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SUMMARY

A numerical analysis has been performed for three-dimensional developing turbulent �ow in a 180◦
bend tube with straight inlet and outlet section used by an algebraic Reynolds stress model. To our
knowledge, numerical investigations, which show the detailed comparison between calculated results and
experimental data including distributions of Reynolds stresses, are few and far between. From this point
of view, an algebraic Reynolds stress model in conjunction with boundary-�tted co-ordinate system is
applied to a 180◦ bend tube in order to predict the anisotropic turbulent structure precisely. Calculated
results are compared with the experimental data including distributions of Reynolds stresses. As a result
of this analysis, it has been found that the calculated results show a comparatively good agreement with
the experimental data of the time-averaged velocity and the secondary vectors in both the bent tube and
straight outlet sections. For example, the location of the maximum streamwise velocity, which appears
near the top or bottom wall in the bent tube, is predicted correctly by the present method. As for the
comparison of Reynolds stresses, the present method has been found to simulate many characteristic
features of streamwise normal stress and shear stresses in the bent tube qualitatively and has a tendency
to under-predict its value quantitatively. Judging from the comparison between the calculated and the
experimental results, the algebraic Reynolds stress model is applicable to the developing turbulent �ow
in a bent tube that is known as a �ow with a strong convective e�ect. Copyright ? 2005 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Since it has been recognized that the bend tube plays an important role as the machine
element in many engineering �elds, many researchers have presented the experimental and
analytical results about the �ow behaviour in the bent tube. In addition to this, bend tube �ow
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is the basic �ow as well as the near wall turbulence, separated �ow, non-Newtonian �ows,
etc. However, when it is limited to turbulent �ow of 180◦ bend with circular cross-section,
very little has been reported. In this numerical analysis, special attention paid for developing
turbulent �ow of 180◦ bend with circular cross-section.
Rowe [1] has presented the experimental data for turbulent �ow of 180◦ bend tube in the

early stage. He had reported that the revered �ow of the secondary �ow was generated
locally near the bend angle 90◦ for the turbulent �ow of 180◦ bend tube under the condition
of Reynolds number 236 000. Azzola et al. [2] and Azzola and Humphrey [3] have mea-
sured the mean velocity and �uctuating velocities for turbulent �ow of 180◦ bend tube in two
�ow conditions of Reynolds number, 57 400 and 110 000, by using laser–Doppler anemome-
ter system. With regard to forced convection phenomenon of turbulent heat transfer, Baughn
et al. [4] have measured comparatively in detail the temperature and Nusselt number dis-
tributions of 180◦ bend tube, which is the same bend tube presented by Azzola et al. [2].
Anwer et al. [5] have measured the streamwise velocity, secondary �ow and six components
of Reynolds stresses along the vertical and horizontal axes for 180◦ bend tube in Reynolds
number 50 000 by hot wire anemometer. Their adopted bend tube has gently bent, that is,
the curvature ratio between bend curvature radius and tube ratio is 12.89. The measurement
has been carried out not only to the bend tube but also to the tangential straight tube and
showed the developing behaviour of turbulent parameters. Adding to this, Anwer and So [6]
have reported that the driving force of the secondary �ow was classi�ed into three kinds of
forces, i.e. one is the centrifugal force, another is the imbalance between pressure gradient
and centrifugal forces, which was dominant in the central region of the tube, and the other
is anisotropic turbulence, which was active near the outer wall of the bend.
Contrasted with curvature ratio 12.89 of Anwer et al. [5], Sudou and Takami [7] have pre-

sented the experimental data for 180◦ bend tube with curvature ratio 4.0. They have measured
the secondary �ow and three components of Reynolds stresses at Reynolds number 60 000
by the hot wire technique. They have showed the contour maps of Reynolds stresses over
the whole cross-section from the bend tube until the tangential straight tube in detail, while
Anwer et al. [5] displayed local Reynolds stresses along vertical and horizontal axes. From
the point of view for assessment of turbulent model, the experimental data of Sudou et al.
are valuable results to evaluate the turbulent model, because they have measured developing
turbulent �ow of 180◦ bend tube in detail including distributions of Reynolds stresses.
As for the numerical calculation of turbulent �ow for 180◦ bend tube, Azzola et al. [2]

have predicted their experimental data [2, 3] by high Reynolds-number turbulence model,
that is the so-called k–� model. Authors [8] have also calculated for the turbulent �ow of
180◦ bend tube by low Reynolds-number turbulent model. In addition to this, authors [9]
have predicted the experimental data measured by Baughn et al. [4] in forced convection
of turbulent heat transfer in order to make the di�erence among the several kinds of two-
equation models for temperature �eld clear. Sudou and Takami [10] and Aoyama et al.
[11] have carried out numerical calculation using the transport equation of Reynolds stress
and algebraic Reynolds stress model, respectively. Recently, numerical results of large eddy
simulation have presented by Boerama and Nieuwstadt [12]. Although Lai et al. [13] have
tried to predict the secondary �ow driven through an-isotropic turbulence de�ned by Anwer
and So [6] using the transport equation of Reynolds stress, they have not carried out the
quantitative comparison with experimental data. In those numerical analyses, it may be said
that many calculations have been performed for the fully developed turbulent �ow and have
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not been compared with the experimental data for the developing turbulent �ow of the bent
tube.
Considering from those references, the main object is to calculate for developing turbulent

�ow of 180◦ bend tube and to compare the calculated results quantitatively with the experi-
mental data measured by Sudou and Takami [7] in detail, in which Reynolds stress results are
involved. In this study, algebraic Reynolds stress model [14] is adopted in order to predict
anisotropic turbulent �ow precisely.

2. ANALYSIS

2.1. Numerical object and de�nition of co-ordinate system

Figure 1 shows the schematic diagram of the experimental apparatus of Sudou and Takami
[7] and co-ordinate de�nitions of calculation. They have measured the developing turbulent
�ow of 180◦ bend with circular cross-section by the rotated hot wire technique, a method they
themselves presented. The tubes of length 100D and 40D are attached to the inlet and outlet
section of bend tube, respectively. The fully developed turbulent �ow has been obtained by
connecting 100D straight pipe in the entrance of the bent tube. In the experimental apparatus,

Figure 1. 180◦ bend tube and de�nition of co-ordinate system.
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radius of curvature, diameter of tube D, the ratio of bend curvature radius for tube radius and
Reynolds number are 208 mm, 104 mm, 4 and 60 000, respectively.
The co-ordinates of � and r represent the bent tube angle along circumferential direction

and radius direction in circular cross-section as shown in Figure 1. Symbols of Zin and Zout are
the distance measured upstream from bend inlet section and distance measured downstream
from bend outlet section, respectively. The arrow direction of Zin and Zout in Figure 1 is
de�ned as the positive direction in this study.

2.2. The transport equation of Reynolds stresses

The anisotropy nature of the turbulence is expressed by the Reynolds stress equations. In
order to deal with anisotropic turbulence, we have adopted the transport equation of Reynolds
stress in numerical analysis. The exact formula of the transport equation of Reynolds stress
is shown as follows.
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It is impossible to solve the above equation directory, so it is necessary to rewrite the
several terms of Reynolds stress equation by introducing the turbulent model. Moreover, it is
a fact from the point of numerical analysis that the convection term of the left-hand side and
the di�usion term of the right-hand side are obstacles for getting numerical solution, because
these terms are required to carry out iterative calculations in order to get the stable results.
In this study, these terms are modelled by adopting Rodi’s [15] approximation. As a result of
this approximation, these two terms are transformed to an algebraic form from the di�erencing
form. Therefore, the convection and di�usion terms in the above equation were modelled as
follows:

Duiuj
Dt

−Di� ij= uiuj2k (Pk − �) (2)

where Di� ij corresponds to the third term on the right-hand side of Equation (1) and Pk
represents the production term of turbulent energy equation.
A particularly problematic task here is the modelling of the pressure–strain correlation

equation term, which is also de�ned as the redistribution term and is shown as the second
term on the right-hand side of Equation (1). The pressure–strain term is composed of three
parts, which are the interactions of the �uctuating velocities (�ij;1 + �ji;1) and that of mean
strain with the �uctuating velocities (�ij;2 + �ji;2) and wall proximity e�ects (�ij;w + �ji;w).
In the present calculation, we have adopted the Rotta’s linear return to isotropy mode for
(�ij;1 + �ji;1) term, which term is shown in Table I.
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Table I. Modelling of the pressure–strain correlation term.
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For �ij;2, the correlation is approximated in the form:
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and amilj is the fourth-order tensor, which should satisfy the following kinematic constraints:
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The above constraints arise from the symmetry condition, the mass conservation law and
Green’s theorem, respectively. Although kinematic constraint of Equation (5) is di�erent from
the constraint presented by Launder et al. [16], we adopted Equation (5) because �ij;2 is
de�ned as the production between the fourth-order tensor and the mean strain as seen in
Equation (3). Gessner and Eppich [17] have also presented these constraints and described
in detail. The most general such tensor satisfying the symmetry constraints is written as

amilj = 
�ljumui + �(�mluiuj + �mjuiul + �ilumuj + �ijumul)

+c2�miuluj + {��mi�lj + 
(�ml�ij + �mj�il)}k (7)

which was presented by Launder et al. [16], where �ij represents Kronecker delta and c2; 
; �;
� and 
 are empirical constants.
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In the case of Launder, Reece and Rodi, kinematic constraint amili =0 have been adopted
instead of Equation (5). Therefore, we can get the following relation formula by using the
fourth-order tensor of Equation (7):

amili =(2�+ �+ 4
)�mlk + (5�+ 
+ c2)umul (8)

The corresponding equation in the present case is shown as follows:
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In Equation (8), Launder et al. set constants of the �rst and second terms to be zero. However,
the constant of the �rst term is not necessary at all times to be zero, because Kronecker delta
satis�es zero when subscript m is not equivalent to subscript l. On the other hand, the �rst
term of Equation (9) always shows zero whatever values m and l have. Therefore, the above
inconsistency is avoided by introducing kinematic constraint of Equation (5). Besides, the
constant of the second term only is set equal to zero in the present method.
Two constants 
 and � of Equation (7) are determined as a function of c2 by adopting

constraints of Equations (5) and (6). The in�uence of the mean strain (�ij;2 + �ji;2) on the
pressure–strain correlation is expressed by connecting Equation (3) with Equation (7) as
shown in Table I. In Table I, �(= �+ 
) is an independent constant to be determined from
experimental data and 
 and � are de�ned as the function of c2. In Launder, Reece and Rodi
model, 
; �; � and 
 are de�ned as a function of only c2. Therefore, we can take into account
more experimental date in the present model than Launder, Reece and Rodi model. As for
modelling for mean strain rate (�ij;2 + �ji;2), we have basically followed the same process
presented by Launder et al. [16] except for adopting the constraint of Equation (5) for the
fourth-order tensor.
The wall e�ect term (�ij;w +�ji;w) on turbulent stresses is modelled as shown in Table I by

changing model constants. In Table I, f(L=Xw) is a function that is related to the dimension-
less distance from the wall and c� and 	 represent the empirical constant and the von Karman
constant, respectively. Function f(L=Xw) takes unit near the wall and approaches zero with
increasing the distance from the wall. The symbol Xw is the normal distance from the wall and
L de�nes the length scale of turbulence. When f(L=Xw) takes zero value, the model yields
the correct Reynolds stress components for nearly homogeneous shear �ow of Champangne
et al. [18], while f(L=Xw) is unit, magnitude of the stress components agree with consensus
of near wall turbulence. Therefore, we have determined model constants by means of experi-
mental data of near wall turbulence and homogeneous shear �ows as mentioned above. Model
constants used in this analysis are summarized in Table II.

Table II. Model constants of the pressure–strain correlation term.

C∗
1 C∗

2 �∗ C′
1 C′

2 �′ C� 	

1.4 0.44 −0:16 −0:35 0.12 −0:1 0.09 0.42
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The fourth term of Equation (1) is the homogeneous part of dissipation. The dissipation
rate everywhere in the computed �ow was assumed to be locally isotropic, i.e.
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The transport equations of turbulent energy and dissipation are expressed as the following
form:
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Model constants cs; c�; c1 and c2, are 0.22, 0.18, 1.44 and 1.92, respectively.

2.3. Boundary-�tted co-ordinate system

It is required that the boundary condition is set along the shape precisely, when the shape
complicatedly changes. Boundary-�tted co-ordinate system is the technique which transforms
from the co-ordinate in the physical plane to that in the calculation plane. Numerical calcu-
lation is performed in the calculation plane. As the characteristic features of boundary-�tted
co-ordinate system, it has been realized that it is easy to set boundary condition correctly
along distorted shape, while governing equations are transformed to complicated equations
from simple form equations in the physical plane.
The transformation from the physical plane to the calculation plane is carried out by the

following mathematical theorem:
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The symbols �; � and � represent the co-ordinates of the calculation plane and are corre-
spondent to streamwise direction, cross-sectional direction along calculation mesh in physical
plane. For example, the momentum equation including the Reynolds stress is expressed as
follows:
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The Reynolds stress term in momentum equation is divided into two terms as in the following
equation; i.e. one is the term containing the velocity gradient related with Reynolds stress and
the other term is the remaining term except for the former term.
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In the above equation, a and b denotes the coe�cients of the Reynolds stresses and the
velocity gradient, respectively, and c represents the remaining term except for these terms.
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Here, we put
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so that the momentum equation can be rewritten in the following form:
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Rewriting this formula by using the mathematical de�nition of Equation (13), we are able to
obtain �nally the transformed equation as follows:
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In the above equation, U; V and W are components of the contravariant velocity. The symbol
li represents the metric tensor appearing as a result of transformation. Contravariant velocity
and metric tensor are de�ned as following forms.
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The other governing equations also are able to transform from the physical plane to the
calculation plane following the above procedure.

2.4. Numerical analysis

Considering the symmetry of the circular cross-section, we set the calculated region to half
of the circular cross-section. Although the inlet length of the straight tube in experimental
apparatus is 100D in order to obtain the fully developed turbulent �ow, the inlet length of
straight tube in the calculation is set up 40D to save computational time. The length of
the outlet straight tube is also set up 40D, which is the same length for the experimental
apparatus. Since the present model can be classi�ed into the high Reynolds-number turbulent
model, wall function method is adopted as the boundary condition for turbulent energy and
dissipation. The in�ow condition of turbulent energy and dissipation were assumed to be
k=Ub2 × 10−5 and �= k3=2=D, respectively, because the inlet condition of turbulent energy
and dissipation were uncertain even in the experiment. The outlet boundary conditions set
the Neumann condition. The governing equations were discretized by the di�erencing scheme
and QUICK (third-order up-wind di�erencing scheme) was used for discretion of convection
term. The Reynolds number is the same as that of the experiment that is 60 000, based on
mean velocity and diameter. The calculation grids are located 41 × 21 in the half region
of total cross-section and 140 along the main �ow direction. Therefore, the total amount of
calculation grids are 120 540. Figure 2 shows the grid layouts for calculation, i.e. one is
calculation grid for symmetrical plane (±90◦ plane) and the other is that for half region of
circular cross-section.

Figure 2. Computational mesh layout.
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3. RESULTS AND DISCUSSIONS

3.1. Comparison of mean velocity

The calculated results of streamwise mean velocities are compared with the experimental data
for the bent tube and tangential straight tube in Figure 3. The values were made dimensionless
by bulk velocity. The left- and the right-hand sides of circular cross-section are correspondent
to the inner and outer walls for the bent tube, respectively. It is pointed out as the characteristic
feature in both results that the maximum mainstream velocity is produced at the inner wall
side at the bent inlet �=0◦ and curved station �=30◦. Such a phenomenon is a remarkable
feature especially for the �ow with the sharp bending tube. At station �=60◦ in both results,
there are distorted contour lines which protruded from the inner wall towards the central region
of the bent tube. These distorted contour lines suggest that low-velocity �uid near the wall
is conveyed to the inner wall side by the secondary �ow. Such a tendency of �ow behaviour is

Figure 3. Comparison of streamwise mean velocity.
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specially recognized in station �=90◦. Besides, both the calculated and experimental results
of �=105; 120; 150◦ show that low-velocity �uid is transferred to the central region by the
secondary �ow as the �ow develops. At station �=180◦ of experimental data, the region
of low-velocity �uid is generated again near the inner wall of the bent tube. The presented
method is also able to reproduce this characteristic feature reasonably. In the outlet straight
tube, the contour lines approach gradually the concentric circular contour distributions of
fully developed turbulent �ow downstream, continuously forming the high value of contours
near the outer wall side of the circular tube. The numerical calculation has predicted not only
qualitative but also quantitatively these characteristic phenomena. Moreover, comparison of the
calculated results with the experimental data at �=105; 120; 150; 180◦ shows that numerical
calculation has reproduced the maximum streamwise velocity in the vicinity of the bottom wall
as well as the experimental data except for the station �=180◦. Considering the maximum
streamwise velocity is not observed near the wall for the turbulent �ow of 90◦ bend tube [19],
such generation of maximum streamwise velocity in the vicinity of the wall may be a peculiar
phenomenon for 180◦ bend tube. This phenomenon is caused by forming the low-velocity �uid
in the central region induced by the secondary �ow.
Both numerical and experimental results of the contour lines of streamwise velocity on

the symmetrical plane (�= ± 90◦) for the top and bottom walls are shown in Figure 4.
The regions of low-velocity �uid are recognized near the inner wall between �=30 and 60◦

and the inner wall of the outlet straight tube in both results. The calculation has estimated
the experimental value comparatively well. There is the strong correlation between contour
distributions and secondary �ow derived by the pressure gradient.
Figure 5 shows the comparison of the calculated secondary �ow with the measured sec-

ondary �ow. At the inlet station of the bent tube �=0◦ in both results, the secondary �ow
has been formed uniformly from the outer wall towards the inner wall as a result of generating
high pressure gradient near the outer wall of the bent tube. From both the results of station
�=30◦, secondary �ow moves from the inner wall to outer wall along the symmetric plane
and the paired vortex is formed covering the total cross-section. The strength of secondary
�ow increases gradually with the development of the �ow, and the low-velocity �uid is car-
ried to the inner wall side. The contour lines of the inner wall will be greatly distorted by
transporting low-velocity �uid. But after the �ow passes at station �=90◦, it is clear from
both results that the strength of secondary �ow attenuates conversely. It can be also pointed
out as the common phenomenon of both results that the strength of secondary �ow rapidly
decreases in the downstream straight tube section. Although Lai et al. [13] has estimated the
existence of secondary �ow of the second kind generated by anisotropic turbulence in the
vicinity outer wall, both results do not indicate such a secondary �ow of the second kind in
this sharp bent tube.
Figure 6 displays a comparison of the wall static pressure along the streamwise �ow at

the location of �= ± 90; ±45 and 0◦. Both results show that negative pressure gradient is
formed at the outer wall near the bend inlet; on the other hand, the positive pressure gradient
is generated at the inner wall near the bend inlet. At the bend inlet, secondary �ow generated
from the outer wall to the inner wall is produced by the pressure di�erence between the outer
and inner walls. When special attention is paid for pressure coe�cient along the inner wall
(�= − 90◦), it is found out as a characteristic feature that the pressure coe�cient increases
until station �=75◦ and decreases monotony after passing �=75◦. The calculation has also
quantitatively predicted this remarkable phenomenon. This pressure coe�cient rise along inner
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Figure 4. Comparison of streamwise mean velocity on ±90◦ plane.

wall may be produced by the existence of the outer wall located after station 90◦, which wall
acts as resistance for the �ow near the inner wall placed before station 90◦.

3.2. Comparison of Reynolds stresses

Comparisons of streamwise velocity �uctuation are shown in Figure 7. The contour lines of
bent inlet �=0◦ show asymmetric pattern with respect to vertical axis to move slightly to the
inner wall side in both results. In the experimental contours, the strong intensity of velocity
�uctuation is generated near the inner wall side and velocity �uctuation increases gradually
until it reaches the maximum value with 18% of bulk velocity at station �=105◦. Although
the calculation has not predicted precisely the maximum value of velocity �uctuation, the cal-
culation has been able to reproduce the characteristic phenomenon without large discrepancy.
The strong intensity of velocity �uctuation is also generated near the region of the inner wall
between the bent outlet and Zout=D=1 of the straight tube in both results. It is understood
from both results at Zout=D=10 of straight tube that the long length of tube is needed to
obtain the fully developed turbulent �ow after the �ow passing the bent tube.
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Figure 5. Comparison of secondary �ow.

Figure 6. Comparison of secondary �ow.
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Figure 7. Comparison of streamwise velocity �uctuation.

Figures 8 and 9 show the comparison of shear stresses u�ur and u�u�, respectively. From the
experimental data, it is observed as a distinctive feature that the concentric circular contour
lines with positive sign at the bent inlet gradually changes its pro�le of distribution with
increasing negative sign region as the �ow develops and the absolute maximum value of
shear stress is produced above the symmetry axis. Besides, the contour line with zero value
has the shape of the circular distribution in the outlet straight tube, which is greatly di�erent
from the contour lines in the bent tube. The calculation has also reproduced such characteristic
phenomenon mentioned above. As for the shear stress u�u�, relative high value of shear stress
is generated near the upper and bottom walls as shown in the results of �=0 and 30◦ and
the region with the opposite sign is formed by generating zero lines after the �ow passing
�=60◦. The calculation has predicted the region with the opposite sign up to �=150◦

comparatively well, but the distribution of the outlet section �=180◦ is slightly di�erent
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Figure 8. Comparison of shear stress u�ur .

from the experimental result. Downstream of the straight tube, it is understood from both
the results that almost all regions of the cross-section are occupied by the negative value of
shear stress. The comparison results described above suggest that the algebraic Reynolds stress
model is able to predict the developing turbulent �ow of the bent tube that is characterized
as complicated turbulent �ow.

3.3. Comparison of averaged values over the cross-section

Figure 10 shows comparison of the biased length �x=D that is de�ned as the shortest distance
between the vertical axis and the gravity point of streamwise velocity over the half cross-
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Figure 9. Comparison of shear stress u�u�.

section, the averaged strength of secondary Is and averaged strength of turbulent energy Ik over
the half cross-section. Values for these parameters are estimated by the following equations.

�x
D
=

8
�D2Ub

∫ �=2

−�=2

∫ D=2

0

r sin �
D

U�r dr d� (21)
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Figure 10. Comparison of mean values of Ik ; Is and �x=D.

Is =
8

�D2Ub

∫ �=2

−�=2

∫ D=2

0
(U 2

� +U
2
r )r dr d� (22)

Ik =
8

�D2Ub

∫ �=2

−�=2

∫ D=2

0

1
2
(u2� + u

2
� + u2r )r dr d� (23)

From the experimental result, it has been found out that, after the gravity point of streamwise
velocity moves to the inner wall near the inlet section of the bent tube, its gravity point
approaches gradually to the vertical axis and rapidly moves to the outer wall side near the
outlet section of the bent tube as the �ow develops. The maximum value of the biased length
is generated in the downstream straight tube. The calculated result of �x=D is in good agreement
with the experimental results. Besides, it is proven from comparison of both results that the
averaged strength of secondary �ow takes the maximum value near the �=90◦. Contrary to
this, the calculation over-predicts the averaged strength of turbulent energy of the experimental
data.

4. CONCLUSIONS

A numerical analysis has been performed for three-dimensional developing turbulent �ow
in a 180◦ bend tube with straight inlet and outlet sections using by an algebraic Reynolds
stress model and boundary-�tted co-ordinate system. Calculated results are compared with the
experimental data measured by Sudou and Takami [7] to con�rm the validity of the present
method. As results of this analysis, the following conclusions are summarized:

(1) The present method is able to predict quantitatively and qualitatively the experimental
feature, i.e. the location of maximum streamwise velocity formed in the vicinity of
circumference wall after passing the region where low velocity is generated near the
inner wall side of inlet plane of the bent tube.
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(2) Calculated developing behaviour of the secondary �ow is in good agreement with the
experimental results.

(3) On the results of streamwise velocity �uctuation, although the present method tends
to estimate its value as small, the present method predicts well the region with high
value generated near the inner wall, which recognizes after �=60◦ and distributions
of streamwise velocity �uctuation in the downstream straight tube.

(4) It has been found from the experimental results that the distributions of shear stress
u�ur for the bent tube show the negative region in the inner wall side and the positive
region in the outer wall side, which are separated by contour line with zero value. For
the downstream straight tube, its distributions of shear stress display the negative region
in the central part and the positive region in the circumference wall by forming zero
line. The present method also predicts well these characteristic features of experiments.

(5) The calculated results of shear stress u�u� coincide with the experiment, i.e. the relative
high value of shear stress is generated near the upper and bottom walls and the region
with the opposite sign is formed by generating zero lines after the �ow passing �=60◦.

(6) In view of the results for comparison with experimental data, it must be said that
the presented algebraic Reynolds stress model is applicable to predict reasonably the
developing turbulent �ow of the bent tube.

NOMENCLATURE

Cp pressure coe�cient 2(P − Pref )=�Ub2
D diameter of circular tube
k turbulent energy
P pressure
Pref pressure at Zin=D=17:6
Re Reynolds number UbD=�
R radius direction of tube
r radius direction of tube
Rc radius of curvature
U�;U�; Ur mean velocity along co-ordinates of �; �; r directions
u�; u�; ur �uctuating velocity along co-ordinates of �; �; r directions
Ub bulk velocity
uiuj Reynolds stresses
Z co-ordinate along the straight tube
� turbulent dissipation
� kinematics viscosity
� bent tube angle
� circumferential direction of circular cross-section
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