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Synopsis

In order to elucidate the mechanism of flow mark surface defects, the stability of injection molding
flow is investigated numerically using a transient finite element method. Experiments performed by
Schepens and BultefBulters, M., and A. Schepens, “The origin of the surface defect ‘slip-stick’

on injection moulded products,” Paper IL-3-2, Rroceedings of the 16th Annual Meeting of the
Polymer Processing Societyghenghai, China, 2000a, pp. 144-14&ing a novel two color
injection molding technique are summarized and they indicate that surface defects are caused by a
flow instability near the free surface during filling of the mold. Steady finite element calculations of

a model injection molding flow using a single mode, exponential Phan-Thien—Tanner constitutive
equation supply information about the base state streamlines and polymer stresses. By varying the
parameters of the model, the degree of strain hardening in the extensional viscosity can be
controlled. Then a linear stability analysis is used to determine the most unstable eigenmode of the
flow and the dependence on the extensional properties of the polymer. For strain softening
materials, the injection molding flow is predicted to be stable up to a Weissenberg number of five.
However, the most unstable disturbance is consistent with the swirling flow near the interface
observed experimentally. For strain hardening rheologies, an instability is observed in the channel
flow far from the interface, in agreement with calculations performed by Getletl. [Grillet, A.

M., A. C. B. Bogaerds, G. W. M. Peters, and F. P. T. Baaijens, “Stability analysis of constitutive
equations for polymer melts in viscometric flows,” J. Non-Newt. Fluid Mdeltcepted, 2001 on

planar Poiseuille flow of a Phan-Thien—Tanner fluid. 2002 The Society of Rheology.
[DOI: 10.1122/1.145941)9

I. INTRODUCTION

Flow instabilities during injection molding can cause nonuniform surface reflectivity
on a plastic product. Our research focuses on a specific surface defect that is character-
ized by shiny dull bands roughly perpendicular to the flow direction which alternate on
the upper and lower surfaces of the mold as shown in Fig. 1. These defects, which are
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b Author to whom all correspondence should be addressed; Electronic mail: baaijens@wfw.wtb.tue.nl
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FIG. 1. Characteristic pattern for flow mark surface defects.

referred to as flow marks, tiger stripes, or ice lines, have been observed in a variety of
polymer systems including polypropylefBulters and Scheperi20003], acrylonitrile-
styrene-acrylat¢éASA) [Chang(1994], ethylene-propylene block copolymdigonasse

etal. (1999] and polycarbonatgPC)/acrylonitrile butadiene-styren€éABS) blends
[Hobbs (1996; Hamada and Tsunasaw&996]. The occurrence of these defects can
limit the use of injection molded parts, especially in unpainted applications such as car
bumpers.

The nature of the alternating bands depends on the polymer material. With polypro-
pylene and ASA injection molding, flow marks appear as dull, rough bands on a normally
smooth, shiny surfaciBulters and Scheperf20003; Chang(1994]. Scanning electron
micrographs show that the region with flow marks has a striated surface topology that
shows hills and valleys oriented in the flow directi@@hang(1994)]. For polymer blend
systems, Hamada and Tsunasdd@96 suggested that the differences in reflectivity can
also be associated with differences in the blend composition at the flow marks. During
steady injection molding of PC/ABS blends, the authors noted that the polycarbonate
phase seems to preferentially coat the mold wall, leaving a shiny sytfeseada and
Tsunasawdg1996]. By contrast, the flow mark bands were found to contain a higher
concentration of ABS and were cloudy. By selectively etching the ABS component,
approximate streamline patterns could be observed on cross sections of the injection
molded produciHamada and TsunasaW&996 ]. When the smooth, PC rich surface was
being deposited, the blend morphology showed a symmetrically smooth flow pattern near
the free surface. However, when the flow front passed through the region where flow
marks were being deposited on the mold surface, the steady flow pattern near the free
surface had been disrupted and was no longer symmgti@aenada and Tsunasawa
(1996)].

Other recent experimental findings have also concluded that the surface defects are the
result of an unstable flow near the free surface similar to that shown in FRul&rs and

FIG. 2. Unstable flow may cause surface defects.
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FIG. 3. Kinematics of the fountain flow region: reference framgafthe mold andb) the moving interface.

Schepeng20003; Chang(1994; Hobbs (1996; Hamada and Tsunasaw’996; Mo-
nasseet al. (1999]. The two most common mechanisms that have been proposed for
unstable flow are slip at the wdlChang(1994); Hobbs(1996; Monasseet al. (1999] or
instability at the point of stagnatiofBulters and Schepen&0003; Monasseet al.
(1999]. Due to the limited availability of rheological data, there is no clear understand-
ing of the rheological dependence of the instability, although CHa884 found that
materials with a higher recoverable shear stré#g & N1/274y) had less severe flow
mark surface defects.

A similar unstable flow was postulated to explain the transfer of pigments during
injection molding of high density polyethyleridReilly and Price(1961)]. If a small
amount of red pigment or crayon were placed on one mold surface, a transfer mark would
be present on theppositewall downstream of the original mark. The transfer was
attributed to an “end-over-end” flow pattern which was found to depend on the injection
speed and mold thickness. The type of polymer was also important because transfer
marks were not observed for a cellulose acetate or a polystyrene pol{Raily and
Price (1961)]. Wall slipping has been proposed as a possible mechanism for the transfer
marks[Denn (2001)], but they may also have been caused by the same flow instability
that causes flow mark surface defedtdissbrun(2003)].

Because of the complexity of the industrial injection molding procéssee-
dimensional, nonisothermal flow; fully elastic material rheology with many time scales;
crystallization; fiber or particulate reinforcemegnt is not possible to address every
aspect fully[Isayev(1987]. There has been a large amount of work that has focused on
different components of the complete injection molding process. For example, the kine-
matics of injection molding of inelastic shear thinning materials are fairly well under-
stood[lsayev(1987]. Whereas no simulations have been performed to specifically in-
vestigate flow mark surface defects, the fountain flow near the advancing free surface
(where stagnation point instability has been postulded been investigated, initially by
Rose in 1961. As fluid elements move towards the advancing interface, they “spill over
towards the wall region being vacated by the advancing interfaBese (1961)] as
illustrated in Fig. 8a).

The effect of fountain flow on quenched stresses in injection molded products was
examined in detail by Tadmdd974 and more recently by Mavridist al. (1988. The
deformation history of the fluid elements in the fountain flow can have a significant
impact on the molecular orientation and trapped stresses in an injection molded product.
This is especially true in the surface layer since material which is deposited on the mold’s
surface with the polymers in a stretched state will rapidly be cooled and create a “skin
layer” with high residual stress. Material in the core region cools more slowly so the
polymer stretch and orientation can re[davridis et al. (1988; Tadmor(1974]. Since
it is the skin layer which determines surface reflectivity, the uniformity of the elonga-
tional flow at the point of stagnation will have a direct impact on surface quality.
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There can be significant difficulties in incorporating elasticity into simulations of free
surface flow because of the geometric “stick—slip” singularity that exists at the point of
contact where the free surface intersects the mold wall, as summarized by13i9&n
Elastic constitutive equations are known to make geometric singularities more severe
[Grillet et al. (1999; Hinch (1993]. In order to make elastic injection molding simula-
tions tractable, many researchers have incorporated slip along the wall near the singular-
ity [Sato and Richardsof1995; Mauvridis et al. (1988 ]. Various formulations for a slip
condition do not seem to have a strong effect on the kinematics in the free surface, but all
seem to ease the difficulties associated with numerical calculations, especially for elastic
constitutive equationgMavridis et al. (1986; Mavridis et al. (1988; Shen(1992].

Perhaps due to the difficulties associated with the geometric singularity, there have
been few fully elastic simulations of injection molding flaive., coupled velocity and
stress calculations with an elastic constitutive equatidgdamal et al. (1988]. Most
simulations have instead assumed Newtonian flow or otherwise used constitutive models
which incorporated shear thinning, but not elastic effects such as the power law model
[Tadmor(1974; Mavridis et al. (1986 ]. The few studies which have used more realistic
constitutive equations such as the Leonov mddiévridis et al. (1988 ]; the White—
Metzner mode[Kamal et al. (1986 (1988], and the Oldroyd-B modédiSato and Rich-
ardson(1995] mostly focused on modeling the deformation of tracer particles by the
fountain flow or predicting quenched elastic stresses in the final product; they unfortu-
nately did not investigate the stresses in fountain flow. As for other complex flows such
as flow around a cylinder, there have been numerous studies using various numerical
methods and viscoelastic constitutive equations and they are summarized in a recent
review by Baaijen$1998.

We have performed steady, transient finite element simulations of a viscoelastic fluid
in a simplified injection molding flow to investigate the occurrence of flow mark surface
defects. A fully implicit DEVSS-G/SUPG method which was thoroughly tested on planar
flows of viscoelastic materia[<Grillet et al. (in press] is applied to the model flow. The
exponential version of the Phan-Thien—Tanner constitutive equation was chosen because
it can qualitatively capture the rheology of polymer méliarson(1988]. By varying
the parameters of the model, melts ranging from strain hardening to strain softening in
extensional flow can be investigated for their effect on fountain flow. Before discussing
details of the simulations, we review some recent experiments on flow mark surface
defects which were instrumental in the design of the simulatji@usters and Schepens
(2000a, 20004.

IIl. EXPERIMENTAL RESULTS

A series of injection molding experiments were carried out on several commercial,
impact modified polypropylene compound3SM). The tests were performed on a stan-
dard bar shaped ruler mold with a length of 300 mm long, 30 mm wide, and 3 mm thick.
The frequency and severity of the flow mark surface defects were recorded as a function
of several molding parameters including the mold and melt temperatures and the mold
design as well as geometric factors such as the mold width, the injection screw diameter,
and the buffer size. From the results, several potential mechanisms which had been
proposed to explain the occurrence of flow marks were discarded. Because the defects did
not depend on the buffer size or screw and nozzle geometry, the possibility of upstream
instability in the nozzle or gate was ruled out. The mold surface was modified by coating
the mold with a very thin layer of silicone oil or coating one side of the mold with
fluoropolymer, but this had no effect on the frequency of the surface defect so slip at the
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FIG. 4. Two color injection molding experimeriabove compared with a traditional injection molded sample

(below).

wall was discarded as the cause of the flow marks. That left the possibility of an insta-
bility during filling of the mold.

To further investigate this as a possible mechanism, a new two color injection molding
technique was developed. The ruler mold was filled with a polymer whose bottom 47%
had been dyed black. If the flow is stable, white material should flow along the symmetry
line in the center towards the free surface where it will be split by the point of stagnation,
leaving a thin coating on the top and bottom surfaces of the bar. Instead, the surface of
the bar displayed alternating black and white strips which corresponded both in location
and frequency to the surface defects in the original experim@&igs 4). This technique
allows investigation of the causes of surface defects, independent of the crystallization
behavior, once the polymer begins to solidify on the cold mold wall.

Short-shot experiments were also performed using the two color injection molding
technique. Fittings were placed in the mold that allowed the ruler mold to be filled only
partially. These experiments were carried out using a block of white polymer with a thin
strip of black polymer along its centerline. The results for a series of tests where the mold
was filled to different volume fractions is shown in Fig. 5. In a stable flow, the black
material should coat both mold surfaces. However, instead of the symmetric fountain
flow pattern expected at the interface, the black strip is first swept to the bottom then
flipped around to the top. The alternating colors of the surface coating match exactly the
black and white stripped pattern observed when the mold is completely filled. The oscil-

OCONOOPLWN —

FIG. 5. Short shots with two color injection molding of a filled polypropylene compound.
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latory flow pattern has also been confirmed using a high speed video of the mold filling
process using a thin colored stripe injected along the centerline of a clear matrix. These
results clearly strengthen the argument that surface defects are caused by instability in the
fountain flow. The effects of the flow instability are only apparent in the fountain flow
region and in the thin skin layer on the surface of the finished product. The channel flow
far from the free surface remains free of instability.

Using these two color injection molding experiments, the dependence of the instability
on various parameters was reexamined. One surprising result is that the instability does
not depend on the mold temperature. However, the visibility of the surface defects in
traditional injection molding experiments is strongly dependent on the mold temperature.
For high enough mold temperatures, the surface defect disappears because the polymers
are able to relax before they solidify, but the two color injection molding shows that flow
instability is not affected.

These experimental results have led us to make several simplifying assumptions when
designing the model injection molding problem for our numerical simulations. We will
focus on two-dimensional injection molding flow. Since the instability does not depend
on the temperature of the mold wall, isothermal calculations will be performed, neglect-
ing temperature effects. Also, the interface is assumed to be a nondeformable semicircle.
These are assumptions which we make so that transient simulations for an elastic con-
stitutive equations are tractable with the computer resources which are available.

Ill. FINITE ELEMENT SIMULATIONS

For inertialess, incompressible flows, the dimensionless equations of the conservation
of mass and momentum can be written as

V.u=0, ey

V-II = 0, ()
whereu is the velocity vector. The components of the Cauchy stress tdistan be
separated abl = —pl+ 7 in terms of the pressune and the polymer stress

To complete the governing equations, a constitutive equation which relates the poly-
mer stress to the rate of deformation must be defined. The dimensionless upper convected
form of the exponential Phan-Thien—Tanner constitutive equation for a polymer melt is

WiY +exdeWitr(r)]r = D, €)

where e is a parameter, an® = Vu+(Vu)' is the rate of strain tensor. The upper
convected derivative is defined as

or

V= E+u-Vr—r-Vu—(Vu)T-7-. 4)

T

The Weissenberg number is based on the average shear rate across the channel far from
the free surface as

Wi m (5)
in terms of the mean velocity and the half channel height These equations have been
nondimensionalized b¥l, U, and the zero shear viscosity. We focus on the upper con-
vected form of the Phan-Thien—Tanner model because the use of the full form that
incorporates the Gordon—Schowalter derivative causes a maximum in the shear stress as
a function of the shear rate for some parameter values. Such a maximum has never been
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FIG. 6. Rheology of several model Phan-Thien—Tanner fluids with different values @j steady shear and
(b) planar extension.

observed experimentally and results in a discontinuous velocity profile in Poiseuille flow
[Alves et al. (2001); Larson(1988; Saramito(1995]. We examine several values of the
adjustable parametee (= 0.05,0.3,0.9) which controls the degree of strain hardening in
extension and also the onset of shear thinning of the shear properties as shown in Fig. 6.
The linear viscoelastic parameters were held fixed for the three rheologies. Although
multiple modes are usually required to capture the rheology of(pedydispersg poly-

mer melts[Larson (1988], the present calculations to develop and test the numerical
method use a single mode which admittedly can only qualitatively predict melt rheology.
Multimode model calculations would be required to make quantitative comparison with
experiments.

For our finite element calculations, the governing equations are written in a weak
formulation using the stabilized, consistent DEVSS-G/SUPG metfRmboks and
Hughes(1982]. We have chosen this method because it has been shown to have excel-
lent convergence properties in steady flow calculations in complex geoni@&eagens
(1998; Brooks and Hughe&1982; Grillet et al. (in press, Guenette and Fortir{1995;

King et al. (1988; Talwar et al. (1994].

h
¢T+mu.¢T,WiZ+exqgvvitr( n]r—D| =0, (6)
(¢017+D_G_GT)_(V'¢U1P) = 01 (7)
(¢p ,V‘U) = 0! (8)
(¢c.G—Vu) =0, 9

with h the characteristic element size af& b) denotes theC, inner product over the
problem domairf gabd(). The polynomial spaceg are chosen in the usual manner for
low order finite elements to satisfy the Bakas Brezzi(inf-sup) condition and for com-
patibility of the constitutive equation at stationary poings;: is biquadratic whereas .,

¢p, and g are bilineafKing et al. (1988; Talwaret al. (1994]. For steady base state
flow calculations, the transient term in the upper convected derivative is ignored, and the
equations are solved using a Newton iteration discussed earlier by ¢@Gist et al.
(1999, in presk King et al. (1988; Talwar et al. (1994]. For the transient calculations,

we treat the time derivative implicitly following Browet al. (1993. Both steady and
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v

FIG. 7. Typical finite element mesh containing 748 elements. The locations of the periodic boundary conditions
are shown by the thicker vertical lines.

stability parts of this numerical method have been benchmarked on two planar flows
previously[Grillet et al. (in press].

To determine the stability of the flow once the steady solutior (i, 7,p,G) is

attained, we employ a linear stability analysis. A small perturbasion (0,7,p,G) T is
added to the discretized governing equatifiags. (6)—(9)] and second order terms and
higher are neglected. The resulting evolution equations for the perturbation variables are
then solved as a function of time starting with a random initial perturbation to the
polymer stresses. The transient calculations are continued untilzhmrm of the per-
turbation variables displays a constant growth or decay rate, or the magnitude of the
perturbation has decreased below £0The constant growth or decay rate indicates that
the transient calculation has isolated the most unstable eigenvalue or, more precisely, the
eigenvalue with the largegalthough not necessarily positiveeal part of the eigenvalue.

A typical mesh(M41) used for the calculations is shown in Fig. 7. Constant velocity
boundary conditions are imposed on the mold walls:

uly = 1) = —-U. (10

For the moderate Weissenberg numbers used in this swgyo Wi = 5), local slip
boundary conditions near the point of contact were not needed for this constitutive equa-
tion, perhaps because both the shear and extensional viscosities thin at high shear or
strain rates. Other constitutive models such as the upper convected Maxwell model or the
Giesekus model do exhibit difficulties with singularity in the form of a low limiting
Weissenberg numbeM; ~ 2) beyond which calculations fail to converge and thus
would require a local slip boundary condition. Also note that the mesh resolution in the
neighborhood of the contact point is rather coarse since we have not attempted to resolve
the singularity. Since the instability is believed to occur in the fountain flow upstream of
the contact point, the behavior of the stability should not depend on the specific treatment
of the contact point.

The free surface is a nondeformable, impenetrable, semicircular slip sdrceor-
mal velocity set to zero, but no boundary condition imposed on the tangential vglocity
In simulations in the literature that have a deformable interface it was found that, even for
shear thinning or elastic constitutive equations, the free surface shape stays nearly semi-
circular [Kamal et al. (1988]. The stresses normal to the free surface are found to be
small, although nonzero, except near the point of contact. Thus, we feel that the semicir-
cular shape, while not perfect, is a reasonable assumption for our simplified model flow.

The inlet boundary conditions are handled in a unique way. Instead of specifying the
known velocity profile for Poiseuille flow of a Phan-Thien—Tanner fluid, we instead
impose periodic boundary conditions over the part of the channel marked by the thick
lines in Fig. 7. To explain how this is implemented, we begin by writing the momentum
equation for the nodes along the periodic boundary condition in an isolated channel.
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TABLE |I. Characteristics of the meshes used in the finite element com-

putations.
Mesh Length Ay No. of Elements
M3 9 0.2 172
M4l 12 0.1 748
M4l 14 0.1 968
M4t 22 0.1 1188
M6 9 0.0667 1608
(¢U,T+D—G—GT)—(V.¢v,p)+f $,11-ndA = 0, (11)
PBC
wherell = —pl+ ris the total stress, andis the outward pointing normal vector of the

element boundary. The boundary integral is performed over both sides of the channel’'s
periodic boundaryA pgc. Because the velocities and stresses are identical across the
periodic boundary, the boundary integral reduces to

¢vH'n dA = (poutlet_ pinlet) fA ¢vn dA. (12)

Appc PBC

When one side of the periodic boundary conditi®BC) is inside the geometry like in
our model injection molding flow, we must include an additional boundary integral over
the inlet to the fountain flow sectiame., the sides of the elements along the right half of
the internal periodic boundaryThen the momentum equation is

¢vndA+f ¢, II-ndA = 0.

Ainternal

(¢vlT+D—G_GT)_(V ¢v 1p)+Apf
Apgc
(13
This would be sufficient if the flow were driven by specifying the pressure drpp
between the periodic boundaries. However, to specify the driving force as a total flux
through the channel, the pressure diop is replaced by a Lagrange multiplieand an
additional equation is added for the fl@xacross the inlet.

¢v1'[~ndA+J $,11-ndA = 0,

7+D—G-G")—(V-,,p)+I
(d’v i ) ( d) p) f Ainternal
(14

Appc

f u-ndA = Q. (15
inlet

The Lagrange multiplier, and hence the pressure drop, is determined during the calcula-
tion. This formulation was chosen to simplify future comparison to injection molding
experiments where generally the injection speed is known and also to simplify the sta-
bility calculations.

To validate our calculations, meshes of different lengths and levels of refinement were
used(Table ). The coarsest mesh, M3, was not sufficient to resolve the steady flow of the
shear thinning Phan-Thien—Tanner model at moderate Weissenberg numbers
(Wi > 2). Since the stability calculations are the most demanding, data demonstrating
convergence for the more refined meshes will be shown in Sec. Il B. Unless otherwise
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stated, the results presented here were taken from our medium refined\iddslexcept

for the lowest value ok = 0.05 when a longer channéW4lt with length = 22) was
required for the stresses to fully develop between the fountain flow and the periodic
boundary conditions at the highest Weissenberg numbers.

A. Steady results

We begin by presenting steady results for a rangemdrameters shown in Figs. 8—10
for Wi = 3.0. In Fig. 8 for the strain hardening material with= 0.05, we note the
strong buildup of stress near the stagnation point on the free surface and also near the
point of contact where the free surface intersects the moving wall. The relaxation of the
stresses downstream of the interface enhances the flow near the free surface as shown by
the compression of the streamlines towards the wall relative to the fully developed flow
far from the free surface.

As ¢ is increased to 0.3, the onset of shear thinning is shifted towards lower Weissen-
berg numbers and the material also becomes more strain softening. These trends are
reflected in both the stream function contours and the stresses. Due to the increased shear
thinning, the velocity profile becomes more plug flow like in the pressure driven flow far
from the interface and the velocity gradients are concentrated near the walls. Looking at
the flow near the free surface, we note that the streamlines are shifted away from the
interface and the strain rate near the stagnation point drops due to the strain softening
extensional viscosity. This shift is also reflected in the polymer stress components. The
maximum in thery, stress has moved downstream of the stagnation point. As mentioned
previously, the stresses downstream of the singularity decay more quickly for higher
values ofe allowing the Poiseuille flow in the channel to reach equilibrium in fewer
channel lengths. Hence the meshes used for this rheology are shorter than those required
for the strain hardening material with= 0.05.

For the most strain softening rheology of= 0.9 shown in Fig. 10, the effects of
strain softening and shear thinning are enhanced relative to those in the previous case of
e = 0.3, but the trends are entirely consistent. We note that the maximum in {he
component of the stress is almost a half channel height away from the free surface. The
flow is even more plug like, hence the almost equally spaced streamlines in the center of
the channel. Observing the streamline patterns near the free surface, there is almost none
of the streamline compression near the wall that was observed for the strain hardening
rheology. These differences in extensional rheology can be summarized by examining the
tangential velocity and its gradient along the free surface shown in Fig. 11. For the strain
hardening rheologyd = 0.05), the strain rate along the free surface is almost constant
near the stagnation point (= 0.3U/H) then increases close to the contact poift (

= 7/2). For the strain softening rheologies, the effective shear and extensional viscosi-
ties in the neighborhood of the singularity are very low, so the material along the inter-
face is not effectively accelerated. The result is a lower strain rate along the interface and
a large peak near the point of contact. Ro= 0.9 the average strain rate near the
stagnation point has dropped ¢~ 0.1U/H.

B. Stability results

Once steady results are obtained, a linear stability analysis is performed for each case.
By tracking the norm of the perturbation as a function of time, demonstrated in Fig. 12
for ¢ = 0.90, the stability of the flow can be determined. For this case, the initial per-
turbation introduced at time equals zero decays showing that the flow is §tablehe
real part of the eigenvalue is negativ&he initial decay of the perturbation is very rapid
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FIG. 8. Steady finite element results for strain hardening Phan-Thien—Tanner fluid ewith0.05, Wi
= 3.0: from the top stream functionyy, 7yy, Txy-

because the disturbance excites many eigenmodes in the system. However at long times,
the decay becomes single exponential indicating that only the eigenmode with the largest
real eigenvalue remains and the growth/decay rate can be easily determined. From Fig.
12, we note that the real part of the eigenvalue increases monotonically with the Weis-
senberg number.

Figure 13 shows a similar set of results for the strain hardening rheology with
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FIG. 9. Steady finite element results for strain softening Phan-Thien—Tanner fluid anvith0.30, Wi
= 3.0: from the top stream functionyy, 7yy, 7xy-
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e = 0.05. For low Weissenberg numbers we see very similar behavior to that in the
previous case: the initial perturbation decays very rapidly initially before settling down to

a single exponential decay. As the Weissenberg number increases, the perturbations decay
more slowly and become oscillatory, and eventually the flow becomes unstatilé at

~ 4.8. These results can be summarized by plotting the real part of the eigenvalue for
the different values ot as a function of the inverse Weissenberg numioérFig. 15.

For low Weissenberg numbers or strain softening rheologies, the eigenvalues remain
negative(stable and scale linearly with the inverse Weissenberg number. For the strain
hardening materials at high enough Weissenberg numbers, the eigenvalues deviate from
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FIG. 10. Steady finite element results for strain softening Phan-Thien—Tanner fluid swith0.90, Wi
= 3.0: from the top stream functionyy, 7yy, Txy-

the linear trend, eventually becoming positive, indicating instability. Figure 14 shows that
the stability behavior is not a function of the mesh resolution, length of the mesh, or the
time step chosen for the transient calculation. For Weissenberg numbers higher than 3
only the longer meshes produced converged results fer0.05.

Examining the eigenvectors obtained from the linear stability analysis, we find that the
two regimes in the growth rate are characterized by very different spatial dependences of
the eigenvectors. To compare we focusWin = 5 for strain softening and strain hard-
ening rheologies. Figure 1#& shows the steady velocity vectors for the strain softening
rheology fore = 0.9. The perturbation velocity vectors shown in Fig(d6would be
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FIG. 11. Results along the free surface as a function of interface coordthéde variouse at Wi = 3: (a)
tangential velocityuian, and(b) gradient of velocityduan/d6. 6 is defined as the angle along the semicircular
interface from the stagnation point in the center of the channel.

superimposed on the steady solution. Because the flow is stable, the sizes of the pertur-
bation vectors have been scaled so that the spatial dependence of the eigenvector can be
observed. The perturbation far from the channel has completely died out leaving a swirl-
ing flow near the free surface. This eigenvector is consistent with the unstable flow
pattern observed with the two color injection molding experiméatsFig. 5 [Bulters

and Schepen&000g, 20004.

The characteristic eigenvector for strain hardening rheologies at large Weissenberg
numbers is shown in Fig. 17. Contrary to in the previous case, the perturbation velocities
in the neighborhood of the interface have completely decayed. What remains is essen-
tially an instability in the plane Poiseuille flow in the inlet channel. This can be confirmed
by comparing finite element calculations in this injection molding flow with similar

In( norm of the perturbation )

FIG. 12. Linear stability results for strain softening rheology with= 0.90 for various Weissenberg numbers.



FLOW MARK SURFACE DEFECTS 665

In{ norm of the perturbation )

20 30 40 50 60
time

FIG. 13. Linear stability results for strain hardening rheology witk= 0.05 for various Weissenberg numbers.

calculations in periodic planar Poiseuille flow shown in Fig. 18. The critical condition in
the injection molding geometryWi = 4.8 for ¢ = 0.05 is slightly higher than that
predicted for plane Poiseuille flow(i = 4.3). A more detailed analysis of these chan-
nel instabilities using both transient finite element and Chebyshev—Tau spectral methods
was discussed by Grilladt al. (in press. While interesting for other reasons, the occur-
rence of channel instabilities is unfortunate in that they are not related to the flow mark
surface defects which are the focus of this investigation. The important point is that the
choice of constitutive equation affects not only the predictions of steady flow properties,
but also the stability of the flow. For example, both the upper convected Maxwell model
and the Oldroyd-B model are stable in plane Poiseuille fl@&@rodtsov and Leonov
(1967; Wilson et al. (1999].

IV. CONCLUSIONS

We have shown that the implicit DEVSS-G/SUPG transient finite element code pre-
sented by Grilleet al. (in pres$ can be used to investigate the stability of complex flows
of polymer melts. This method was applied to a model injection molding flow where
there was experimental evidence of a flow instability. Novel two color injection molding
experiments were used to evaluate the potential mechanisms proposed for flow mark
surface defectfBulters and Scheperf20003]. Slip and upstream factors were ruled out
by modifying the mold surface, gate, and screw designs, leaving the most likely expla-
nation for the surface defects to be a flow instability during filling of the mold. Additional
two color injection molding experiments in which the mold was only partially filled
provided further evidence that the instability is localized in the fountain flow near the free
surface.

With the goal of numerically predicting instabilities in injection molding flows, we
applied a stabilized transient finite element method to a model injection molding flow. In
order to test and develop the numerical method for this complex flow, simulations were
performed using a one mode exponential Phan-Thien—Tanner model. The effect of ex-
tensional rheology on the steady flow and stability behavior was examined. In steady
flows of strain hardening materials, large polymer stresses were found to build up along
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FIG. 14. Linear stability results for strain hardening rheology with= 0.05 with Wi = 3 for various time
steps and meshes, given in Table I.

the free surface and extend downstream into the channel flow for some distance. Strain
softening materials had much lower levels of polymer stress and the stress was localized
away from the stagnation point on the free surface. Examination of the tangential velocity

along the interface confirms that the more strain hardening material has a higher, more
uniform strain rate in the neighborhood of the stagnation point.

Linear stability analyses were performed on the model injection molding flow. For
strain hardening rheologies, a channel instability was predicted to occur far away from
the free surface. The destabilization for Weissenberg numbers greater than 3 is in good
agreement with predictions for planar Poiseuille fl@@rillet et al. (in pres$]. For strain
softening rheologies, the eigenvector for the most unstable eigenmode has almost com-
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— M4ll, A t=0.02
----- MA4lt, A t=0.05
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In{ norm of the perturbation )
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FIG. 15. Comparison of linear stability results for several extensional rheologies as a function of the inverse
Weissenberg number.
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[
e = AP ]

FIG. 16. Linear stability results for strain softening material with= 0.90 atWi = 5: (a) steady velocity
vectors;(b) most unstable eigenvectou(* 10" 5); (c) closeup of swirling flow near the interface.

pletely decayed in the channel flow portion of the geometry and is instead concentrated as
a swirling flow near the free surface. The velocity vectors of the most unstable eigenmode
are in qualitative agreement with the experimentally observed instapBitjters and
Schepeng2000a]. The growth rate for the swirling eigenmode increased monotonically

with Weissenberg number but no instability was predicted for the range of Weissenberg
numbers investigated in this study.

"
Wi
i

{2 ——

{4/,
%

I//‘—o--—-————-—;\\\
.
N o oesssmss

TN

FIG. 17. Linear stability results for the most unstable eigenvector for strain hardening materiale with
= 0.05 atWi = 5.
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FIG. 18. Comparison of linear stability analysis for injection molding flow and Poiseuille f@villet et al. (in
press].
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