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Numerical analysis of coupled wedge plasmons in a structure of two metal
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This paper presents the results of the numerical finite-difference time-domain analysis of a strongly
localized antisymmetric plasmon, coupled across a nanogap between two identical metal wedges.
Dispersion, dissipation, field structure, and existence conditions of such coupled wedge plasmons
are determined and investigated on an example of the fundamental coupled mode. It is shown that
in the general case there exist three critical wedge angles and a critical gap width �separation
between the wedge tips�. If the gap width is larger than the critical separation, then the
antisymmetric wedge plasmons can exist only in the ranges between the first and the second critical
angles, and between the third critical angle and 180°. If the gap width is smaller or equal to the
critical separation, then the third and the second critical angles merge, leaving only one interval of
wedge angles within which the antisymmetric coupled wedge plasmons can exist. The effect of
rounded wedge tips is also investigated and is shown to be similar to that of different wedge angles.
Feasibility of using these plasmons for the design of efficient subwavelength waveguides is
discussed. © 2006 American Institute of Physics. �DOI: 10.1063/1.2208291�
I. INTRODUCTION

Modern microelectronics is rapidly approaching its limit
in terms of speed and efficiency of information processing.
Therefore, alternative means for sustainable advancement of
computer technology, information processing, and storage
are urgently required. One of such alternatives is related to
using light as an information carrier in integrated circuits and
devices. This means replacing conventional electronic de-
vices and circuits by much more efficient optical counter-
parts.

However, conventional optical devices and interconnec-
tors using dielectric waveguides and structures suffer from a
significant drawback. This is the diffraction limit of light,1–3

which means that electromagnetic waves cannot be localized
�focused� within a region with dimensions that are much
smaller than the wavelength in the structure. This is the
major obstacle on the way of achieving high degree of
miniaturization and integration of optical devices and
circuits. The main approach to overcome this problem is re-
lated to use of surface plasmons in metallic nanostructures,
such as rectangular metallic nanostrips,4,5 nanorods,3,6,
nanochains,1,2,7 metallic gaps,8–12 metallic nanogrooves,13–18

and nanowedges.19–21

a�Present address: 5130 Etcheverry Hall, NSF Nanoscale Science and Engi-
neering Center, University of California, Berkeley, California 94720-1740;
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All these structures are capable of guiding special types
of plasmonic eigenmodes that are characterized by strong
localization beyond the diffraction limit. However, different
metallic nanostructures may provide different options and
possibilities in terms of design of efficient subwavelength
optical waveguides, interconnectors, and devices. For ex-
ample, it has also been demonstrated that strongly localized
plasmons in nanogrooves and nanogaps are of most interest
for the development of nano-optical structures and circuits.
This is because of their relatively low dissipation,14,15 low
sensitivity to structural imperfections,17 possibility of nearly
100% transmission through sharp bends,16 strong subwave-
length localization,14,15 etc.

In particular, the analysis of guided modes in a plas-
monic waveguide in the form of a nanogap in a thin metal
film/membrane has revealed that the fundamental mode
guided by the gap is characterized by an unusual dependence
of its dispersion on thickness of the metal film.12 This is
because the fundamental mode of the gap plasmon wave-
guide can be represented by four coupled wedge plasmons
propagating along the edges of the gap.12 Therefore, detailed
investigation of coupled wedge plasmons is important for
understanding of the behavior of strongly localized modes in
gap plasmon waveguides. In addition, strongly localized
plasmons propagating in a structure of two coupled wedges
can themselves provide interesting options for the design of
subwavelength optical components. The analysis of coupled

wedge plasmons is also expected to provide an important
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physical insight and better understanding of propagation and
the existence conditions of strongly localized modes in
wedgelike structures.

Therefore, the aim of this paper is in numerical analysis
of strongly localized wedge plasmons propagating in two
identical metallic wedges, coupled across a nanogap and
characterized by the antisymmetric distribution of charges
across the gap. Dispersion, dissipation, field structure, and
existence conditions of such antisymmetric coupled wedge
plasmons �ACWPs� will be determined and analyzed. The
dependencies of the ACWP properties on wedge angle, sepa-
ration between the tips, and radius of curvature of the
rounded tips will be determined and investigated in detail on
the example of the fundamental ACWP mode propagating in
the structure. Possibilities of using ACWPs for the design of
efficient subwavelength waveguides and interconnectors are
also discussed.

II. STRUCTURE AND METHODS OF ANALYSIS

The analyzed structure consists of two identical wedges
separated by a nanogap—1�a�. The tips of the wedges can be
either triangular �Fig. 1�a��, or rounded with the radius of
curvature r �Fig. 1�b��. Here, we will consider only the situ-
ations where the curved surface of a rounded tip is connected
smoothly with the flat sides of the wedge �without additional
corners between the rounded tip and the flat sides of the
wedge�—Fig. 1�b�. The width of the gap between the two
wedges is w and the angle of the wedges is � �Figs. 1�a� and
1�b��. The system of coordinates is presented in Figs. 1�a�
and 1�b� with the origin being in the middle of the gap be-
tween the wedges. The wedges are made of silver and sur-
rounded by vacuum. The coupled wedge plasmons propagate
in the positive x direction.

The numerical analysis of the Maxwell equations in the
considered structures is carried out by means of the compact

FIG. 1. Structures with two identical coupled wedges in vacuum: �a� trian-
gular wedges with sharp tips, �b� wedges with rounded tips of radii r. The
width of the gap is w, the wedge angles are �. �c� and �d� Schematic distri-
butions of charges across the gap in symmetric �c� and antisymmetric �d�
coupled wedge plasmons. kACWP is the wave vector of the antisymmetric
coupled wedge plasmon.
two-dimensional �compact-2D� finite-difference time-
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domain �FDTD� algorithm.22 The artificial absorbing bound-
ary conditions of the first-order Mur-type are used at the
edges of the computational window.23

The numerical algorithm assumes that the structure is
infinitely long along the x axis. The plasmons are excited by
introducing a generating pulse near the wedges.21,22 This
pulse is represented by some electromagnetic field with arbi-
trarily selected distribution in the �y ,z� plane, but periodic
�with some preselected period �� along the x axis. The gen-
erating pulse is assumed to be switched on for a period of
time �t. If the time interval �t is sufficiently short, then the
generating pulse contains a wide range of frequencies. If we
allow the field to evolve in time beyond the time interval �t,
then only the frequencies corresponding to the structural
eigenmodes will remain. The field intensities at the frequen-
cies that do not correspond to the structural eigenmodes will
correspond to exponentially decaying �in time� fields. There-
fore, if we allow the system to evolve for a sufficiently long
period of time beyond the generating pulse, the field distri-
bution evolves to that corresponding to the interference pat-
tern of the possible structural eigenmodes.22 The Fourier
analysis of this pattern22 gives different frequencies of the
eigenmodes, such that the wavelengths of all these eigen-
modes are the same and equal to �—the spatial period of the
generating pulse. Thus the dispersion of different structural
eigenmodes are determined using the compact-2D FDTD.22

Adjusting the central frequency of the generating pulse, so
that it equals the frequency of one of the eigenmodes, and
increasing the length of the pulse �t, so that the frequency
band in the pulse is reduced to exclude all other modes, we
obtain the field distribution, dispersion, and dissipation of a
particular selected eigenmode. This is how separate eigen-
modes in a multimode guiding structure can be investigated.

The described compact-2D FDTD analysis showed that
there exist numerical solutions to the Maxwell equations,
representing the electromagnetic fields strongly localized
near the tips of the coupled wedges �Figs. 1�a� and 1�b��.
These solutions correspond to two wedge plasmons21 travel-
ing along the wedge tips �i.e., along the x axis—Figs. 1�a�
and 1�b�� and coupled across the nanogap by means of the
evanescent field in vacuum. It can also be seen that there can
exist two different types of coupled plasmon modes in the
considered structures. They are characterized by the symmet-
ric and antisymmetric distributions of charges across the gap
�Figs. 1�c� and 1�d��. It can be shown that each of the
coupled modes with the symmetric distribution of charges
�symmetric coupled wedge plasmons �SCWPs�� has a cutoff
separation between the wedges, i.e., they do not exist at ar-
bitrarily small gap width. At a gap width that is less than the
cutoff separation, the corresponding SCWP leaks into bulk
waves and/or surface plasmons on the sides of the wedges.
At the same time, ACWPs do not have a cutoff separation,
i.e., they exist at arbitrarily small gap width �in the approxi-
mation of continuous electrodynamics�. This is similar to the
symmetric and antisymmetric plasmons in a vacuum gap
separating two identical metallic half-spaces. Therefore,
these are ACWPs that form the fundamental mode of a gap
plasmon waveguide, and this fundamental mode exists at ar-

12
bitrarily small gap width. In addition, ACWP is character-
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ized by significantly stronger localization near the tips of the
wedges, compared to the symmetric modes. Therefore,
ACWP is a better candidate for the development of subwave-
length plasmonic waveguides.

Sufficiently sharp triangular metal wedges can support
more than one wedge plasmon eigenmode.21 Decreasing
wedge angle results in increasing number of wedge plasmon
modes supported by the wedge.21 In the same way, two
coupled wedges �Figs. 1�a� and 1�b�� can also support more
than one ACWP modes. Decreasing wedge angle results in
increasing number of the ACWP modes supported by the
wedges �simply because this is the case for each of the
coupled wedges separately�. Interestingly, decreasing separa-
tion between the wedge tips can also result in increasing
number of the ACWP modes supported by the structure. This
is because decreasing separation between the wedges results
in stronger coupling between the wedge plasmons, leading to
increasing their wave numbers �see below�. This means that
the effective permittivity of the guiding structure also in-
creases, which naturally leads to increasing number of
guided modes.

Each of the ACWP modes can be investigated separately
by the numerical procedure described above. However, in
this paper, we will mainly focus on the detailed analysis of
the fundamental ACWP mode, because it is the most strongly
localized mode and therefore most promising from the view-
point of design of efficient subwavelength waveguides. At
the same time, the major features of the obtained results are
also typical for higher ACWP modes.

III. WAVE NUMBERS OF THE FUNDAMENTAL
ACWP MODES

It is clear that the major characteristics of the fundamen-
tal ACWP modes, e.g., their wave numbers, should strongly
depend on various structural parameters, such as wedge
angle, roundness of the tips �Fig. 1�b��, dielectric constants
of the media in contact, etc. For example, typical dependen-
cies of the wave number kACWP of the fundamental ACWP
mode on radius of curvature r of the wedge tips are presented
in Fig. 2 for the silver-vacuum structure with the wedge
separation w=60 nm.

As expected, at small radii of the tips, the wave number
kACWP decreases with increasing r. This is because increasing
radii of the wedge tips results in decreasing their sharpness,
leading to weaker localization of the wedge plasmon and
smaller wave number. It is clear that at r→ +�, the rounded
tips tend to form a uniform gap between two flat metallic
surfaces. Therefore, at r→ +�, kACWP must tend to the wave
number of the gap plasmon, kGP, in the uniform gap of the
60 nm width. This is difficult to achieve numerically, but the
tendency demonstrated by all the curves in Fig. 2 confirms
this expectation. Another interesting tendency demonstrated
by Fig. 2 is that kACWP decreases noticeably below kGP �dot-
ted line in Fig. 2� as the radius of the tips increases, reaches
a minimum at r=rm, and only then increases back to kGP.
Increasing angle of the wedges results in a less pronounced
minimum of kACWP �Fig. 2�, and the radius rm at which this
minimum is reached decreases with increasing wedge angle

�rm�300 nm, �200 nm and �100 nm for �=30° 40°, and
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80°, respectively�. This is because increasing wedge angle
results in decreasing typical size �e.g., area� of the rounded
tip. Thus the effect of the tip roundness is diminished.

All the three dependencies in Fig. 2 tend to merge when
the radii of the tips increase above �200 nm. This is because
increasing r results in increasing area of the rounded tips. If
the region of ACWP localization is smaller than the typical
size of the rounded tips �e.g., the tip radius�, then the plas-
mon does not “feel” the flat sides of the wedges. Therefore,
its wave number does not depend on wedge angle �Fig. 2�. In
this case, we approximately have a localized coupled plas-
mon propagating between two cylindrical surfaces of radii r,
rather than a coupled wedge plasmon. This occurs when the
radius of curvature increases above �200 nm �Fig. 2�. On
the contrary, if r is small �smaller than �200 nm in Fig. 2�,
then the size of the localization region is larger than the size
of the rounded tips. Therefore, the ACWP field extends to the
flat sides of the wedge and the ACWP wave number depends
on wedge angle �increases with decreasing �—Fig. 2�.

The existence of a minimum wave number of ACWP at
an “optimal” tip radius rm is analogous to the existence of a
minimum wave number of ACWP at an optimal angle of the
triangular wedge �with zero radius of curvature�—see Fig. 3
below. This is because introducing tip roundness at a given
wedge angle is similar to increasing angle of the triangular
tip—in both the cases, the effective sharpness of the tip is
reduced. More detailed physical reasoning of this effect can-
not be presented at this stage.

The typical dependencies of the wave numbers of fun-
damental ACWP mode on wedge angle at zero radius of
curvature of the tips �Fig. 1�a�� are presented in Fig. 3 for the
silver-vacuum structure at different separations of the tips. In
particular, it can be seen that at small wedge angles increas-
ing � results in a rapid decrease of the ACWP wave number
�see also Ref. 21�. However, if the separation between the
coupled wedges is not too large �so that to produce reason-
able coupling�, then the ACWP wave number reaches a mini-
mum at an optimal wedge angle �see the stars and empty
circles in Fig. 3�a��. Further increase of the wedge angle

FIG. 2. The dependence of the wave number of the fundamental ACWP
mode on radius of the tip for the silver wedges in vacuum at different wedge
angles: �=30° ���, �=40° ���, and �=80° ���. Other parameters: gap
width is w=60 nm, vacuum wavelength �vac=632.8 nm �He–Ne laser�, and
the corresponding permittivity of silver �m1=−16.2+0.5i. The horizontal
dotted line corresponds to the wave number kGP of the gap plasmon in a
uniform gap of the 60 nm width.
results in a monotonous increase of the ACWP wave number
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to that of the gap plasmon in a uniform gap of the considered
separation �when �=180° and the coupled wedges form a
uniform gap�.

As can be seen from Fig. 3, there is a critical separation
between the coupled wedges, at which min �kACWP� is equal
to the wave number kSP of the surface plasmon �SP� on the
isolated metal-vacuum interface. For the triangular silver
wedges at �vac=632.8 nm the critical separation wc

�930 nm, and the wedge angle at which min �kACWP�=kSP is
approximately equal to 150° �crosses in Figs. 3�a� and 3�b��.
If kACWP=kSP, this means that the corresponding ACWP is
not localized near the tips of the wedges, but is rather formed
by four surface plasmons travelling along the sides of the
two coupled wedges �with infinite penetration depth along
the sides of the wedges�. If w�wc, there exists a range of
wedge angles �c2	�	�c3, within which kACWP	kSP �the
reasons for using indices 2 and 3 in the notations for the
critical wedge angles will be clear below�. Localized ACWPs
as structural eigenmodes can exist only if �	�c2 or �c3	�
	180°. Between the second and the third critical angles
��c2	�	�c3�, ACWPs do not exist as structural
eignemodes—they leak into surface plasmons on the sides of
the wedges. In the limiting case of infinite separation �iso-
lated uncoupled wedges�, the fundamental ACWP mode
turns into two separate localized wedge plasmons.21 In this
case, �c3=180°, and �c2 becomes the upper cutoff angle for

FIG. 3. The dependencies of wave numbers of the fundamental ACWP
mode on wedge angle in the structure of two triangular �zero radius of
curvature of the tips� coupled silver wedges in vacuum on wedge angle at
different separations of the wedges: w=60 nm ���, w=150 nm ���, w=wc
�930 nm ���, and w= +� ��� �an isolated wedge�. The straight horizontal
lines correspond to the wave numbers kGP of the gap plasmons at the cor-
responding gap widths: 60 nm �— —�, 150 nm �-----�, 930 nm �— — —�,
and kSP of the surface plasmon at an isolated flat surface �— - —�, i.e., at the
infinite gap width. �vac=632.8 nm �He–Ne laser�, and �m=−16.2+0.5i. Fig-
ure 3�b� is the magnification of Fig. 3�a�.
the isolated wedge, and if ���c2, wedge plasmons do not
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exist as wedge eigenmodes.21 For an isolated silver wedge in
vacuum, the upper cutoff wedge angle �c2�105°—see Ref.
21 and the dots in Figs. 3�a� and 3�b�.

As has been shown in Refs. 24 and 25 strongly localized
plasmonic eigenmodes in wedgelike structures, such as me-
tallic V-grooves24 or triangular wedges,25 can only exist if
the wedge/groove is not too sharp �i.e., its angle � is larger
than the first cutoff angle �c1�. If �	�c1, plasmons in the
groove/wedge �including the region near the tip� can be con-
sidered in the geometrical optics �adiabatic� approximation.
A strongly localized plasmon mode, for example, near the tip
of a metal wedge can be represented by two coupled surface
plasmons propagating on the two sides of the wedge and
successively reflecting from the tip and the turning point
�simple caustic�.24,25 If the geometrical optics approximation
is satisfied �i.e., �	�c1�, then the parameters of these two
coupled surface plasmons change only insignificantly within
one wavelength �applicability condition for the adiabatic
approximation24,25�. In this case, the coupled surface plas-
mons do not experience significant reflection as they travel
towards the tip, but rather slow down adiabatically and stop
asymptotically at the tip �in the approximation of continuous
electrodynamics�.24,25 This means that the localization of the
corresponding wedge plasmon �or groove plasmon� is infi-
nite, i.e., it does not exist.24,25 Therefore, �c1 is the lower
cutoff angle for the strongly localized wedge plasmons.25 If
�	�c1, the geometrical optics approach �adiabatic approxi-
mation� is applicable, and wedge plasmons do not exist, be-
cause they are infinitely localized near the tip.24,25 On the
contrary, if ���c1, the adiabatic approximation is not appli-
cable, and the localized plasmonic modes near the tip of the
wedge/groove can exist.24,25

As a result, ACWPs can exist only within the ranges of
the wedge angles: �c1	�	�c2 and �c3	�	180°. Thus,
there are three critical angles determining the existence con-
ditions for ACWPs in the structure of two triangular wedges
separated by a nanogap. The second and the third critical
angles can be determined numerically �see Figs. 3�a� and
3�b��, while the first critical angle is determined from the
applicability condition for the adiabatic approximation,25

�c1 � − 2�1/e1, �1�

where �1 is the permittivity of the dielectric surrounding the
metal wedge, e1 is the real �negative� part of the metal per-
mittivity, and �c1 is assumed to be small. In the above ex-
amples �Figs. 2 and 3�, we considered silver wedges in
vacuum at �vac=632.8 nm, i.e., �1=1, e1=−16.2, and the first
critical angle �c1�7°.

At the critical separation wc between the coupled
wedges, �c2=�c3, and the second interval of angles �c2	�
	�c3, within which ACWPs do not exist, is reduced to just
one angle �=�c2=�c3. If w	wc, then there exists only one
critical angle �c1 and ACWPs can exist in the whole range
�c1	�	180° �Figs. 3�a� and 3�b��.

It is interesting to note that when the wedge angle � is
reduced, the differences between the wave numbers of the
fundamental ACWP modes at different separations tend to
diminish �compare circles, crosses and dots in Fig. 3�a��.

This is because at any fixed nonzero separation, reducing
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wedge angle eventually results in sufficiently strong localiza-
tion of the plasmon near the tips, so that the penetration
depth of the field into the vacuum gap becomes smaller than
the gap width. As a result, for any fixed separation between
the tips, reducing wedge angle eventually results in decou-
pling of the wedge plasmons on the two tips, and the wave
numbers of ACWPs must thus tend to the wave number of a
wedge plasmon on an isolated wedge. Therefore, the stars in
Fig. 3�a� must also tend to all other symbols, but at smaller
values of �. This also suggests that the applicability condi-
tion for the adiabatic approximation near the tips of the
wedges does not depend on separation between them. There-
fore, though Eq. �1� was derived near the tip of an isolated
wedge,24,25 rather than for the coupled wedges, it is still cor-
rect for ACWPs at arbitrary separation, and its use in the
above discussion was justified.

Comparison of the dots with other symbols in Figs. 3�a�
and 3�b� also suggests that the wave numbers of the wedge
plasmons on an isolated triangular wedge are always smaller
than those of the fundamental ACWP modes. This is ex-
pected, because the Coulomb attraction between the opposite
charges across the gap �Fig. 1�d�� results in decreasing speed
and the wavelength of the coupled plasmons �similar to the
antisymmetric plasmons in a narrow gap separating two me-
tallic media�. This is also a reason why the second critical
angle �c2 increases �from �c2�105° at w= +� to �c2

�150° at w=wc—Fig. 3�b�� with decreasing separation be-
tween the tips. Increasing coupling between the wedge plas-
mons results in increasing their wave number, thus increas-
ing the range of wedge angles within which the fundamental
ACWP mode can exist. The same interpretation can be used
for the explanation of the reduction of the third critical angle
from �c3�180° at w= +� to �c3�150° at w=wc �Fig. 3�b��.
Therefore, unlike the first critical angle, the second and the
third critical angles are noticeably affected by the coupling
between the wedges �i.e., by their separation w�.

If the tips of the edges are not triangular, but rounded
with a radius of curvature r �Fig. 1�b��, then increasing r
results in a decrease of the wave numbers of ACWP funda-
mental modes at smaller wedge angles. At the same time,
when �→180°, the wave number of the fundamental ACWP
mode still tends to the wave number of the corresponding
gap plasmon �similar to how it happens in Figs. 3�a� and
3�b��. This is because, if �→180°, the structure tends to the
uniform gap of width w irrespectively of the radius of cur-
vature r of the wedge tips.

Another interesting conclusion is that in the approxima-
tion of continuous electrodynamics any nonzero radius of
curvature of the wedge tip should result in removal of the
first critical angle �c1 �lower cutoff angle�. Indeed, an arbi-
trarily small �but finite� radius of curvature of the tips results
in breaching the adiabatic approximation �geometrical optics
approximation� near the rounded tip. A plasmon propagating
towards the rounded tip will not experience infinite slowing
down without any significant reflection �as should be in the
adiabatic approximation�,24,25 but rather be reflected from the
rounded tip, while still having finite �nonzero� wavelength
and noninfinite wave number. This will happen at arbitrarily

small wedge angles. As a result, a plasmon guided by the
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rounded tip of the wedge with finite localization near the tip
can exist even if �	�c1. At the same time, decreasing radius
of curvature of the rounded tip results in increasing localiza-
tion of the wedge plasmon. If �	�c1, then decreasing r to
zero results in infinite increase of plasmon localization near
the tip �i.e., it ceases to exist�. If ���c1, then decreasing r to
zero results in only finite increase of the plasmon localization
near the tip, the maximal localization will be given by the
localization of the wedge plasmon near the triangular tip
�i.e., with zero radius of curvature�. These arguments are
equally relevant to localized plasmons on an isolated metal
wedge and all the ACWP modes on two wedges separated by
a nanogap.

IV. FIELD DISTRIBUTION AND PLASMON
LOCALIZATION

The typical distributions of the electric and magnetic
fields near the rounded tips of the coupled wedges in a cross
section that is parallel to the �y ,z� plane in the fundamental
ACWP mode are presented in Figs. 4 and 5 for all three
components of each of the fields. In particular, it can be seen
that Ey and Hz are antisymmetric with respect to both the y
and z axes �Figs. 4�b� and 5�c��. Ex is antisymmetric with
respect to the y axis and symmetric with respect to the z axis,
while Hx displays the opposite symmetry �Figs. 4�a� and
5�a��. At the same time, the Ez and Hy components are sym-
metric with respect to both the considered axes. These field
distributions are typical for all radii of curvature of the tip
including the zero radius �triangular tip�, whenever the fun-

FIG. 4. The distributions of the three components of the electric field near
the rounded tips of the couples silver wedges in vacuum; r=100 nm, w
=60 nm, �=30°, �vac=632.8 nm �He–Ne laser�, and �m=−16.2+0.5i. The
electric field components are normalized to 	max�Ez�	.
damental ACWP mode exists.
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The presented distribution patterns can be understood on
the basis of the antisymmetry of the distribution of charges
across the gap �Fig. 1�d��. Indeed, such a charge distribution
naturally results in the antisymmetry of Ey and Ex with re-
spect to the y axis �i.e., across the gap—Figs. 4�a� and 4�b��.
Simultaneously, this results in the symmetric distribution of
Ez �Fig. 4�c��, caused by the electrostatic interaction between
the opposite charges across the gap. The antisymmetry of Ey

with respect to the z axis is explained by the fact that wedge
plasmon modes are actually guided film plasmons, i.e., two
surface plasmons coupled across the film/membrane. In the
case of a wedge, the thickness of this membrane �wedge�
decreases towards the tip of the wedge. The film plasmon
propagates in the structure with varying thickness, which is
equivalent to changing effective permittivity for the
plasmon.24,25 There can exist two different film plasmons,
those with symmetric and antisymmetric distribution of
charges across the film. It can be seen that only the film
plasmon with symmetric �with respect to the central plane of
the film� distribution of charges does not have a cutoff film
thickness. That is, it can exist in the film when its thickness
tends to zero, and the wave number of such a film plasmon
tends to infinity as the film thickness tends to zero. This is
equivalent to increasing effective permittivity for the film
plasmon to infinity as the film thickness tends to zero. The
film plasmon in a wedge propagates in the structure with
changing effective permittivity, i.e., effectively in a wave-
guide formed by increasing effective permittivity near the tip
of the wedge.24,25 Therefore, the strongly localized wedge

FIG. 5. The distributions of the three components of the magnetic field near
the rounded tips of the couples silver wedges in vacuum; r=100 nm, w
=60 nm, �=30°, �vac=632.8 nm �He–Ne laser�, and �m=−16.2+0.5i. The
magnetic field components are normalized to 	max�Hy�	,
max�Hy� /max�Ez�=9.76�10−4 �A/V�.
plasmon modes are formed by guided film plasmon modes
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with the symmetric charge distribution across the film.24,25

The symmetric charge distribution results, for example, in
identical positive charges on the opposite sides of a metal
wedge near the tip. As a result, these charges will produce
identical �in magnitude� electric fields, but pointing in the
opposite directions �along the positive and negative y direc-
tions�. This results in the antisymmetry of Ey and symmetry
of Ex with respect to the z axis, which is demonstrated by
Figs. 4�a� and 4�b�.

The symmetric features of the magnetic field compo-
nents �Fig. 5� immediately follow from the symmetry of the
electric field components �Fig. 4� and the Maxwell equa-
tions.

The typical distribution of the magnitude of the total
electric field between the tip in the �y ,z� plane �perpendicu-
lar to the direction of plasmon propagation� is presented in
Fig. 6. In particular, it can be seen that the field is primarily
localized in the vicinity of the rounded tips in the gap be-
tween them. The distribution of the magnitude of the electric
field is thus symmetric with respect to both the y and z axes.
This immediately follows from the symmetric and antisym-
metric distributions of all three electric field components
�Fig. 4�.

Figures 4–6 suggest strong localization of the ACWP
field near and between the wedge tips. In order to investigate
the localization of ACWPs in the considered structures more
quantitatively, we define the region of localization so that at
its boundaries the magnitude of the plasmon field decreases e
times compared to the maximal magnitude of the field at the
tips. The dependencies of the typical dimensions of this re-
gion along the y and z directions for the fundamental ACWP
mode on wedge separation at different angles � are presented
in Fig. 7.

In particular, as expected, increasing separation between
the wedges and/or wedge angle results in a significant in-
crease of the region of localization �i.e., decrease of localiza-
tion of the fundamental ACWP mode�—Fig. 7. Localization
along the y axis is affected by the wedge angle much stron-
ger, than the localization along the z axis �compare Figs. 7�a�
and 7�b��. This is because the localization along the z axis is
mainly determined by the distance between the tips and rapid

FIG. 6. The distribution of the magnitude of the electric field near the
rounded tips of the coupled silver wedges in vacuum; r=100 nm, w
=60 nm, �=30°, �vac=632.8 nm �He–Ne laser�, and �m=−16.2+0.52i
�silver�.
decay of the field into the metal. At the same time, localiza-
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tion along the y axis strongly depends on difference between
the ACWP wave number and that of the bulk wave in
vacuum, and this difference noticeably decreases with in-
creasing separation between the wedges and/or wedge angle
�Fig. 2�.

As can be seen, the achievable localization of the field
between the tips can be far beyond what is called the diffrac-
tion limit of light.3 For example, at �=30° and w=50 nm,
the localization of the fundamental ACWP mode in the con-
sidered structure can be as small as �10 nm �Fig. 7�. This
makes ACWPs promising from the viewpoint of the devel-
opment of subwavelength waveguides with strong localiza-
tion beyond the diffraction limit. Because the fundamental
mode of a gap plasmon waveguide is formed by four anti-
symmetric coupled wedge plasmons,12 strong localization of
ACWPs is also the reason for increasing localization of the
fundamental mode in a gap plasmon waveguide with de-
creasing thickness of the film and/or width of the gap.12

V. DISSIPATION OF ACWPS

It is important to understand that strong subwavelength
localization of a plasmon is still insufficient for this plasmon
to be useful for the development of efficient subwavelength
waveguides. Another very important aspect that has to be
taken into account is dissipation of the plasmon. If dissipa-
tion is large, so that the plasmon hardly propagates a few
wavelengths, it cannot be a good option for the development
of subwavelength waveguides and interconnectors for inte-
grated optics. For example, this was the case with strongly
localized particle plasmons in chains of metallic nanopar-
ticles, where the typical propagation distances do not exceed

2

FIG. 7. The dependencies of the dimensions of the region of the field lo-
calization �at the level of 1 /e� in the fundamental ACWP mode along the y
axis �a� and along the z axis �b� on separation w between the wedges in
vacuum. Wedge angles: �=120° ���, �=80° ���, and �=30° ���. The
radius of the wedge tips r=0, �vac=632.8 nm, and �m=−16.2+0.52i �silver�.
�100 nm. Therefore, the numerical analysis of dissipation
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of ACWP modes is essential for the evaluation of their suit-
ability for the design of efficient subwavelength interconnec-
tors and nano-optical devices.

The typical dependencies of the propagation distances of
the fundamental ACWP mode on gap width are presented in
Fig. 8 for the structure of two identical silver wedges with
zero tip curvature in vacuum. For comparison, the structural
parameters are chosen the same as for Fig. 7. For example, at
the separation between the wedges of �50 nm, the propaga-
tion distances of the fundamental ACWP mode are between
�2.5 
m �at �=30°� to �10 
m �at �=120°�. Taking into
account that at �=30° the wavelength of the fundamental
ACWP mode is �440 nm �Fig. 3�, the propagation distance
of �2.5 
m corresponds to � six wavelengths, which is
sufficient for the design of interconnectors for nanoscale in-
tegrated optics.1,5 Increasing wedge angle and/or separation
between the wedges results in increasing propagation dis-
tance and the number of plasmon wavelengths that fit within
this propagation distance. However, this will also result in a
simultaneous decrease of the localization of the ACWP
modes near the tips. Therefore, there should be a reasonable
compromise between decreasing propagation distance �in-
creasing dissipation� and increasing localization, as the
wedge angle and/or separation between the tips are de-
creased.

Physically, increasing dissipation with increasing plas-
mon localization is explained by the fact that the plasmon
penetration depth into vacuum rapidly decreases with in-
creasing localization, because the wave becomes increas-
ingly noneigen in the vacuum �dielectric�. As a result, a
larger portion of the plasmon energy propagates in the dissi-
pative metal, which naturally leads to increasing dissipation
of ACWP and decreasing number of wavelengths that the
plasmon can travel before the intensity of its field decreases
e times. As can be seen from Fig. 8, ACWP propagation
distance increases �i.e., dissipation decreases� with increas-
ing separation between the wedges. However, at large values
of w, the increasing propagation distance tends to a plateau
�see, for example, circle in Fig. 8�. This is because at large

FIG. 8. The dependencies of the propagation distance �the distance at which
the field intensity in the fundamental ACWP mode decreases e times� on
separation w between the wedges at different wedge angles: �=120° ���,
�=80° ���, and �=30° ���. The radius of the wedge tips r=0, �vac

=632.8 nm, and �m=−16.2+0.52i �silver�.
separations the ACWP fundamental mode tends to two un-
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coupled wedge plasmons propagating along the two isolated
wedges. Therefore the plateau propagation distances must
correspond to propagation distances of the two uncoupled
wedge plasmons on isolated wedges.21

VI. CONCLUSIONS

In summary, this paper has reported the numerical analy-
sis of strongly localized coupled plasmons propagating along
the tips of two metal wedges separated by a nanogap. Plas-
mon parameters and field structure were determined by
means of the compact-2D FDTD formulation. Two types of
coupled plasmon eigenmodes can exist in the coupled wedge
structure—with the symmetric and antisymmetric distribu-
tions of charges across the gap. The symmetric modes have a
cutoff separation between the tips of the wedges, while the
antisymmetric modes can exist at arbitrarily small separa-
tion.

Detailed numerical analysis has been conducted for the
ACWP fundamental mode, including its field structure, dis-
persion, dissipation, existence conditions, typical propaga-
tion distances, and the dependencies of the wave parameters
on radius of the wedge tips, wedge angle, and separation. It
has been demonstrated that the ACWP modes can be used for
the design of effective subwavelength waveguides, because
their localization can be far beyond the diffraction limit of
light, and their dissipation can be relatively weak �so that the
wave can normally propagate at least several wavelengths
before its intensity drops e times�. In particular, decreasing
separation between the wedges and/or their angles results in
increasing localization of the plasmon near the tips and
decreasing their propagation distance. Therefore, separation
between the wedges and wedge angle are highly important
parameters that should be taken into account when determin-
ing the optimal structures for the design of nano-optics
components. Further increase of the propagation distances
could be achieved by means of gain-assisted propagation
�which could be achieved by surrounding the metal wedges
by a medium with gain, as was proposed for surface plas-
mons 26,27�.

The analysis has been conducted primarily for the fun-
damental ACWP mode. At the same time, the major findings
are also applicable for higher ACWP modes in the consid-
ered structures �if their existence conditions are satisfied�.
Similarly, the analysis was conducted only for identical
wedges in vacuum coupled across a gap. It is also practically
Downloaded 14 Jul 2006 to 128.32.14.230. Redistribution subject to 
important to consider a structure of two coupled metal
wedges on a dielectric substrate. Certainly, the substrate may
have a significant effect on the described ACWPs. For ex-
ample, in some cases, ACWP modes may become leaky into
the substrate. This may create an opportunity for a resonant
generation of these modes using focused bulk radiation inci-
dent onto the structure of the two wedges from the substrate.
However, detailed analysis of these effects is beyond the
scope of this paper.
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