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Synopsis

In order to elucidate the mechanism of flow mark surface defects, the stability of injection mo
flow is investigated numerically using a transient finite element method. Experiments perform
Schepens and Bulters@Bulters, M., and A. Schepens, ‘‘The origin of the surface defect ‘slip-stic
on injection moulded products,’’ Paper IL-3-2, inProceedings of the 16th Annual Meeting of th
Polymer Processing Society, Shenghai, China, 2000a, pp. 144–145# using a novel two color
injection molding technique are summarized and they indicate that surface defects are cause
flow instability near the free surface during filling of the mold. Steady finite element calculation
a model injection molding flow using a single mode, exponential Phan-Thien–Tanner consti
equation supply information about the base state streamlines and polymer stresses. By vary
parameters of the model, the degree of strain hardening in the extensional viscosity c
controlled. Then a linear stability analysis is used to determine the most unstable eigenmode
flow and the dependence on the extensional properties of the polymer. For strain soft
materials, the injection molding flow is predicted to be stable up to a Weissenberg number o
However, the most unstable disturbance is consistent with the swirling flow near the inte
observed experimentally. For strain hardening rheologies, an instability is observed in the ch
flow far from the interface, in agreement with calculations performed by Grilletet al. @Grillet, A.
M., A. C. B. Bogaerds, G. W. M. Peters, and F. P. T. Baaijens, ‘‘Stability analysis of constitu
equations for polymer melts in viscometric flows,’’ J. Non-Newt. Fluid Mech.~accepted, 2001!# on
planar Poiseuille flow of a Phan-Thien–Tanner fluid. ©2002 The Society of Rheology
@DOI: 10.1122/1.1459419#

I. INTRODUCTION

Flow instabilities during injection molding can cause nonuniform surface reflecti
on a plastic product. Our research focuses on a specific surface defect that is cha
ized by shiny dull bands roughly perpendicular to the flow direction which alternate
the upper and lower surfaces of the mold as shown in Fig. 1. These defects, whic

a!Current address: Sandia National Laboratories, P.O. Box 5800, MS 0834, Albuquerque, NM 87185.
b!Author to whom all correspondence should be addressed; Electronic mail: baaijens@wfw.wtb.tue.nl
© 2002 by The Society of Rheology, Inc.
J. Rheol. 46~3!, 651-669 May/June~2002! 0148-6055/2002/46~3!/651/19/$25.00 651
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652 GRILLET ET AL.
referred to as flow marks, tiger stripes, or ice lines, have been observed in a vari
polymer systems including polypropylene@Bulters and Schepens~2000a!#, acrylonitrile-
styrene-acrylate~ASA! @Chang~1994!#, ethylene-propylene block copolymers@Monasse
et al. ~1999!# and polycarbonate~PC!/acrylonitrile butadiene-styrene~ABS! blends
@Hobbs ~1996!; Hamada and Tsunasawa~1996!#. The occurrence of these defects c
limit the use of injection molded parts, especially in unpainted applications such a
bumpers.

The nature of the alternating bands depends on the polymer material. With pol
pylene and ASA injection molding, flow marks appear as dull, rough bands on a norm
smooth, shiny surface@Bulters and Schepens~2000a!; Chang~1994!#. Scanning electron
micrographs show that the region with flow marks has a striated surface topology
shows hills and valleys oriented in the flow direction@Chang~1994!#. For polymer blend
systems, Hamada and Tsunasawa~1996! suggested that the differences in reflectivity c
also be associated with differences in the blend composition at the flow marks. D
steady injection molding of PC/ABS blends, the authors noted that the polycarbo
phase seems to preferentially coat the mold wall, leaving a shiny surface@Hamada and
Tsunasawa~1996!#. By contrast, the flow mark bands were found to contain a hig
concentration of ABS and were cloudy. By selectively etching the ABS compon
approximate streamline patterns could be observed on cross sections of the inj
molded product@Hamada and Tsunasawa~1996!#. When the smooth, PC rich surface wa
being deposited, the blend morphology showed a symmetrically smooth flow pattern
the free surface. However, when the flow front passed through the region where
marks were being deposited on the mold surface, the steady flow pattern near th
surface had been disrupted and was no longer symmetric@Hamada and Tsunasaw
~1996!#.

Other recent experimental findings have also concluded that the surface defects
result of an unstable flow near the free surface similar to that shown in Fig. 2@Bulters and

FIG. 1. Characteristic pattern for flow mark surface defects.

FIG. 2. Unstable flow may cause surface defects.
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653FLOW MARK SURFACE DEFECTS
Schepens~2000a!; Chang~1994!; Hobbs ~1996!; Hamada and Tsunasawa~1996!; Mo-
nasseet al. ~1999!#. The two most common mechanisms that have been proposed
unstable flow are slip at the wall@Chang~1994!; Hobbs~1996!; Monasseet al. ~1999!# or
instability at the point of stagnation@Bulters and Schepens~2000a!; Monasseet al.
~1999!#. Due to the limited availability of rheological data, there is no clear understan
ing of the rheological dependence of the instability, although Chang~1994! found that
materials with a higher recoverable shear strain (SR 5 N1/2txy) had less severe flow
mark surface defects.

A similar unstable flow was postulated to explain the transfer of pigments durin
injection molding of high density polyethylene@Reilly and Price~1961!#. If a small
amount of red pigment or crayon were placed on one mold surface, a transfer mark wo
be present on theoppositewall downstream of the original mark. The transfer was
attributed to an ‘‘end-over-end’’ flow pattern which was found to depend on the injectio
speed and mold thickness. The type of polymer was also important because tran
marks were not observed for a cellulose acetate or a polystyrene polymer@Reilly and
Price~1961!#. Wall slipping has been proposed as a possible mechanism for the trans
marks@Denn ~2001!#, but they may also have been caused by the same flow instabil
that causes flow mark surface defects@Wissbrun~2001!#.

Because of the complexity of the industrial injection molding process~three-
dimensional, nonisothermal flow; fully elastic material rheology with many time scale
crystallization; fiber or particulate reinforcement! it is not possible to address every
aspect fully@Isayev~1987!#. There has been a large amount of work that has focused o
different components of the complete injection molding process. For example, the ki
matics of injection molding of inelastic shear thinning materials are fairly well unde
stood@Isayev~1987!#. Whereas no simulations have been performed to specifically in
vestigate flow mark surface defects, the fountain flow near the advancing free surf
~where stagnation point instability has been postulated! has been investigated, initially by
Rose in 1961. As fluid elements move towards the advancing interface, they ‘‘spill ov
towards the wall region being vacated by the advancing interface’’@Rose ~1961!# as
illustrated in Fig. 3~a!.

The effect of fountain flow on quenched stresses in injection molded products w
examined in detail by Tadmor~1974! and more recently by Mavridiset al. ~1988!. The
deformation history of the fluid elements in the fountain flow can have a significa
impact on the molecular orientation and trapped stresses in an injection molded prod
This is especially true in the surface layer since material which is deposited on the mo
surface with the polymers in a stretched state will rapidly be cooled and create a ‘‘s
layer’’ with high residual stress. Material in the core region cools more slowly so th
polymer stretch and orientation can relax@Mavridis et al. ~1988!; Tadmor~1974!#. Since
it is the skin layer which determines surface reflectivity, the uniformity of the elonga
tional flow at the point of stagnation will have a direct impact on surface quality.

FIG. 3. Kinematics of the fountain flow region: reference frame of~a! the mold and~b! the moving interface.
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654 GRILLET ET AL.
There can be significant difficulties in incorporating elasticity into simulations of fre
surface flow because of the geometric ‘‘stick–slip’’ singularity that exists at the point o
contact where the free surface intersects the mold wall, as summarized by Shen~1992!.
Elastic constitutive equations are known to make geometric singularities more sev
@Grillet et al. ~1999!; Hinch ~1993!#. In order to make elastic injection molding simula-
tions tractable, many researchers have incorporated slip along the wall near the singu
ity @Sato and Richardson~1995!; Mavridis et al. ~1988!#. Various formulations for a slip
condition do not seem to have a strong effect on the kinematics in the free surface, bu
seem to ease the difficulties associated with numerical calculations, especially for ela
constitutive equations@Mavridis et al. ~1986!; Mavridis et al. ~1988!; Shen~1992!#.

Perhaps due to the difficulties associated with the geometric singularity, there ha
been few fully elastic simulations of injection molding flow~i.e., coupled velocity and
stress calculations with an elastic constitutive equation! @Kamal et al. ~1988!#. Most
simulations have instead assumed Newtonian flow or otherwise used constitutive mod
which incorporated shear thinning, but not elastic effects such as the power law mo
@Tadmor~1974!; Mavridis et al. ~1986!#. The few studies which have used more realistic
constitutive equations such as the Leonov model@Mavridis et al. ~1988!#; the White–
Metzner model@Kamal et al. ~1986! ~1988!#, and the Oldroyd-B model@Sato and Rich-
ardson~1995!# mostly focused on modeling the deformation of tracer particles by th
fountain flow or predicting quenched elastic stresses in the final product; they unfor
nately did not investigate the stresses in fountain flow. As for other complex flows su
as flow around a cylinder, there have been numerous studies using various numer
methods and viscoelastic constitutive equations and they are summarized in a rec
review by Baaijens~1998!.

We have performed steady, transient finite element simulations of a viscoelastic flu
in a simplified injection molding flow to investigate the occurrence of flow mark surfac
defects. A fully implicit DEVSS-G/SUPG method which was thoroughly tested on plana
flows of viscoelastic materials@Grillet et al. ~in press!# is applied to the model flow. The
exponential version of the Phan-Thien–Tanner constitutive equation was chosen beca
it can qualitatively capture the rheology of polymer melts@Larson~1988!#. By varying
the parameters of the model, melts ranging from strain hardening to strain softening
extensional flow can be investigated for their effect on fountain flow. Before discussin
details of the simulations, we review some recent experiments on flow mark surfa
defects which were instrumental in the design of the simulations@Bulters and Schepens
~2000a, 2000b!#.

II. EXPERIMENTAL RESULTS

A series of injection molding experiments were carried out on several commerci
impact modified polypropylene compounds~DSM!. The tests were performed on a stan-
dard bar shaped ruler mold with a length of 300 mm long, 30 mm wide, and 3 mm thic
The frequency and severity of the flow mark surface defects were recorded as a func
of several molding parameters including the mold and melt temperatures and the m
design as well as geometric factors such as the mold width, the injection screw diame
and the buffer size. From the results, several potential mechanisms which had b
proposed to explain the occurrence of flow marks were discarded. Because the defects
not depend on the buffer size or screw and nozzle geometry, the possibility of upstre
instability in the nozzle or gate was ruled out. The mold surface was modified by coati
the mold with a very thin layer of silicone oil or coating one side of the mold with
fluoropolymer, but this had no effect on the frequency of the surface defect so slip at
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655FLOW MARK SURFACE DEFECTS
wall was discarded as the cause of the flow marks. That left the possibility of an i
bility during filling of the mold.

To further investigate this as a possible mechanism, a new two color injection mo
technique was developed. The ruler mold was filled with a polymer whose bottom
had been dyed black. If the flow is stable, white material should flow along the symm
line in the center towards the free surface where it will be split by the point of stagna
leaving a thin coating on the top and bottom surfaces of the bar. Instead, the surfa
the bar displayed alternating black and white strips which corresponded both in loc
and frequency to the surface defects in the original experiments~Fig. 4!. This technique
allows investigation of the causes of surface defects, independent of the crystalliz
behavior, once the polymer begins to solidify on the cold mold wall.

Short-shot experiments were also performed using the two color injection mo
technique. Fittings were placed in the mold that allowed the ruler mold to be filled
partially. These experiments were carried out using a block of white polymer with a
strip of black polymer along its centerline. The results for a series of tests where the
was filled to different volume fractions is shown in Fig. 5. In a stable flow, the bl
material should coat both mold surfaces. However, instead of the symmetric fou
flow pattern expected at the interface, the black strip is first swept to the bottom
flipped around to the top. The alternating colors of the surface coating match exact
black and white stripped pattern observed when the mold is completely filled. The o

FIG. 4. Two color injection molding experiment~above! compared with a traditional injection molded samp
~below!.

FIG. 5. Short shots with two color injection molding of a filled polypropylene compound.
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656 GRILLET ET AL.
latory flow pattern has also been confirmed using a high speed video of the mold fi
process using a thin colored stripe injected along the centerline of a clear matrix. T
results clearly strengthen the argument that surface defects are caused by instability
fountain flow. The effects of the flow instability are only apparent in the fountain flo
region and in the thin skin layer on the surface of the finished product. The channel
far from the free surface remains free of instability.

Using these two color injection molding experiments, the dependence of the instab
on various parameters was reexamined. One surprising result is that the instability
not depend on the mold temperature. However, the visibility of the surface defect
traditional injection molding experiments is strongly dependent on the mold tempera
For high enough mold temperatures, the surface defect disappears because the po
are able to relax before they solidify, but the two color injection molding shows that fl
instability is not affected.

These experimental results have led us to make several simplifying assumptions
designing the model injection molding problem for our numerical simulations. We w
focus on two-dimensional injection molding flow. Since the instability does not dep
on the temperature of the mold wall, isothermal calculations will be performed, negl
ing temperature effects. Also, the interface is assumed to be a nondeformable semic
These are assumptions which we make so that transient simulations for an elastic
stitutive equations are tractable with the computer resources which are available.

III. FINITE ELEMENT SIMULATIONS

For inertialess, incompressible flows, the dimensionless equations of the conserv
of mass and momentum can be written as

¹•u 5 0, ~1!

¹•P 5 0, ~2!

whereu is the velocity vector. The components of the Cauchy stress tensorP can be
separated asP 5 2pI1t in terms of the pressurep and the polymer stresst.

To complete the governing equations, a constitutive equation which relates the p
mer stress to the rate of deformation must be defined. The dimensionless upper conv
form of the exponential Phan-Thien–Tanner constitutive equation for a polymer me

Wi t
¹1exp@«Wi tr~t!#t 5 D, ~3!

where « is a parameter, andD 5 ¹u1(¹u)T is the rate of strain tensor. The uppe
convected derivative is defined as

t
¹ 5

]t

]t
1u•¹t2t•¹u2~¹u!T•t. ~4!

The Weissenberg number is based on the average shear rate across the channel f
the free surface as

Wi 5
Ul

H
~5!

in terms of the mean velocityU and the half channel heightH. These equations have bee
nondimensionalized byH, U, and the zero shear viscosity. We focus on the upper co
vected form of the Phan-Thien–Tanner model because the use of the full form
incorporates the Gordon–Schowalter derivative causes a maximum in the shear str
a function of the shear rate for some parameter values. Such a maximum has neve
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657FLOW MARK SURFACE DEFECTS
observed experimentally and results in a discontinuous velocity profile in Poiseuille flo
@Alves et al. ~2001!; Larson~1988!; Saramito~1995!#. We examine several values of the
adjustable parameter (« 5 0.05,0.3,0.9) which controls the degree of strain hardening in
extension and also the onset of shear thinning of the shear properties as shown in Fig
The linear viscoelastic parameters were held fixed for the three rheologies. Althou
multiple modes are usually required to capture the rheology of real~polydisperse! poly-
mer melts@Larson ~1988!#, the present calculations to develop and test the numerica
method use a single mode which admittedly can only qualitatively predict melt rheolog
Multimode model calculations would be required to make quantitative comparison wi
experiments.

For our finite element calculations, the governing equations are written in a we
formulation using the stabilized, consistent DEVSS-G/SUPG method@Brooks and
Hughes~1982!#. We have chosen this method because it has been shown to have ex
lent convergence properties in steady flow calculations in complex geometries@Baaijens
~1998!; Brooks and Hughes~1982!; Grillet et al. ~in press!, Guénette and Fortin~1995!;
King et al. ~1988!; Talwar et al. ~1994!#.

Sft1
h

uuu
u•ft ,Wi t

¹1exp@«Wi tr~t!#t2DD 5 0, ~6!

~fv ,t1D2G2GT!2~¹•fv ,p! 5 0, ~7!

~fp ,¹•u! 5 0, ~8!

~fG ,G2¹u! 5 0, ~9!

with h the characteristic element size and~a, b! denotes theL2 inner product over the
problem domain*VabdV. The polynomial spacesf are chosen in the usual manner for
low order finite elements to satisfy the Babusˇka–Brezzi~inf-sup! condition and for com-
patibility of the constitutive equation at stationary points:fv is biquadratic whereasft ,
fp , andfG are bilinear@King et al. ~1988!; Talwaret al. ~1994!#. For steady base state
flow calculations, the transient term in the upper convected derivative is ignored, and
equations are solved using a Newton iteration discussed earlier by others@Grillet et al.
~1999, in press!; King et al. ~1988!; Talwar et al. ~1994!#. For the transient calculations,
we treat the time derivative implicitly following Brownet al. ~1993!. Both steady and

FIG. 6. Rheology of several model Phan-Thien–Tanner fluids with different values of«: ~a! steady shear and
~b! planar extension.
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658 GRILLET ET AL.
stability parts of this numerical method have been benchmarked on two planar flo
previously@Grillet et al. ~in press!#.

To determine the stability of the flow once the steady solutionX̃ 5 (ũ,t̃,p̃,G̃) is

attained, we employ a linear stability analysis. A small perturbationd 5 (û,t̂,p̂,Ĝ)T is
added to the discretized governing equations@Eqs.~6!–~9!# and second order terms and
higher are neglected. The resulting evolution equations for the perturbation variables
then solved as a function of time starting with a random initial perturbation to th
polymer stresses. The transient calculations are continued until theL2 norm of the per-
turbation variables displays a constant growth or decay rate, or the magnitude of
perturbation has decreased below 1025. The constant growth or decay rate indicates tha
the transient calculation has isolated the most unstable eigenvalue or, more precisely
eigenvalue with the largest~although not necessarily positive! real part of the eigenvalue.

A typical mesh~M41! used for the calculations is shown in Fig. 7. Constant velocity
boundary conditions are imposed on the mold walls:

u~y 5 61! 5 2U. ~10!

For the moderate Weissenberg numbers used in this study~up to Wi 5 5!, local slip
boundary conditions near the point of contact were not needed for this constitutive eq
tion, perhaps because both the shear and extensional viscosities thin at high shea
strain rates. Other constitutive models such as the upper convected Maxwell model or
Giesekus model do exhibit difficulties with singularity in the form of a low limiting
Weissenberg number (Wi ' 2) beyond which calculations fail to converge and thus
would require a local slip boundary condition. Also note that the mesh resolution in th
neighborhood of the contact point is rather coarse since we have not attempted to res
the singularity. Since the instability is believed to occur in the fountain flow upstream
the contact point, the behavior of the stability should not depend on the specific treatm
of the contact point.

The free surface is a nondeformable, impenetrable, semicircular slip surface~i.e. nor-
mal velocity set to zero, but no boundary condition imposed on the tangential velocity!.
In simulations in the literature that have a deformable interface it was found that, even
shear thinning or elastic constitutive equations, the free surface shape stays nearly s
circular @Kamal et al. ~1988!#. The stresses normal to the free surface are found to b
small, although nonzero, except near the point of contact. Thus, we feel that the semi
cular shape, while not perfect, is a reasonable assumption for our simplified model flo

The inlet boundary conditions are handled in a unique way. Instead of specifying t
known velocity profile for Poiseuille flow of a Phan-Thien–Tanner fluid, we instea
impose periodic boundary conditions over the part of the channel marked by the th
lines in Fig. 7. To explain how this is implemented, we begin by writing the momentum
equation for the nodes along the periodic boundary condition in an isolated channel.

FIG. 7. Typical finite element mesh containing 748 elements. The locations of the periodic boundary conditio
are shown by the thicker vertical lines.
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~fv ,t1D2G2GT!2~¹•fv ,p!1E
LPBC

fvP•n dL 5 0, ~11!

whereP 5 2pI1t is the total stress, andn is the outward pointing normal vector of the
element boundary. The boundary integral is performed over both sides of the channel
periodic boundaryLPBC. Because the velocities and stresses are identical across the
periodic boundary, the boundary integral reduces to

E
LPBC

fvP•n dL 5 ~poutlet2pinlet!E
LPBC

fvn dL. ~12!

When one side of the periodic boundary condition~PBC! is inside the geometry like in
our model injection molding flow, we must include an additional boundary integral over
the inlet to the fountain flow section~i.e., the sides of the elements along the right half of
the internal periodic boundary!. Then the momentum equation is

~fv ,t1D2G2GT!2~¹•fv ,p!1DpE
LPBC

fvndL1E
L internal

fvP•ndL 5 0.

~13!

This would be sufficient if the flow were driven by specifying the pressure dropDp
between the periodic boundaries. However, to specify the driving force as a total flux
through the channel, the pressure dropDp is replaced by a Lagrange multiplierl and an
additional equation is added for the fluxQ across the inlet.

~fv ,t1D2G2GT!2~¹•fv ,p!1 l E
LPBC

fvP•ndL1E
L internal

fvP•ndL 5 0,

~14!

E
inlet

u•ndL 5 Q. ~15!

The Lagrange multiplier, and hence the pressure drop, is determined during the calcul
tion. This formulation was chosen to simplify future comparison to injection molding
experiments where generally the injection speed is known and also to simplify the sta
bility calculations.

To validate our calculations, meshes of different lengths and levels of refinement wer
used~Table I!. The coarsest mesh, M3, was not sufficient to resolve the steady flow of the
shear thinning Phan-Thien–Tanner model at moderate Weissenberg numbe
(Wi . 2). Since the stability calculations are the most demanding, data demonstratin
convergence for the more refined meshes will be shown in Sec. III B. Unless otherwis

TABLE I. Characteristics of the meshes used in the finite element com-
putations.

Mesh Length Dy No. of Elements

M3 9 0.2 172
M4l 12 0.1 748
M4ll 14 0.1 968
M4lt 22 0.1 1188
M6 9 0.0667 1608
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660 GRILLET ET AL.
stated, the results presented here were taken from our medium refined mesh~M41! except
for the lowest value of« 5 0.05 when a longer channel~M4lt with length5 22! was
required for the stresses to fully develop between the fountain flow and the perio
boundary conditions at the highest Weissenberg numbers.

A. Steady results

We begin by presenting steady results for a range of« parameters shown in Figs. 8–10
for Wi 5 3.0. In Fig. 8 for the strain hardening material with« 5 0.05, we note the
strong buildup of stress near the stagnation point on the free surface and also nea
point of contact where the free surface intersects the moving wall. The relaxation of
stresses downstream of the interface enhances the flow near the free surface as sho
the compression of the streamlines towards the wall relative to the fully developed fl
far from the free surface.

As « is increased to 0.3, the onset of shear thinning is shifted towards lower Weiss
berg numbers and the material also becomes more strain softening. These trend
reflected in both the stream function contours and the stresses. Due to the increased
thinning, the velocity profile becomes more plug flow like in the pressure driven flow f
from the interface and the velocity gradients are concentrated near the walls. Lookin
the flow near the free surface, we note that the streamlines are shifted away from
interface and the strain rate near the stagnation point drops due to the strain softe
extensional viscosity. This shift is also reflected in the polymer stress components.
maximum in thetyy stress has moved downstream of the stagnation point. As mention
previously, the stresses downstream of the singularity decay more quickly for hig
values of« allowing the Poiseuille flow in the channel to reach equilibrium in fewe
channel lengths. Hence the meshes used for this rheology are shorter than those req
for the strain hardening material with« 5 0.05.

For the most strain softening rheology of« 5 0.9 shown in Fig. 10, the effects of
strain softening and shear thinning are enhanced relative to those in the previous ca
« 5 0.3, but the trends are entirely consistent. We note that the maximum in thetyy
component of the stress is almost a half channel height away from the free surface.
flow is even more plug like, hence the almost equally spaced streamlines in the cente
the channel. Observing the streamline patterns near the free surface, there is almost
of the streamline compression near the wall that was observed for the strain harde
rheology. These differences in extensional rheology can be summarized by examining
tangential velocity and its gradient along the free surface shown in Fig. 11. For the st
hardening rheology (« 5 0.05), the strain rate along the free surface is almost consta
near the stagnation point (e ' 0.3U/H) then increases close to the contact point (u
5 p/2). For the strain softening rheologies, the effective shear and extensional visc

ties in the neighborhood of the singularity are very low, so the material along the int
face is not effectively accelerated. The result is a lower strain rate along the interface
a large peak near the point of contact. For« 5 0.9 the average strain rate near the
stagnation point has dropped toė ' 0.1U/H.

B. Stability results

Once steady results are obtained, a linear stability analysis is performed for each c
By tracking the norm of the perturbation as a function of time, demonstrated in Fig.
for « 5 0.90, the stability of the flow can be determined. For this case, the initial pe
turbation introduced at time equals zero decays showing that the flow is stable~i.e., the
real part of the eigenvalue is negative!. The initial decay of the perturbation is very rapid
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because the disturbance excites many eigenmodes in the system. However at long time
the decay becomes single exponential indicating that only the eigenmode with the larges
real eigenvalue remains and the growth/decay rate can be easily determined. From Fig
12, we note that the real part of the eigenvalue increases monotonically with the Weis-
senberg number.

Figure 13 shows a similar set of results for the strain hardening rheology with

FIG. 8. Steady finite element results for strain hardening Phan-Thien–Tanner fluid with« 5 0.05, Wi
5 3.0: from the top stream function,txx , tyy , txy .
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« 5 0.05. For low Weissenberg numbers we see very similar behavior to that in
previous case: the initial perturbation decays very rapidly initially before settling dow
a single exponential decay. As the Weissenberg number increases, the perturbations
more slowly and become oscillatory, and eventually the flow becomes unstable aWi
' 4.8. These results can be summarized by plotting the real part of the eigenvalu

the different values of« as a function of the inverse Weissenberg number~cf. Fig. 15!.
For low Weissenberg numbers or strain softening rheologies, the eigenvalues re
negative~stable! and scale linearly with the inverse Weissenberg number. For the st
hardening materials at high enough Weissenberg numbers, the eigenvalues deviat

FIG. 9. Steady finite element results for strain softening Phan-Thien–Tanner fluid with« 5 0.30, Wi
5 3.0: from the top stream function,txx , tyy , txy .



f

663FLOW MARK SURFACE DEFECTS
the linear trend, eventually becoming positive, indicating instability. Figure 14 shows that
the stability behavior is not a function of the mesh resolution, length of the mesh, or the
time step chosen for the transient calculation. For Weissenberg numbers higher than 3
only the longer meshes produced converged results for« 5 0.05.

Examining the eigenvectors obtained from the linear stability analysis, we find that the
two regimes in the growth rate are characterized by very different spatial dependences o
the eigenvectors. To compare we focus onWi 5 5 for strain softening and strain hard-
ening rheologies. Figure 16~a! shows the steady velocity vectors for the strain softening
rheology for« 5 0.9. The perturbation velocity vectors shown in Fig. 16~b! would be

FIG. 10. Steady finite element results for strain softening Phan-Thien–Tanner fluid with« 5 0.90, Wi
5 3.0: from the top stream function,txx , tyy , txy .
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664 GRILLET ET AL.
superimposed on the steady solution. Because the flow is stable, the sizes of the p
bation vectors have been scaled so that the spatial dependence of the eigenvector c
observed. The perturbation far from the channel has completely died out leaving a s
ing flow near the free surface. This eigenvector is consistent with the unstable fl
pattern observed with the two color injection molding experiments~cf. Fig. 5! @Bulters
and Schepens~2000a!, 2000b#.

The characteristic eigenvector for strain hardening rheologies at large Weissen
numbers is shown in Fig. 17. Contrary to in the previous case, the perturbation veloc
in the neighborhood of the interface have completely decayed. What remains is es
tially an instability in the plane Poiseuille flow in the inlet channel. This can be confirm
by comparing finite element calculations in this injection molding flow with simila

FIG. 11. Results along the free surface as a function of interface coordinateu for various« at Wi 5 3: ~a!
tangential velocityutan and ~b! gradient of velocity]utan/]u. u is defined as the angle along the semicircula
interface from the stagnation point in the center of the channel.

FIG. 12. Linear stability results for strain softening rheology with« 5 0.90 for various Weissenberg numbers.
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calculations in periodic planar Poiseuille flow shown in Fig. 18. The critical condition in
the injection molding geometry~Wi 5 4.8 for « 5 0.05! is slightly higher than that
predicted for plane Poiseuille flow (Wi 5 4.3). A more detailed analysis of these chan-
nel instabilities using both transient finite element and Chebyshev–Tau spectral metho
was discussed by Grilletet al. ~in press!. While interesting for other reasons, the occur-
rence of channel instabilities is unfortunate in that they are not related to the flow mar
surface defects which are the focus of this investigation. The important point is that th
choice of constitutive equation affects not only the predictions of steady flow properties
but also the stability of the flow. For example, both the upper convected Maxwell mode
and the Oldroyd-B model are stable in plane Poiseuille flow@Gorodtsov and Leonov
~1967!; Wilson et al. ~1999!#.

IV. CONCLUSIONS

We have shown that the implicit DEVSS-G/SUPG transient finite element code pre
sented by Grilletet al. ~in press! can be used to investigate the stability of complex flows
of polymer melts. This method was applied to a model injection molding flow where
there was experimental evidence of a flow instability. Novel two color injection molding
experiments were used to evaluate the potential mechanisms proposed for flow ma
surface defects@Bulters and Schepens~2000a!#. Slip and upstream factors were ruled out
by modifying the mold surface, gate, and screw designs, leaving the most likely expla
nation for the surface defects to be a flow instability during filling of the mold. Additional
two color injection molding experiments in which the mold was only partially filled
provided further evidence that the instability is localized in the fountain flow near the free
surface.

With the goal of numerically predicting instabilities in injection molding flows, we
applied a stabilized transient finite element method to a model injection molding flow. In
order to test and develop the numerical method for this complex flow, simulations wer
performed using a one mode exponential Phan-Thien–Tanner model. The effect of e
tensional rheology on the steady flow and stability behavior was examined. In stead
flows of strain hardening materials, large polymer stresses were found to build up alon

FIG. 13. Linear stability results for strain hardening rheology with« 5 0.05 for various Weissenberg numbers.
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the free surface and extend downstream into the channel flow for some distance. S
softening materials had much lower levels of polymer stress and the stress was loca
away from the stagnation point on the free surface. Examination of the tangential velo
along the interface confirms that the more strain hardening material has a higher, m
uniform strain rate in the neighborhood of the stagnation point.

Linear stability analyses were performed on the model injection molding flow. F
strain hardening rheologies, a channel instability was predicted to occur far away f
the free surface. The destabilization for Weissenberg numbers greater than 3 is in
agreement with predictions for planar Poiseuille flow@Grillet et al. ~in press!#. For strain
softening rheologies, the eigenvector for the most unstable eigenmode has almost

FIG. 14. Linear stability results for strain hardening rheology with« 5 0.05 with Wi 5 3 for various time
steps and meshes, given in Table I.

FIG. 15. Comparison of linear stability results for several extensional rheologies as a function of the inv
Weissenberg number.
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pletely decayed in the channel flow portion of the geometry and is instead concentrated as
a swirling flow near the free surface. The velocity vectors of the most unstable eigenmode
are in qualitative agreement with the experimentally observed instability@Bulters and
Schepens~2000a!#. The growth rate for the swirling eigenmode increased monotonically
with Weissenberg number but no instability was predicted for the range of Weissenberg
numbers investigated in this study.

FIG. 16. Linear stability results for strain softening material with« 5 0.90 atWi 5 5: ~a! steady velocity
vectors;~b! most unstable eigenvector (uuu* 1015); ~c! closeup of swirling flow near the interface.

FIG. 17. Linear stability results for the most unstable eigenvector for strain hardening material with«
5 0.05 atWi 5 5.
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