), (4.19) and the fact ‖Φ0‖1,Ω ≤ C, we obtain

inf
�∈SN×N

sup
Ψ∈S

Φ0
L

cΦ0(Ψ, 	)

‖Ψ‖δ,Ω|	|
≥ κc (4.20)

with κc > 0. Hence, there exists a unique solution ΨS ∈ SΦ0

L such that

cΦ0(ΨS , 	) =

N∑

i,j=1

χijηij ∀ 	 ∈ SN×N .

Therefore (4.17) is equivalent to: find Ψ0 ∈ T Φ0

L such that

aΦ0(Ψ0, Γ ) = (g, Γ ) − aΦ0(ΨS , Γ ) ∀ Γ ∈ T Φ0

L . (4.21)

The unique solvability of (4.21) is a direct consequence of (4.13).
Using similar arguments as those from (4.18) to (4.20), we get

inf
�∈SN×N

sup
Ψ∈S

Φ0
L

bΦ0(Ψ, 	)

‖Ψ‖δ,Ω|	|
≥ κb

with κb > 0. This implies that equation

bΦ0(Γ,
) = aΦ0(Ψ0 + ΨS , Γ ) − (g, Γ ) ∀ Γ ∈ SΦ0

L

has a unique solution 
S ∈ SN×N .
We have proved that for any (�, g) ∈ X∗

Φ0
, (4.17) has a unique solution (
S , Ψ0 + ΨS). This indicates that

F ′
L,y0

is an isomorphism from XΦ0 to X∗
Φ0

and completes the proof. �

Before giving a discrete counterpart of Lemma 4.5, we shall introduce two projections. First, we define the
projection Π̺̃ : � → V̺ ∩ � such that

‖Π̺̃Φ− Φ‖δ,Ω = min
Ψ∈V̺∩�

‖Ψ − Φ‖δ,Ω ∀ Φ ∈ �.

To project further onto XΦ,̺, we then define Π̺ : SN×N × � → XΦ,̺ by

Π̺(Λ,Φ) = (Λ, (Π̺̃Φ)Ũ ) ∀ (Λ,Φ) ∈ SN×N × �,

where

Ũ = arg min
U∈ON×N

‖(Π̺̃Φ)U − Φ‖0,Ω.

From Lemma 4.2, we see that Π̺ : SN×N × � → XΦ,̺ is well-defined. We obtain by a direct estimate (see [16],
proof of Lem. 3.3) that for any y = (Λ,Φ) ∈ SN×N × �,

‖Π̺y − y‖YL � inf
Ψ∈V̺

‖Ψ − Φ‖δ,Ω. (4.22)

Note that F ′
L,y0

: XΦ0 → X∗
Φ0

being an isomorphism is equivalent to the following inf-sup condition

inf
y1∈XΦ0

sup
y2∈XΦ0

〈F ′
L,y0

y1, y2〉

‖y1‖YL‖y2‖YL

= β > 0 (4.23)
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with the constant satisfying β−1 = ‖F ′
L,y0

−1‖L (X∗

Φ0
,XΦ0 ). We can derive from (4.22) (see [16]) that for sufficiently

large ̺,

inf
y1∈XΦ0,̺

sup
y2∈XΦ0,̺

〈F ′
̺,y0

y1, y2〉

‖y1‖YL‖y2‖YL

≥
β

2
,

which together with the fact that F ′
̺,y0

satisfies the following inequality analogous to (4.15)

‖F ′
̺,y0

− F ′
̺,Π̺y0

‖L (Y̺,Y ∗

̺ ) � ‖y0 −Π̺y0‖
α
YL

+ ‖y0 −Π̺y0‖
2
YL

leads to the following discrete counterpart of Lemma 4.5.

Lemma 4.6. If the Assumption A1 and A2 are satisfied, then there exists n0 ∈ � such that F ′
̺,Π̺y0

: XΦ0,̺ →
X∗

Φ0,̺ is an isomorphism for all ̺ ≥ n0. Moreover, there is a constant M > 0 such that

‖F ′
̺,Π̺y0

−1‖L (X∗

Φ0,̺,XΦ0,̺) ≤ M ∀ ̺ ≥ n0.

Now we have the main result of this section as follows.

Theorem 4.7. Let y0 ≡ (Λ0, Φ0) be a ground state solution of (4.4). If the Assumptions A1 and A2 are

satisfied, then there exist σ > 0 and n1 ∈ � such that (4.12) has a unique local solution

y̺ = (Λ̺, Φ̺) ∈ XΦ0,̺ ∩Bσ(y0)

for all ̺ ≥ n1. Moreover, we have the following a priori error estimate

|Λ0 − Λ̺| + ‖Φ0 − Φ̺‖δ,Ω ≤ C

(
inf

Ψ∈V̺

‖Φ0 − Ψ‖δ,Ω + ̺−(s−1)‖Φ0‖Hs(D)

)
. (4.24)

Proof. The idea of this proof is to construct a contractive mapping whose fixed point is y̺. We rewrite (4.12)
as

F̺(y̺) − F̺(Π̺y0) = −F̺(Π̺y0). (4.25)

Using the fact that (Λ0, Φ0) is a ground state solution and similar argument to that in (3.26), we have that for
any 	 ∈ �N×N and Γ = (γ1, . . . , γN ) ∈ V̺,

〈F̺((Λ0, Φ0)), (	, Γ )〉 =
N∑

i=1

∫

Γ

∂φ0,i

∂n
(γ+

i − γ−i ) ≤ CL−(s−1)‖Φ0‖Hs(D)‖Γ‖δ,Ω,

which together with (4.14) leads to

‖F̺(Π̺y0)‖Y ∗

̺
≤ ‖F̺(Π̺y0) − F̺(y0)‖Y ∗

̺
+ ‖F̺(y0)‖Y ∗

̺

≤ ‖FL(Π̺y0) − FL(y0)‖Y ∗

L
+ sup

(�̺,Γ̺)∈XΦ0,̺

〈F̺((Λ0, Φ0)), (	̺, Γ̺)〉

‖(	̺, Γ̺)‖YL

� ‖Π̺y0 − y0‖YL + L−(s−1)‖Φ0‖Hs(D).

From (4.25) and Lemma 4.6, we may define the map N : BR(Π̺y0) ∩XΦ0,̺ → XΦ0,̺ by

F ′
̺,Π̺y0

(N (x) −Π̺y0) = −F̺(Π̺y0) − (x−Π̺y0)

∫ 1

0

(
F ′

̺,Π̺y0+t(x−Π̺y0)
− F ′

̺,Π̺y0

)
dt (4.26)
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when ̺ ≥ n0. We will show that N is a contraction from BR(Π̺y0)∩XΦ0,̺ into BR(Π̺y0)∩XΦ0,̺ if R is chosen
sufficiently small and ̺ is large enough.

First, we prove that N maps BR(Π̺y0) ∩ XΦ0,̺ to BR(Π̺y0) ∩ XΦ0,̺ for sufficiently small R. For each
x ∈ BR(Π̺y0) and ̺ > n0, we have N (x) −Π̺y0 ∈ XΦ0,̺ and

‖N (x) −Π̺y0‖YL ≤ M
(
‖F̺(Π̺y0)‖Y ∗

̺
+R

∫ 1

0

‖F ′
̺,Π̺y0+t(x−Π̺y0)

− F ′
̺,Π̺y0

‖dt
)

≤ CM
(
‖Π̺y0 − y0‖YL +R(Rα +R2) + L−(s−1)‖Φ0‖Hs(D)

)
.

Since CM(‖Π̺y0− y0‖YL +R1+α +R3 +L−(s−1)‖Φ0‖Hs(D)) can be estimated by R when R is sufficiently small
and ̺ is sufficiently large, we have that N (x) ∈ BR(Π̺y0).

Next, we show that N is a contraction on BR(Π̺y0) ∩XΦ0,̺. If x1, x2 ∈ BR(Π̺y0) ∩XΦ0,̺, then

F ′
̺,Π̺y0

(N (x1) −N (x2)) = (x1 − x2)

∫ 1

0

(
F ′

̺,Π̺y0
− F ′

̺,x1+t(x2−x1)

)
dt.

Thus, ‖N (x1) −N (x2)‖YL can be estimated as

‖N (x1) −N (x2)‖YL ≤ M‖x1 − x2‖YL

∫ 1

0

∥∥F ′
̺,Π̺y0

− F ′
̺,x1+t(x2−x1)

∥∥dt

≤ CM(Rα +R2)‖x1 − x2‖YL .

We obtain that CM(Rα +R2) < 1 for sufficiently small R and hence N is a contraction on BR(Π̺y0).
We are now able to use Banach’s Fixed Point Theorem to obtain the existence and uniqueness of a fixed

point y̺ of the map N : BR(Π̺y0) ∩XΦ0,̺ → BR(Π̺y0) ∩XΦ0,̺, which is the solution of F̺(y̺) = 0.
Take x = y̺ in (4.26), we have

‖y̺ −Π̺y0‖YL � ‖y0 −Π̺y0‖YL + L−(s−1)‖Φ0‖Hs(D)

+‖y̺ −Π̺y0‖YL

(
‖y̺ −Π̺y0‖

α
YL

+ ‖y̺ −Π̺y0‖
2
YL

)
,

which together with the fact that ‖y̺ −Π̺y0‖YL can be arbitrary small implies

‖y̺ −Π̺y0‖YL � ‖y0 −Π̺y0‖YL + L−(s−1)‖Φ0‖Hs(D). (4.27)

Using (4.22), (4.27) and the triangle inequality

‖y̺ − y0‖YL ≤ ‖y̺ −Π̺y0‖YL + ‖y0 −Π̺y0‖YL ,

we can obtain (4.24). This completes the proof. �

Remark 4.8. Note that Lemma 2.2 can not be applied to KS equations directly due to the singularity of the
exchange-correlation potential vxc. If the KS orbitals {φi}N

i=1 are assumed to be asymptotically well behaved,
then we get from Theorems 3.2 and 4.7 that

|Λ0 − Λ̺| + ‖Φ0 − Φ̺‖δ,Ω ≤ Cs̺
−(s−3/2) ∀ s >

3

2
·

Remark 4.9. The arguments in this section are related to the techniques in [13,16,34,51]. We shall point out
that [13, 16, 34] are also devoted to the DFT models, nevertheless, the theory in [13, 16] can not be applied to
nonconforming methods, and [34] analyzes the orbital-free DFT models which consider the lowest eigenvalue
only.
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Figure 3. Eigenvalue errors of
plane wave and nonconforming
approximations.
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5. Numerical experiments

In this section, we shall test our theoretical results by some numerical experiments. Since the analytical
solutions of the eigenvalue problems are not available, we use the numerical solutions on the finest discretizations
as references to calculate the approximation errors.

Example 1. We solve the linear eigenvalue problem: find λ ∈ � and u ∈ H1
#(Ω) such that

−
1

2
∆u+ Vextu = λu,

where Ω = [−5.0, 5.0]3 and the periodic external potential is

Vext(r) =

⎧
⎪⎨
⎪⎩

−
1

r
−

1

2r0 − r
if r < r0,

−
2

r0
if r ≥ r0

in Ω with r0 = 3.0. We consider only the lowest eigenvalue of this problem.

We compare the eigenvalue errors of the plane wave approximations and our nonconforming approximations
in Figure 3. It is observed that the convergence rate is significantly improved by our nonconforming method.
The numerical errors obtained by different choices of atomic spheres are presented in Figure 4. We observe not
only the exponential decay of the eigenvalue errors but also a faster decay with a larger atomic sphere. In fact,
the eigenfunctions in the interstitial region with a larger sphere are less varying and hence more propitious to
plane wave approximations. The eigenfunction on the x-axis is displayed in Figure 5, from which we observe
that the nonconforming approximation can catch the cusp at the origin while the plane wave approximation
can not.

We also present in Figure 6 the eigenvalue errors as a function of the order of polynomial radial basis functions.
We observe that given a sufficiently large K, the errors of eigenvalue approximations converge exponentially. We
mention that the condition of Lemma 2.2 is not strictly satisfied for this example since the potential Vext is only
continuous up to the first order derivative on the sphere with r = r0. Nevertheless, we still have exponential
decay of the numerical errors, which supports the theoretical results in this paper.

The numerical results of the following two examples are presented in atomic unit (a.u.).
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conforming approximations with re-
spect to the order of polynomials
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Example 2. We consider the computation of the ground state of a hydrogen atom by the APW method in the
supercell Ω = [−5.0, 5.0]3 with periodic boundary condition.

Since the APW basis functions depend on the eigenvalues and lead to nonlinear equations, the eigenvalues
are normally solved by the “root tracing” technique that determines the eigenvalues by varying the parameter
ε numerically to satisfy the condition

det(Hε − εMε) = 0,

where Hε and Mε are Hamilton matrix and mass matrix generated by the basis set given in (3.36). Instead
of calculating the determinant of Hε − εMε (which varies strongly in this example and is difficult for root
interpolation), we here compute the eigenvalues of M−1

ε Hε for each parameter ε, and calculate the difference
between the parameter and its closest eigenvalue λε, say λε − ε. The eigenvalues of the nonlinear problem can
be found where the difference is 0 by interpolation (see Fig. 7). The errors on the lowest eigenvalue of plane
wave and APW approximations are compared in Figure 8, from which we observe that the APW method is
much more accurate.

We shall mention that the computational cost of this nonlinear problem is very large even for medium size
systems. In contrast, LAPW(+lo) bases can result in straightforward linear eigenvalue problems and reduce the
computational cost significantly.

Example 3. To examine the performance of LAPW approximations, we use the package Exciting [54] to
calculate the aluminium (Al) and lithium-fluorine (LiF) crystals. Exciting is a full-potential DFT package based
on the LAPW+lo methods and use a SCF iteration for solving the nonlinear KS equations. The numerical
errors of the ground state energy approximations are presented in Figures 9 and 10, from which we observe
exponential convergence rates with respect to both K and L.

Moreover, we compare the full-potential computations by using package Exciting and the pseudopotential
computations by using package Abinit [25, 52] for the LiF crystal. We plot in Figure 11 the electron density
on a plane (the structure is presented in the left of the figure) obtained by these two methods, from which
we see that the true density including the core electrons is obtained by full-potential calculations, whereas the
pseudopotential calculations can only have a pseudo electron density of valence electrons.



782 H. CHEN AND R. SCHNEIDER

Figure 7. Search the eigenvalues of
the nonlinear problem generated by
APW basis set.
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wave and APW approximations.
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Figure 9. Errors on the ground
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imal length of wave vectors K for Al
and LiF using the package Exciting.
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6. Concluding remarks

In this paper, we analyze the (L)APW methods which are widely used in full-potential electronic structure
calculations. The (L)APW methods enable highly accurate and reliable electronic structure calculations, since
they avoid the use of pseudopotentials that might be a source of modeling errors difficult to control. We introduce
a nonconforming method based on the idea of the (L)APW methods, which use different types of basis functions
inside and outside the atomic spheres. We obtain an a priori error estimate of the nonconforming approximations
for both linear Schrödinger type equations and nonlinear KS equations, and present some numerical results to
support our theory. Due to the fast convergence rate, which is the central result of this paper, the (L)APW
methods provide high precision using only approximately the same number of degrees of freedom, or even less,
than usually done in the plane wave codes.
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Figure 11. Electron density of LiF obtained by the packages Exciting and Abinit. Left: the
structure of the plane. Middle: result of Abinit. Right: result of Exciting.

In order to set up the Galerkin system matrices and the overlap matrices, one has to integrate plane waves over
a complicated interstitial region D where the atomic spheres are excluded from the unit cell Ω. These integrals
are computed by integrating over the whole unit cell and subtracting the integrals over the spheres. The explicit
formulas for these integrals can be found in, e.g. [16, 39]. However, there arise some discretization errors when
calculating these integrals numerically. In this paper, we have not considered this issue but assume that the
integrals can be computed exactly. The numerical errors arising from the integrations may be investigated in
our future works.

Instead of polynomials, more physically meaningful basis functions like Gaussian or Slater type functions may
be incorporated in this nonconforming framework. However, the difficulties lie in that all χi do not vanish at the
spherical surface, which may generate too many basis functions in computations. The discontinuous Galerkin
(DG) methods may be a proper way to handle this problem, in which different areas can be approximated by
completely separate basis functions and matched together by DG schemes [15].

Similar to the APW method, the Muffin-tin orbital (MTO) approach [3,4,39] is another type of atomic sphere
methods. It exploits the same idea that divides the simulation domain and provides efficient representations for
atomic-like features that are rapidly varying near each nucleus and smoothly varying between the atoms. The
MTO method reformulates the multiple-scattering (MST, also called KKR since it was invented independently
by Korringa et al. [39]) method, and leads to physically meaningful descriptions of the electronic states in terms
of a small basis set of localized, augmented functions.

The MTO basis functions depend on the parameters κ and ε,

ωMTO
lm (r) = ilYlm(r̂)

{
χl(r, ε) + κcot(ηl(ε))jl(κr) in C ,

κnl(κr) in D ,
(6.1)

where χl(r, ε) is the solution of (3.35), jl and nl are spherical Bessel and Neumann functions respectively
(for negative energies, the Neumann functions are replaced by Hankel functions), and the coefficients ηl are
determined by requiring that the basis functions match the value and slope at the spherical surface. The
equations for many-atom systems can be derived using an expansion theorem and the tail cancelation condition,
which expresses the tail of a MTO basis extending into another sphere in terms of functions centered on that
sphere (see, e.g. [4, 39]). This amounts to a transformation of the KKR method and (the eigenvalue-dependent
basis set) would lead to a nonlinear eigenvalue problem. Since the solutions obtained by the MTO method
satisfy the equation both inside and outside the spheres, the convergence of the MTO approximations can be
proven using similar arguments as those in this paper (the detail proof will be given elsewhere), and the error
is only determined by the truncation of angular momentum L.

For the linearized Muffin-tin orbital (LMTO) method (see, e.g. [39]), the error estimate is far too difficult
compared with the LAPW method. The errors of the LAPW approximations are mainly induced by linearization,
while the numerical integrations of basis functions can be done quite accurately both inside and outside the
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atomic spheres. In contrast, the numerical integrations for the LMTO method are much more complicated,
which apply the atomic sphere approximation (ASA) and use the space-filling cells (Wigner-Seitz cells, see,
e.g. [3, 39]) neglecting the interstitial region. These error analyses shall be investigated in our future works.
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[9] C. Bernardi, N. Débit and Y. Maday, Coupling finite element and spectral methods: first results. Math. Comput. 54 (1990)

21–29.
[10] C. Bernardi, Y. Maday and A.T. Patera, A new non conforming approach to domain decomposition: The Mortar element
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