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1Faculty of Electrical Engineering, University of Ljubljana, Tr�za�ska 25, 1000 Ljubljana, Slovenia
2Jo�zef Stefan Institute, Jamova 39, P.O. Box 100, 1000 Ljubljana, Slovenia

(Received 24 February 2017; accepted 9 May 2017; published online 6 June 2017)

A one-dimensional, two-fluid, steady state model is used for the analysis of ion temperature effects

to the plasma-wall transition. In this paper, the model is solved for a finite ratio e between the

Debye and the ionization length, while in Part II [T. Gyergyek and J. Kovačič, Phys Plasmas 24,

063506 (2017)], the solutions for e ¼ 0 are presented. Ion temperature is treated as a given, inde-

pendent parameter and it is included in the model as a boundary condition. It is shown that when

the ion temperature larger than zero is selected, the ion flow velocity and the electric field at the

boundary must be consistent with the selected ion temperature. A numerical procedure, how to

determine such “consistent boundary conditions,” is proposed, and a simple relation between the

ion temperature and ion velocity at the boundary of the system is found. The effects of the ion tem-

perature to the pre-sheath length, potential, ion temperature, and ion density drops in the pre-sheath

and in the sheath are investigated. It is concluded that larger ion temperature results in a better

shielding of the plasma from the wall. An attempt is made to include the ion heat flux qi into the

model in its simplest form qi ¼ �K0 dTi
dx
, where K0 is a constant heat conduction coefficient. It is

shown that inclusion of such a term into the energy transfer equation introduces an additional ion

heating mechanism into the system and the ion flow then becomes isothermal instead of adiabatic

even in the sheath. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4984786]

I. INTRODUCTION

The subject of interactions between the plasma and a

solid wall and the formation of a boundary layer around it is

almost as old as plasma physics itself. In a simple model,

confined plasma is brought into contact with an infinitely

large, planar, conducting wall. Since the mobility of the elec-

trons is much higher than that of the ions, the wall is bom-

barded by the background electrons and attains a negative

potential with respect to the bulk of the plasma. The negative

potential of the wall attracts the ions toward the wall and

repels the electrons toward the plasma. In the steady state, a

positive space charge forms near the wall to balance the flow

of the ions and electrons into the wall.

The plasma-wall transition region can be divided into

two separate regions: a neutral pre-sheath adjacent to the

plasma and a space charge dominated layer, called sheath,

adjacent to the wall.1,2 The sheath width is usually a few

Debye lengths kD and its task is to shield the plasma from

the wall. The pre-sheath width, on the other hand, is deter-

mined by some characteristic mean free path L of the binary

process that the ions undergo in the observed plasma system.

If the mean free path L is larger than the size of the whole

plasma system, the width of the pre-sheath is determined by

the size of the plasma container.1,2 The function of the pre-

sheath is to accelerate the positive ions in such a way that

they fulfil the well-known Bohm criterion3 at the boundary

between the pre-sheath and the sheath called the sheath edge.

The correct velocity of positive ions at the sheath edge is

needed in order to adjust the positive space charge associated

with the ions that are entering into the sheath. Usually, the

sheath is collisionless and planar, and as already mentioned,

its characteristic length scale kD is much smaller than the

characteristic length scale L of the pre-sheath. In actual

plasma, the ratio e ¼ kD=L is usually very small but finite.

Thus, it is logical to analyze the plasma boundary problem in

these two scales separately. In the asymptotic two-scale limit

e ! 0, both scales are completely decoupled. On the sheath

scale of this limit, the sheath edge is infinitely far from the

wall, and the electric field at the sheath edge is zero.4 On the

pre-sheath scale of the asymptotic two-scale limit, the sheath

is infinitesimally thin, and the electric field at the sheath edge

is infinite. As can be seen, the sheath edge has an ambiguous

behavior, and one has to remove the contradicting behavior by

solving the matching problem.5

The role of ion temperature in the sheath formation is a

hot topic, which is investigated extensively. Theoretically,

fully self-consistent analysis of the influence of positive

ion temperature to the plasma-wall transition would require

a solution of a Tonks-Langmuir problem with a warm ion

source,6,7 which is far beyond the scope of this work.

Satisfactory solutions of this problem have started to appear

only recently, and it is not possible to give a review of

relevant references in the Introduction like this one. So let

us only mention that the current state of the art of solving

the Tonks-Langmuir problem with a warm ion source can

be found in Refs. 7 and 8 and many relevant references can

be found in Ref. 8. It is, therefore, not surprising that the

problem of the ion temperature effects to the plasma-sheath

formation is still mainly studied with one dimensional
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steady-state fluid models.9–17 In these papers, the ions are

treated with continuity and momentum exchange equation,

while the Boltzmann relation is assumed for the electrons

and also for negative ions if they are present in the

plasma.15,18 In the above mentioned papers, the closure is

made by the assumption that the ions are isothermal and

ideal gas law is used to eliminate the pressure gradient term

from the momentum exchange equation. The ion tempera-

ture is treated as a given independent parameter. Some

other authors18–23 use a very similar approach, but they

assume that the ion flow to the wall is adiabatic with a con-

stant polytropic coefficient j equal to 3, which corresponds

to the one-dimensional adiabatic ion flow.

Attempts to develop a fluid model which would go to

higher moments of the Boltzmann equation for ions than

the momentum exchange equation are very rare. An inter-

esting work was reported by Das et al.24 where the plasma-

wall transition in a non-magnetized plasma has been studied

by a fluid model using the continuity, momentum transfer,

and energy transfer equations for the ions, while the

Boltzmann relation has been used for the electrons. In this

sense, somewhat outstanding are 3 papers by Zawaideh and

coworkers.25–27 In the first paper, Zawaideh et al.25 devel-

oped a truly impressive two-fluid model intended for the

analysis of parallel transport in magnetized collisional

plasma. The ions have been described by the equation of

continuity, equation of motion, and two energy transport

(pressure) equations—one for direction of magnetic field

and the other for perpendicular direction. A similar set of

equations was derived also for the electrons. In the next

paper,26 the model was developed further, and in the last

paper of this “trilogy,” a fully developed model was used

for the analysis of the plasma sheath transition in a magne-

tized plasma with various degrees of collisionality. The set

of equations in the last paper27 consists of the equation of

continuity (with zero source term), equation of motion, and

two pressure equations (perpendicular and parallel with

respect to magnetic field) for the ions, while the electrons

are described by equation of continuity (with zero source

term), equation of motion, pressure equation in the direc-

tion parallel to the magnetic field, and even energy flux

equation—this means one additional moment of the

Boltzmann equation. The main conclusion of this work is

the following. Simpler models that use basically only the

continuity equation and equation of motion predict solu-

tions with monotonic potential profiles in the sheath for

supersonic ion flows and oscillatory potential profiles for

subsonic ion flows. But a more advanced set of equations

used in Ref. 27 also predicts a third class of solutions.

When the ion flow speed is between the ion thermal veloc-

ity ion sound velocity, solutions exist, where the electric

field is positive definite and oscillatory, but the potential is

monotonic. Two additional works deserve to be mentioned.

The first is by Laux et al.28 and the second by Gunn.29 Laux

and coworkers28 extended Hutchinson’s30 model of a probe

in a strongly magnetized plasma flow by adding the energy

equation for ions, while electrons were assumed to obey the

Boltzmann factor. Gunn29 investigated the influence of a

source of poloidal momentum on the collisionless tokamak

scrape-off layer. He compared the solutions of the kinetic

equation for ion flow and the corresponding system of fluid

equations assuming zero ion heat flux. Both models agreed

well for small poloiodal Mach numbers of the momentum

source. Gyergyek and Kovačič31 have recently presented

a steady state, one-dimensional, two-fluid model which

was used for the analysis of the plasma-wall transition in

front of a negative planar electrode. Continuity, momentum

exchange, and energy transport equations have been used

for the ions, while the continuity and momentum exchange

equations have been used for the electrons. The model

has been solved for zero ion temperature at the boundary,

and some effects of variation of e, Coulomb collisions

between ions and electrons and charge exchange collisions

between ions and neutrals have been examined. This work

and Paper II32 are a continuation of the work presented in

Ref. 31. Attention is focused on the determination of the

boundary conditions when non-zero ion temperatures at the

boundary are selected.

In this paper, the model is solved for e > 0 in the pre-

sheath and in the sheath region simultaneously, while in

Paper II,32 the model is solved for e ¼ 0 in the pre-sheath

and in the sheath scale separately. In Sec. II, the model

developed in Ref. 31 is presented. In Sec. III, some results

are shown. In Sec. IV, an attempt to include the divergence

of the ion heat flux vector into the model is presented, and in

Sec. V, the conclusions are given.

II. MODEL

Basic equations of a steady state, one dimensional,

two fluid models have been derived in a recent paper by

Gyergyek and Kovačič.31 They can be written in two forms,

depending on the normalization of the space coordinate x. If

x is normalized to ionization length L, the model equations

read31

d

dn
NiVið Þ ¼ si; (1)

d

dn
NeVeð Þ ¼ se; (2)

Pi ¼ NiH; (3)

NiVi

dVi

dn
¼ gNi �

dPi

dn
� ZCXNiVi � Visi; (4)

lNeVe

dVe

dn
¼ �gNe �

dNe

dn
� lVese; (5)

1

2
Vi

dPi

dn
þ 3

2
Pi

dVi

dn
¼ ZCXNiV

2
i þ

1

2
V2
i si; (6)

g ¼ � dW

dn
; (7)

e2
d2W

dn2
¼ Ne � Ni: (8)

If on the other hand x is normalized to the Debye length kD,

the system of equations gets the following form
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d

dX
NiVið Þ ¼ esi; (9)

d

dX
NeVeð Þ ¼ ese; (10)

Pi ¼ NiH; (11)

NiVi

dVi

dX
¼ vNi �

dPi

dX
� e ZCXNiVi þ Visi½ �; (12)

lNeVe

dVe

dX
¼ �vNe �

dNe

dX
� elVese; (13)

1

2
Vi

dPi

dX
þ 3

2
Pi

dVi

dX
¼ e ZCXNiV

2
i þ

1

2
V2
i si

� �

; (14)

v ¼ � dW

dX
; (15)

d2W

dX2
¼ Ne � Ni: (16)

The following variables have been introduced:

kD ¼
ffiffiffiffiffiffiffiffiffiffiffi

e0kTe

n0e
2
0

s

; c0 ¼
ffiffiffiffiffiffiffi

kTe

mi

r

; L ¼ c0s; e ¼ kD

L
;

l ¼ me

mi

; H ¼ Ti

Te
; Ni ¼

ni

n0
; Ne ¼

ne

n0
; Vi ¼

ui

c0
;

Ve ¼
ue

c0
; ZCX ¼ fCXs; W ¼ e0U

kTe
; n ¼ x

L
;

X ¼ x

kD
; Pi ¼

pi

p0
¼ nikTi

n0kTe
¼ NiH: (17)

Here, e0 is the permittivity of the free space, e0 is the elemen-

tary charge, n0 is the plasma density in the unperturbed

region far away from the wall, k is the Boltzmann constant,

Te is the electron temperature, Ti is the ion temperature,

me is the electron mass, mi is the ion mass, ni is the ion den-

sity, ne is the electron density, s is the ionization time (see

below), ui is the ion fluid velocity, ue is the electron fluid

velocity, U is the potential, and fCX is the frequency of

charge exchange collisions between the ions and neutral

atoms of the same kind (see below).

Source terms for the ions and electrons SiðxÞ and SeðxÞ
are modeled, based on the assumption that the main mecha-

nism of ionization is ionizing collisions of electrons with

neutral atoms. The source terms are given by

Si xð Þ ¼ Se xð Þ ¼ ne xð Þ
s

; (18)

where s must be understood as an effective ionization time,

where losses of charged particles by recombination are

already taken into account. In this model, since the electrons

and singly charged positive ions are the only charged particles

present in the plasma, it is clear that Si and Se must be equal.

From Eqs. (17) and (18), it is easy to see that the dimension-

less source terms si and se in Eqs. (1)–(14) are given by

si ¼ se ¼ Ne: (19)

The only type of elastic collisions that are taken into

account in this work is the charge exchange collisions

between the ions and neutral atoms of the same kind. It is

assumed that the ions, moving with the ion flow velocity ui,

collide with the neutral atoms that are at rest. The density of

the “friction force” Ai that the ions experience because of

those collisions is given by

Ai ¼ �minifCXui: (20)

Some authors9,12 have assumed a more complicated collision

term between ions and neutrals of the form miniðnnrðuiÞuiÞui.
Here, rðuiÞ is the momentum transfer cross section for

collisions between ions and neutrals, which is a function of

ion velocity ui, and nn is the neutral gas density. The product

ðnnrðuiÞuiÞ gives the collision frequency, which depends on

ion velocity ui. In our model, the collision frequency fCX is

assumed to be a given constant. In the original model31 also

Coulomb collisions between ions and electrons were included.

It was shown31 that their effect is very small, so in this work,

Coulomb collisions are not included.

The normalizing velocity c0 is not the same as the ion

sound velocity cS, which is given by31

cS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j xð ÞkTi xð Þ þ kTe

mi þ me

s

: (21)

If Eqs. (17) and (21) are combined and the ion sound veloc-

ity is written in the dimensionless form

VS ¼
cS

c0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jH

1þ l

s

: (22)

Since the polytropic function j and ion temperature Ti are

space dependent, the ion sound velocity cS is space depen-

dent. The polytropic function is defined as33,34

j ¼ 1þ ni

Ti

dTi

dni
¼ 1þ Ni

H

dH

dNi

: (23)

The polytropic function gives the local value of the polytropic

coefficient, which is equal to the ratio of the specific heats

at constant pressure and at constant volume j ¼ Cp=CV . In

fluid models of the plasma-wall transition, it is usually

assumed either j¼ 1 for isothermal ion flow or j¼ 3 for one-

dimensional adiabatic ion flow. Only relatively recently it has

been found33 that in the plasma wall transition region, j is not

a constant, but it is space dependent. So, one speaks about the

polytropic function instead of the polytropic coefficient.

III. RESULTS

The systems of Eqs. (1)–(8) and (9)–(16) are both systems

of 8 ordinary differential equations for 8 unknown functions of

n or X. Because both systems of equations are nonlinear, only

numerical solutions can be found. For a unique solution,

8 boundary conditions must be specified. As we try to show in

this work and in Part II32 the correct determination of boundary

conditions plays a very important role in the interpretation of

results. Let us first take a look at one example of the solutions

of the system (1)–(8) (Fig. 1) and one example of the solutions

of the system (9)–(16) (Fig. 2). For the curves shown in Fig. 1,
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the following parameters and boundary conditions are selected:

l¼ 1/3670.482 (deuterium mass), ZCX¼ 0 (no charge

exchange collisions), e ¼ 2� 10�4 (a realistically small ratio

between the Debye and the ionization length), Wð0Þ¼Veð0Þ
¼0; Nið0Þ¼Neð0Þ¼1;Hð0Þ¼Pið0Þ¼1; Við0Þ¼1:73205081,
and gð0Þ ¼ 3:4641. Integration of the system (1)–(8) (Fig. 1)

starts at n¼ 0 and proceeds in the positive direction of n. In

plots (a), (b), and (c), potential WðnÞ, electric field gðnÞ, and
density NieðnÞ profiles are displayed. Potential and both densi-

ties are monotonically decreasing functions of n, while the

electric field increases monotonically. In plot (d), ion velocity

ViðnÞ is shown together with the ion sound velocity VSðnÞ.
Vertical arrow marks their intersection, which occurs at

n ¼ nS. Because at n ¼ nS the Bohm criterion3 is fulfilled in

its marginal form (ViðnSÞ ¼ VSðnSÞ), the coordinate nS is iden-
tified as the sheath edge. In plot (e), the electron velocity

profile VeðnÞ is shown. Velocity VeðnÞ is a monotonically

increasing function of n, and when it reaches the electron ther-

mal velocity Veth (thin horizontal line), given the formula (24),

the systems (1)–(8) become singular. The position of the singu-

larity is labeled by nf and Veðnf Þ ¼ Veth. The electron velocity

VeðnÞ increases very slowly in the largest part of the solution

domain. It increases very quickly if it is only very close to nf.

This can be understood easily. The source term in the continu-

ity equation (2) is equal to the electron density, seðnÞ ¼ NeðnÞ
and is, therefore, positive everywhere. So, the electron flux

CeðnÞ ¼ NeðnÞVeðnÞ is an increasing function of n. Since in

the sheath (close to nf) the electron density decreases quickly

[plot (c)], the electron velocity must compensate this by a

strong jump. Such sharp jump of electron flow velocity in the

sheath has been observed also in particle-in-cell (PIC) simula-

tions.35 The ion temperature HðnÞ, shown in plot (f), is a

monotonically decreasing function of n.

In Fig. 2, solutions of systems (9)–(16) are presented

for the same parameters and boundary conditions. The only

difference is that the electric field at X¼ 0 is vð0Þ ¼ 6:9282
�10�4. One sees immediately that the solutions shown in

both figures are identical; the only difference is in the scaling

of the space coordinate and of the electric field. The posi-

tions of the sheath edge and of the singularity in Fig. 2 are

labeled XS and Xf, respectively. Since the solutions of the

systems (1)–(8) and (9)–(16) for a finite e are identical for

the same parameters and boundary conditions, only systems

(9)–(16) will be used for presentation of the results from

now on. The reason is that scaling of the space coordinate

with kD is more convenient for the graphical presentation of

results.

The singularity points nf and Xf are eigenvalues of the

systems (1)–(8) and (9)–(16). The values of the solutions

WðXf Þ; vðXf Þ, etc., at the singularity point have no particular

physical meaning. So, it is a bit problematic to call the dis-

tance Xf � XS, the “sheath thickness” or to call the difference

FIG. 1. Solutions of systems (1)–(8) for l¼ 1/3670.482, ZCX¼ 0, e¼ 2� 10�4;Wð0Þ ¼ Veð0Þ ¼ 0; Nið0Þ ¼Neð0Þ ¼ 1;Hð0Þ ¼ Pið0Þ ¼ 1; Við0Þ ¼ 1:73205081,
and gð0Þ ¼ 3:4641.
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WðXSÞ �WðXf Þ, the “sheath potential drop.” Nevertheless,

such terms will be used in the discussions below for practical

purposes.

Next, an explanation of the boundary conditions should

be given. The conditions Wð0Þ ¼ 0 and Nið0Þ ¼ Neð0Þ ¼ 1

are easy to understand. The potential of the unperturbed

plasma is set to zero. In addition, the unperturbed plasma is

neutral, and it is natural to normalize the ion and electron

density to unity. In our model, the temperature H is treated

as a given, independent parameter, which is included in

the model as a boundary condition Hð0Þ. The only limitation

is that it must be positive. A few comments about the case

Hð0Þ ¼ 0 are given in Fig. 5. The ion pressure Pið0Þ must be

consistent with Hð0Þ; Nið0Þ and Eq. (11).
Let us now focus on the ion velocity Við0Þ. It can be

shown by a short calculation31 that the systems of Eqs.

(1)–(8) and (9)–(16) become singular if either the ion veloc-

ity Vi drops below the ion thermal velocity Vith or the elec-

tron velocity Ve exceeds the electron thermal velocity Veth.

These thermal velocities are given by31

Vith ¼
1

c0

ffiffiffiffiffiffiffiffiffi

jkTi

mi

r

¼
ffiffiffiffiffiffiffi

jH
p

; Veth ¼
1

c0

ffiffiffiffiffiffiffi

kTe

me

s

¼ 1
ffiffiffi

l
p : (24)

As soon as Hð0Þ > 0 is selected, the ion velocity must be

Við0Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jð0ÞHð0Þ
p

. Since jð0Þ can be found only after the

system (9)–(16) has been solved [see formula (23)], one

has to find Við0Þ by a numerical trial and error method,

which goes as follows. Initially, zero electric field vð0Þ ¼ 0

and electron velocity Veð0Þ ¼ 0 are selected together with

Wð0Þ ¼ 0; Nið0Þ ¼ Neð0Þ ¼ 1, and the selected Hð0Þ; Pið0Þ,
l, e, and ZCX. Then, some large enough value is selected

for Við0Þ and systems (9)–(16) are solved. If a singularity

is encountered, Við0Þ must be increased. If a physically

acceptable monotonic solution is obtained, Við0Þ is slightly

decreased, and systems (9)–(16) are solved again. The goal

is to find the minimum value Við0Þ which still gives physi-

cally acceptable monotonic solutions of the system (9)–(16).

When the minimum Við0Þ is found, the electric field vð0Þ is
slightly increased. It turns out that at a larger electric field,

the ion velocity Við0Þ can be decreased further and mono-

tonic solutions of systems (9)–(16) can still be found. In this

way, vð0Þ is gradually increased, while Við0Þ is decreased.

When a certain value of vð0Þ is exceeded, physically accept-

able solutions of systems (9)–(16) can be obtained only if

Við0Þ is increased and not decreased. The relationship

between the values of vð0Þ and Við0Þ that give monotonic

solutions of systems (9)–(16) is illustrated in Fig. 3. For

the results presented in Fig. 3, the following parameters

are selected: l¼ 1/3670.482, ZCX¼ 0, and e ¼ 2� 10�4.

The following boundary conditions are selected: Wð0Þ
¼ 0; Nið0Þ ¼ Neð0Þ ¼ 1, and Veð0Þ ¼ 0. Then, 4 values of

FIG. 2. Solutions of systems (9)–(16) for l¼ 1/3670.482, ZCX¼ 0, e¼ 2�10�4;Wð0Þ¼Veð0Þ¼ 0; Nið0Þ¼Neð0Þ¼ 1;Hð0Þ¼Pið0Þ¼ 1; Við0Þ¼ 1:73205081,
and vð0Þ¼ 6:9282�10�4.
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Hð0Þ are selected: Hð0Þ ¼ 0:1; Hð0Þ ¼ 0:2; Hð0Þ ¼ 0:3,
and Hð0Þ ¼ 0:4. The values of Pið0Þ are selected accord-

ingly. At each Hð0Þ, electric vð0Þ and ion velocity Við0Þ
are gradually varied, as described earlier. The minimum

ion velocity Við0Þ, which results in a monotonic solution of

systems (9)–(16), is plotted versus the respective electric

field vð0Þ. In this way, the graphs shown in Fig. 3 are

obtained.

If systems (1)–(8) is solved instead of systems (9)–(16),

the results are exactly the same; only gð0Þ is rescaled with

respect to vð0Þ by the factor gð0Þ ¼ vð0Þ=e ¼ 5000vð0Þ. The
boundary conditions Hð0Þ; Við0Þ and vð0Þ [or gð0Þ] found

by the method shown in Fig. 3 are called the “consistent

boundary conditions.” Further arguments related to the con-

sistency of the boundary conditions Hð0Þ; Við0Þ, and gð0Þ
are presented in Part II,32 where the system of Eqs. (1)–(8) is

analyzed in the asymptotic two-scale limit and e ¼ 0 is

inserted into Eqs. (1)–(8).

In Fig. 4, the relationship between the consistent bound-

ary conditions Hð0Þ; Við0Þ, and vð0Þ is illustrated further.

The minimum ion velocity Við0Þ (top graph) and the respec-

tive electric field vð0Þ (middle plot), found by the method,

described in Fig. 3, are shown versus Hð0Þ. The parameters

l¼ 1/3670.482 and e ¼ 2� 10�4 are the same as in Fig. 3.

Also, the boundary conditions Wð0Þ ¼ Veð0Þ ¼ 0; Nið0Þ
¼ Neð0Þ ¼ 1 are not changed. Two values of the frequency

of the charge exchange collisions are selected: ZCX¼ 0 and

ZCX¼ 1. It can be seen that the ion velocity Við0Þ does not
depend on ZCX, but the electric field vð0Þ does. If ZCX is

increased, vð0Þ increases also. In the bottom plot vð0Þ is plot-
ted versus ZCX for Hð0Þ ¼ 1. It can be seen that the relation

is linear.

By a simple fitting procedure performed in the top graph

of Fig. 4, it is found that Við0Þ and Hð0Þ are related by

Við0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

3Hð0Þ
p

: (25)

Factor 3 obviously corresponds to the “adiabatic” value of

the polytropic function j—see formula (24). As ion tempera-

ture Hð0Þ is increased, the ion flow velocity Við0Þ and elec-

tric field vð0Þ or gð0Þ must also be increased.

FIG. 3. Minimum ion velocity Við0Þ,
which gives a monotonic solution of

systems (9)–(16) versus vð0Þ.

FIG. 4. In the top graph, the minimum ion velocity Við0Þ, which gives

monotonic solution of the system (9)–(16), is plotted versus Hð0Þ for 2 val-

ues of ZCX. In the middle graph, the respective electric field vð0Þ is shown
versus Hð0Þ. In the bottom graph, the electric field vð0Þ is plotted versus the

frequency of charge exchange collisions ZCX for Hð0Þ ¼ 1.
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Here, a remark about the selection of the zero ion temper-

ature Hð0Þ ¼ 0 is in order. From formula (25), one concludes

that in this case Við0Þ ¼ 0 should be selected and this would

also imply vð0Þ ¼ 0. But unfortunately, when Við0Þ ¼ 0 is

selected, this results in a singularity because of the division

by zero in Eqs. (1) and (4) or (9) and (12). So, Við0Þ > 0 must

be selected. But, in this case, the boundary conditions Hð0Þ
¼ 0; Við0Þ > 0, and vð0Þ or gð0Þ cannot be found in a consis-

tent way. It is, however, recommendable to select a small pos-

itive value of electric field vð0Þ or gð0Þ.
The consistency of the boundary conditions Hð0Þ; Við0Þ,

and vð0Þ is illustrated in Fig. 5. In the top graphs (a), (b),

and (c), the electric field vðXÞ, ion density NiðXÞ, and ion

velocity ViðXÞ are presented for the case, when zero ion tem-

perature Hð0Þ ¼ 0 is selected as a boundary condition. The

selected parameters are as follows: l¼ 1/3670.482, ZCX¼ 0,

e ¼ 2� 10�4, and boundary conditions are as follows:

Wð0Þ ¼ Veð0Þ ¼ 0; Nið0Þ ¼Neð0Þ ¼ 1, and Við0Þ ¼ 5� 10�4.

Two values of vð0Þ are selected, vð0Þ ¼ 0 and vð0Þ ¼ 3

�10�7. Thinner lines show the solutions of systems (9)–(16),

which are found in the first electric field vð0Þ ¼ 0. Solutions

exhibit oscillations. Although their amplitude is not very

large, they can become problematic, when the polytropic

function j is calculated, since the derivative dH=dNi amplifies

their effect strongly. Thicker line shows the solutions

obtained when vð0Þ ¼ 3� 10�7 are selected. Oscillations

are suppressed.

In the bottom plots (d), (e), and (f) the electric field

vðXÞ, ion density NiðXÞ, and ion velocity ViðXÞ are presented
for the case when the ion temperature is Hð0Þ ¼ 0:2. The
parameters are the same as in the top plots: l¼ 1/3670.482,

ZCX¼ 0, and e ¼ 2� 10�4. The boundary conditions are

Wð0Þ ¼ Veð0Þ ¼ 0 and Nið0Þ ¼ Neð0Þ ¼ 1. The thicker line

shows the solution obtained with vð0Þ ¼ 3:09839� 10�4

and Við0Þ ¼ 0:774597, while the thinner line shows the solu-
tion obtained with vð0Þ ¼ 3:0� 10�4 and Við0Þ ¼ 0:78.
Again, the solutions shown by thinner line exhibit the oscil-

lations. Although such very precise determination of vð0Þ
and Við0Þ is time consuming, it pays off when the polytropic

function j is calculated. One additional comment should be

given. When Hð0Þ > 0 is selected, the corresponding vð0Þ
and Við0Þ are uniquely determined by the method shown in

Fig. 3. When Hð0Þ ¼ 0 is selected, this is not the case since

selection of Við0Þ is rather arbitrary—it only has to be a

small positive number. It turns out that to small values (like

10�6 or even 10�7) are not the optimum choice because they

can cause precision problems. Once Við0Þ is selected, then

the suitable electric field vð0Þ (or gð0Þ) should be found in

FIG. 5. In the top graphs (a), (b), and (c), the electric field vðXÞ, ion density NiðXÞ, and ion velocity ViðXÞ are presented for the case when zero ion temperature

Hð0Þ ¼ 0 is selected. Thinner line shows the oscillating solution of systems (1)–(8), which is obtained, when vð0Þ ¼ 0 is selected. Thicker line shows the solu-

tion found with vð0Þ ¼ 3� 10�7. In the bottom plots (d)–(f), the electric field vðXÞ, ion density NiðXÞ, and ion velocity ViðXÞ are presented for the case, when

the ion temperature is Hð0Þ ¼ 0:2. The thicker line shows the solution obtained with vð0Þ ¼ 3:09839� 10�4 and Við0Þ ¼ 0:774597, while the thinner line

shows the oscillating solution obtained with vð0Þ ¼ 3:0� 10�4 and Við0Þ ¼ 0:78.
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such a way that the oscillatory behavior of the solutions is

suppressed to the maximum extent possible. The optimum

electric field is usually found by the trial and error method.

The last boundary condition that requires some explana-

tion is the electron velocity Veð0Þ. From the numerical point

of view, any value between 0 and Veth can be selected for

Veð0Þ. Physical arguments suggest the selection of one of the

two most obvious choices. The first one is Veð0Þ ¼ 0. This

boundary condition has been selected to get the results pre-

sented in Figs. 1–5 without any particular explanation. By

selecting Veð0Þ ¼ 0, it is assumed that electron distribution

function at n ¼ X ¼ 0 is perfectly symmetric Maxwellian

and that there is no directed electron flow at n ¼ X ¼ 0. The

second option is to select Veð0Þ ¼ Við0Þ, after Við0Þ has been
found by the method described in Fig. 3. In this way, it is

assumed that at n ¼ X ¼ 0, there is no electric current in the

plasma, since the ion and electron fluxes are equal. In Fig. 6,

dependence of XS, Xf, WðXSÞ;WðXf Þ; vðXSÞ; vðXf Þ;NiðXSÞ;
NiðXf Þ;ViðXSÞ;ViðXf Þ;VeðXSÞHðXSÞ, and HðXf Þ on Veð0Þ is
shown. The other parameters and boundary conditions are

l¼ 1/3670.482, ZCX¼ 0, e¼2 �10�4;Wð0Þ¼0;Nið0Þ¼Neð0Þ
¼1;Hð0Þ¼Pið0Þ¼1;Við0Þ¼1:73205081, and vð0Þ¼6:9282
�10�4. It can be seen that the values at the sheath edge XS,

WðXSÞ; vðXSÞ; NiðXSÞ, and HðXSÞ are almost independent

of Veð0Þ. The electron velocity at the sheath edge VeðXSÞ
increases linearly with Veð0Þ. The value at the sheath edge

VeðXSÞ is always only a little larger than the respective

Veð0Þ. The values at the singularity point Xf, WðXf Þ; vðXf Þ;
NiðXf Þ; ViðXf Þ, and HðXf Þ, on the other hand, are much

more sensitive to Veð0Þ. If Veð0Þ is increased, the potential,

ion density, and ion temperature drop in the region between

XS and Xf all decrease, while the region Xf � XS becomes

shorter.

In Figs. 7 and 8, the effects of selecting different

Veð0Þ are illustrated further. In Fig. 7, solutions of systems

(9)–(16) are shown for l¼ 1/3670.482, e ¼ 2� 10�4, ZCX
¼ 0, Wð0Þ ¼ Veð0Þ ¼ 0; Nið0Þ ¼ Neð0Þ ¼ 1, and 3 values of

Hð0Þ: Hð0Þ ¼ 0:1; Hð0Þ ¼ 0:2, and Hð0Þ ¼ 0:3. For each

ion temperature Hð0Þ, the ion velocity Við0Þ and electric

field vð0Þ are found using the method, described in Fig. 3.

In plot (a), potential profiles are shown. When Hð0Þ is

increased, Xf decreases, but the absolute value jWðXf Þj
increases. Electric field and positive space charge density in

the sheath—shown in graphs (b) and (c)—also increase. In

plot (d), the electron velocity profiles VeðXÞ are shown to

illustrate the singularity VeðXf Þ ¼ Veth. Ion temperature pro-

files, shown in graph (e), reveal that HðXÞ is a monotonically

decreasing function of X. In plot (f), the polytropic function

jðXÞ is presented. Ion flow at the entrance of the system (at

X¼ 0) is adiabatic. Because the electric field accelerates the

ions towards the wall, the ions are expanding and cooling

[plot (e)]. But the cooling is not so fast, as it would corre-

spond to adiabatic expansion. The reason is that the ions

receive some thermal energy from the electric field—see

FIG. 6. Dependence of XS, Xf,WðXSÞ; WðXf Þ; vðXSÞ; vðXf Þ; NiðXSÞ; NiðXf Þ; ViðXSÞ; ViðXf Þ; VeðXSÞHðXSÞ, and HðXf Þ on Veð0Þ.
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also discussion below—Fig. 9. So, jðXÞ at first decreases,

reaches a minimum, and then increases. Close to Xf the value

of j is again very close to 3.

Very similar results are shown in Fig. 8. Also, in this fig-

ure, the solutions of systems (9)–(16) are shown. The parame-

ters and boundary conditions are almost the same, as in Fig. 7:

l¼ 1/3670.482, e ¼ 2� 10�4, ZCX¼ 0, Wð0Þ ¼ 0; Nið0Þ
¼ Neð0Þ ¼ 1, and same 3 values of Hð0Þ: Hð0Þ¼0:1;Hð0Þ
¼0:2, and Hð0Þ¼0:3. For each ion temperature Hð0Þ, the
ion velocity Við0Þ and electric field vð0Þ are found using

the method, described in Fig. 3. The only difference is that

this time, the boundary condition Veð0Þ¼Við0Þ is selected.

In Fig. 8, the absolute value jWðXf Þj decreases when Hð0Þ is
increased, while the electric field and positive space charge

density still increase. The profiles ofHðXÞ and jðXÞ shown in

Figs. 7 and 8 cannot be distinguished. The boundary condition

Veð0Þ has a very little or no effect on ion heating and cooling

in the plasma-wall transition region. It also has no effect to

the “self-consistent” boundary conditions Við0Þ and vð0Þ.
In Figs. 9 and 10, two mechanisms of ion heating in the

plasma wall transition region are illustrated. In Fig. 9, the

solutions of the system (9)–(16) are shown for l¼ 1/

3670.482, e ¼ 2� 10�4, ZCX¼ 0, Wð0Þ ¼ Veð0Þ ¼ 0; Nið0Þ
¼ Neð0Þ ¼ 1, and 3 values of Hð0Þ: Hð0Þ ¼ 0:01;Hð0Þ
¼ 0:02, and Hð0Þ ¼ 0:03. For each ion temperature Hð0Þ,
the ion velocity Við0Þ and electric field vð0Þ are found using

the method, described in Fig. 3. In plots (a), (b), and (c),

very similar results, as in Fig. 7, can be seen. As Hð0Þ is

increased, Xf decreases, while the absolute value of the

potential at the singularity point jWðXf Þj, electric field, and

positive space charge density in the sheath all increase. Note

that Hð0Þ is 10 times smaller than in Fig. 7, while Xf is

approximately 2 times larger. Let us focus on plots (e) and

(f), where HðXÞ and jðXÞ are presented. At X¼0, the ion

temperature has the prescribed value Hð0Þ, which close to

the coordinate origin first slightly decreases, but then starts

to increase, until it reaches a maximum and then rapidly

decreases. Very similar temperature profiles have been

observed also in Ref. 31, where it was assumed that the ions

are born cold Hð0Þ ¼ 0 and also in the kinetic model33 and

particle-in-cell simulations.34 It is interesting that there is

even a very good quantitative matching of the maximum ion

temperature between this work and Refs. 33 and 34. In all

cases, the maximum ion temperature is around 6 percent of

the electron temperature.

The heating mechanism has been explained in Refs. 33

and 34 and also Ref. 31, so it will be described here only

very briefly. The ions that are born at rest or with very small

velocity (because their temperature is so low) are accelerated

in the positive direction of X, towards the wall, by the elec-

tric field. So, at a certain position X1, where the potential is

W1, their velocity is very close to
ffiffiffiffiffiffiffiffiffiffiffiffi

�2W1

p
. Since new very

FIG. 7. Solutions of systems (9)–(16) for l¼ 1/3670.482, e ¼ 2� 10�4, ZCX¼ 0, Wð0Þ ¼ Veð0ÞÞ ¼ 0; Nið0Þ ¼ Neð0Þ ¼ 1; Við0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

3Hð0Þ
p

, and 3 values of

Hð0Þ: Hð0Þ ¼ 0:1; Hð0Þ ¼ 0:2, and Hð0Þ ¼ 0:3.

063505-9 T. Gyergyek and J. Kovačič Phys. Plasmas 24, 063505 (2017)



slow ions are also born everywhere in the system, the ion

distribution function obtains a shape, which has a cutoff

velocity very close to
ffiffiffiffiffiffiffiffiffiffiffiffi

�2W1

p
, but it is also populated in the

low velocity part. As X increases,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2WðXÞ
p

also increases

and the ion distribution function becomes wider, which

means larger ion temperature. In more thermodynamic

terms, one could say that the electric field energy is con-

verted into ion thermal energy. But close to the sheath edge,

the electric field becomes larger, while the birth rate of new

slow ions decreases, because NeðXÞ decreases. So, the ion

distribution function becomes depleted in the low velocity

part and therefore becomes more narrow. This also means

smaller ion temperature. When the electric field becomes

large enough, the electric field energy is converted into

kinetic energy of the ion beam.33 This explains the strong

drop of ion temperature close to Xf. The profile jðXÞ, shown
in plot (f), is consistent with such scenario. The ion flow at

the entrance into the system (at X¼ 0) is adiabatic, but then

j decreases rapidly and even becomes negative. A negative

value of j indicates that the ions are expanding and heating

at the same time.33 As X increases, heating of the ions

becomes weaker and jðXÞ increases. Close to Xf, the ion

flow again becomes adiabatic and j reaches values very

close to 3.

In Fig. 10, an illustration of the effect of charge

exchange collisions is presented. In this figure, solutions of

systems (9)–(16) are shown for l¼ 1/3670.482, e ¼ 2

�10�4, ZCX¼ 1, Wð0Þ ¼ Veð0Þ ¼ 0; Nið0Þ ¼ Neð0Þ ¼ 1, and

3 values of Hð0Þ: Hð0Þ ¼ 0:1; Hð0Þ ¼ 0:2, and Hð0Þ ¼ 0:3.
For each ion temperature Hð0Þ, the ion velocity Við0Þ and

electric field vð0Þ are found using the method described in

Fig. 3. Results shown in plots (a), (b), and (c) are very simi-

lar to those shown in Figs. 7–9: when Hð0Þ is increased,

Xf decreases, while the absolute value of the potential at

the singularity point jWðXf Þj, electric field, and positive

space charge density in the sheath all increase. The electron

velocity profiles VeðXÞ are shown in plot (d) to indicate the

position of the singularity Xf. In plot (e), ion temperature

profiles HðXÞ are displayed. The lowest selected temperature

Hð0Þ ¼ 0:1 starts to increase immediately. The temperature

increases until a maximum is reached close to the sheath

edge and then a rapid cooling of ions follows. The charge

exchange collisions are the additional heating mechanism for

the ions. This was also found in Ref. 33. The corresponding

polytropic function jðXÞ, shown in plot (f), starts with a neg-

ative value, then increases, reaches a maximum close to

the sheath edge and then decreases. Negative j is an indica-

tion that the ions are expanding and heating at the same

time. When Hð0Þ ¼ 0:2 is selected, ion temperature at first

remains constant and then starts to decrease. Note that

jð0Þ ¼ 1 in plot (f) is consistent with the isothermal ion

flow. Finally, at Hð0Þ ¼ 0:3, the ion temperature is a

FIG. 8. Solutions of systems (9)–(16) for l¼ 1/3670.482, e ¼ 2� 10�4, ZCX¼ 0, Wð0Þ ¼ 0; Veð0Þ ¼ Við0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

3Hð0Þ
p

; Nið0Þ ¼ Neð0Þ ¼ 1, and 3 values of

Hð0Þ: Hð0Þ ¼ 0:1; Hð0Þ ¼ 0:2, and Hð0Þ ¼ 0:3.

063505-10 T. Gyergyek and J. Kovačič Phys. Plasmas 24, 063505 (2017)



monotonically decreasing function of X. The corresponding

values of j are between 1.5 and 3. This indicates that the

ions are cooling during their expansion, but the cooling is

not adiabatic because they receive thermal energy from the

electric field and from neutral particles through charge

exchange collisions.

Presentation of results is concluded by a summary of

ion temperature effects to the plasma wall transition region,

which is shown in Figs. 11–13. For the results shown in

Fig. 11, the following parameters are selected: l¼ 1/

3670.482, e ¼ 2� 10�4, and ZCX¼ 0. The following bound-

ary conditions are selected: Wð0Þ ¼ Veð0Þ ¼ 0 and Nið0Þ
¼ Neð0Þ ¼ 1. The ion temperature Hð0Þ is gradually

increased. At each Hð0Þ, the ion velocity Við0Þ and electric

field vð0Þ are found by the method, shown in Fig. 3 and sys-

tems (9)–(16) is solved. In plot (a), the positions XS of

the sheath edge and Xf of the singularity are plotted versus

Hð0Þ. The vertical axis is shown in logarithmic scale,

because XS and Xf decrease for more than 2 orders of magni-

tude when Hð0Þ is increased from 0 to 3. In plot (b), the

“sheath thickness” Xf � XS is shown versus Hð0Þ. Plot (b)
reveals that the sheath thickness decreases with increasing

Hð0Þ. Obviously, the logarithmic scale in plot (a) can be

deceiving. In graph (c), the electron velocity VeðXSÞ at the

sheath edge is plotted versus Hð0Þ. The scale on the vertical

axis is logarithmic, since VeðXSÞ decreases for more than 2

orders of magnitude when Hð0Þ is increased from 0 to 3. In

graph (d), the potentials at the sheath edge WðXSÞ and at the

singularity point WðXf Þ are shown versus Hð0Þ. The sheath

edge potential WðXSÞ increases with increasing Hð0Þ and it

approaches to zero. The potential at the singularity point

WðXf Þ, on the other hand, decreases with increasing Hð0Þ,
but the absolute value jWðXf Þj increases. As a consequence,

the “sheath potential drop” WðXSÞ �WðXf Þ also increases

with increasing Hð0Þ. By comparing graphs (c) and (e) and

by looking at Fig. 6, one realizes that the sheath potential

drop WðXSÞ �WðXf Þ increases when the electron velocity at

the sheath edge VeðXSÞ decreases. If Veð0Þ ¼ 0 is selected,

then VeðXSÞ decreases with increasing ion temperature Hð0Þ.
So, larger Hð0Þ indeed results in better shielding of the

plasma from the electrode as stated in Ref. 21. But, as shown

in Fig. 7, this also depends on the boundary condition Veð0Þ.
Finally, in plot (f), the electric field at the sheath edge vðXSÞ
is shown versus Hð0Þ. It has a maximum at approximately

Hð0Þ � 0:1 and then decreases with increasing Hð0Þ. The
values of the electric field at the sheath edge vðXSÞ are

roughly 3 orders of magnitude smaller than the respective

values vðXf Þ at the singularity point—see Figs. 2 and 7–10.

For the results shown in Fig. 12, the same parameters as

in Fig. 11 are selected: l¼ 1/3670.482, e ¼ 2� 10�4, and

ZCX¼ 0. Also, the boundary conditions are almost the same:

Wð0Þ ¼ 0 and Nið0Þ ¼ Neð0Þ ¼ 1. The ion temperature Hð0Þ

FIG. 9. Solutions of systems (9)–(16) for l¼ 1/3670.482, e ¼ 2� 10�4, ZCX¼ 1, Wð0Þ ¼ Veð0ÞÞ ¼ 0; Nið0Þ ¼ Neð0Þ ¼ 1, and 3 values of Hð0Þ: Hð0Þ
¼ 0:1; Hð0Þ ¼ 0:2, and Hð0Þ ¼ 0:3.
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is gradually increased. The only difference is the electron

velocity Veð0Þ. At each Hð0Þ, the ion velocity Við0Þ and

electric field vð0Þ are found by the method shown in Fig. 3,

and then, the boundary condition Veð0Þ ¼ Við0Þ is selected.

Then, systems (9)–(16) are solved. In plot (a), the positions

XS of the sheath edge and Xf of the singularity are plotted

versus Hð0Þ. The vertical axis is shown in the logarithmic

scale, because XS and Xf decrease for more than 2 orders of

FIG. 10. Solutions of systems (9)–(16) for l¼ 1/3670.482, e ¼ 2� 10�4, ZCX¼ 1, Wð0Þ ¼ Veð0Þ ¼ 0; Nið0Þ ¼ Neð0Þ ¼ 1, and 3 values of Hð0Þ: Hð0Þ ¼ 0:1;
Hð0Þ ¼ 0:2, andHð0Þ ¼ 0:3.

FIG. 11. Singularity point Xf and sheath

edge position XS plot (a), “sheath

thickness” Xf � XS—graph (b), elec-

tron velocity at the sheath edge

VeðXSÞ—(c), potentials at the singular-

ity point and at the sheath edge WðXf Þ
and WðXSÞ—(d), “sheath potential

drop” WðXSÞ �WðXf Þ—(e) and electric

field at the sheath edge vðXSÞ—plot (f),

versus Hð0Þ, when the boundary condi-

tion Veð0Þ ¼ 0 is selected.
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magnitude when Hð0Þ is increased from 0 to 3. In plot (b),

the “sheath thickness” Xf � XS is shown versus Hð0Þ. The
results shown in plots (a) and (b) in Figs. 11 and 12 are very

similar. The only difference between them is that at larger

ion temperatures the decrease in the sheath thickness is

stronger at Veð0Þ ¼ Við0Þ than at Veð0Þ ¼ 0. In Fig. 12(c),

the electron velocity at the sheath edge VeðXSÞ is plotted ver-

sus Hð0Þ. It is only slightly larger than the respective ion and

ion sound velocity at the sheath edge VSðXSÞ ¼ ViðXSÞ.
Such result can be understood easily. Both continuity Eqs.

(9) and (10) require that the ion flux CiðXÞ ¼ NiðXÞViðXÞ
and the electron flux CeðXÞ ¼ NeðXÞVeðXÞ have the same

derivative everywhere between X¼ 0 and X¼Xf. If in addi-

tion Cið0Þ ¼ Ceð0Þ, then the functions CiðXÞ and CeðXÞ are
equal everywhere. Because e > 0, the ion density at the

sheath edge NiðXSÞ is not equal to the electron density at the

sheath edge NeðXSÞ, but slightly larger. In order to maintain

CiðXSÞ ¼ CeðXSÞ, the electron velocity at the sheath edge

VeðXSÞ must be slightly larger than the respective ion veloci-

ties VSðXSÞ ¼ ViðXSÞ at the sheath edge. The consequence of

this relatively large electron velocity at the sheath edge can

be seen in plots (d) and (e). In (d), the potentials at the sheath

edge WðXSÞ and at the singularity point WðXf Þ are shown

versus Hð0Þ. The sheath edge potential WðXSÞ increases with
Hð0Þ increasing and it approaches to zero. This result is

almost identical to the respective result shown in Fig. 11(d).

The potential at the singularity point WðXf Þ increases (the

absolute value jWðXf Þj decreases) with Hð0Þ increasing, and
consequently, the “sheath potential drop” WðXSÞ �WðXf Þ
decreases with increasing Hð0Þ. The difference between

plots (d) and (e) in Figs. 11 and 12 is very obvious. Finally,

in plot (f), the electric field at the sheath edge is shown ver-

sus Hð0Þ. It has a maximum at approximately Hð0Þ � 0:1
and then decreases with increasing Hð0Þ. Any differences

between both plots (f) in Figs. 11 and 12 are very hard

to find.

In Fig. 13, the ion densities NiðXSÞ and NiðXf Þ and tem-

peratures HðXSÞ and HðXf Þ at the sheath edge at the singular-

ity are displayed versus Hð0Þ. Parameters and boundary

conditions are the same as in Figs. 11 and 12: l¼ 1/3670.482,

e ¼ 2� 10�4, ZCX¼ 0, Wð0Þ ¼ 0, and Nið0Þ ¼ Neð0Þ ¼ 1. In

plots (a) and (d), Veð0Þ ¼ 0 is selected, while in graphs (b)

and (e), Veð0Þ ¼ Við0Þ is used. In (c) and (f), the differences

NiðXSÞ � NiðXf Þ and HðXSÞ �HðXf Þ are shown versus Hð0Þ
for both choices Veð0Þ ¼ 0 and Veð0Þ ¼ Við0Þ. If the ion den-

sities at the sheath edge NiðXSÞ in graphs (a) and (b) are com-

pared, it can be seen that they are almost identical. But the ion

densities at the singularity NiðXf Þ in plot (b) are considerably

larger than in plot (a). Smaller “sheath potential drop” which

is a consequence of a larger electron velocity at the sheath

FIG. 12. Singularity point Xf and sheath edge position XS plot (a), “sheath thickness” Xf � XS—graph (b), electron velocity at the sheath edge VeðXSÞ—(c),

potentials at the singularity point and at the sheath edge WðXf Þ and WðXSÞ—plot (d), “sheath potential drop” WðXSÞ �WðXf Þ—(e) and electric field at the

sheath edge vðXSÞ—plot (f), versusHð0Þ, when the boundary condition Veð0Þ ¼ Við0Þ is used.
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edge VeðXSÞ also results in a smaller ion density drop

NiðXSÞ � NiðXf Þ in the sheath—see graph (c). The same is

also valid for the ion temperature drop in the sheath. In

plots (d) and (e), one can see that the ion temperature at the

sheath edge is the same for both boundary conditions Veð0Þ
¼ 0 and Veð0Þ ¼ Við0Þ. But the ion temperature at the singu-

larity HðXf Þ is larger at Veð0Þ ¼ Við0Þ, and consequently, the

temperature drop in the sheath is smaller. The ion temperature

drop in the sheath HðXf Þ �HðXSÞ increases with increasing

Hð0Þ.

IV. SOME REMARKS ON THE CLOSURE

OF THE FLUID EQUATIONS—EFFECTS
OF THE ION HEAT FLUX

As it is very well known (see, e.g., Ref. 36), the fluid

equations are derived from the moments of the Boltzmann

equation. When the Boltzmann equation is multiplied by the

mass of the particle and integrated over velocity, the trans-

port equation (or the continuity equation) for the respective

particle species is obtained. The continuity equation contains

two unknown functions of space—the particle density and

the flux, which are the zeroth and the first moment of the

velocity distribution function. When the Boltzmann equation

is multiplied by the particle momentum and integrated over

velocity, the momentum transport equation (or equation of

motion) is obtained. This equation contains an additional

unknown function—the pressure gradient. The pressure is

the second moment of the velocity distribution function.

When the Boltzmann equation is multiplied by the kinetic

energy of the particle and integrated over velocity, the

energy transport equation is obtained. In this equation, an

additional unknown function appears—namely, the diver-

gence of the heat flux vector. The heat flux vector is the third

moment of the velocity distribution function. The ion heat

flux vector in one dimension is given by

qi ¼
1

2
mi

ð

v� uið Þ3fi vð Þdv ¼ 1

2
minihw3

i i;

where

wi � v� ui; ui ¼

ð

vfi vð Þdv
ð

fi vð Þdv
¼

ð

vfi vð Þdv

ni
:

The ion thermal velocity wi has been defined. When succes-

sive moments of the Boltzmann equation are taken, one is

always left with one unknown function more than there are

equations in the system to be solved. So, the closure has to

FIG. 13. In the top graphs (a), (b), and (c) ion density NiðXf Þ at the singularity point, ion density at the sheath edge NiðXSÞ and their difference NiðXSÞ �
NiðXf Þ are shown versus Hð0Þ, for two different boundary conditions Veð0Þ ¼ 0 and Veð0Þ ¼ Við0Þ. In the bottom plots (d)–(f), ion temperature HðXf Þ at the
singularity point, ion temperature at the sheath edge HðXSÞ and their difference HðXSÞ �HðXf Þ are shown versus Hð0Þ, for two different boundary conditions

Veð0Þ ¼ 0 and Veð0Þ ¼ Við0Þ.
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be made by some assumption about the highest moment of

the velocity distribution function or by using some informa-

tion about this function which comes from outside of this

analysis. In this work, the closure for the electrons has been

made by the assumption that the electrons are isothermal,

and so, the electron pressure gradient is proportional to the

electron density gradient. The proportionality factor is a con-

stant electron temperature Te, which is used for normaliza-

tion of the ion temperature and of the potential—see Eq.

(17). For the ions, the closure has been made by the assump-

tion that the ion heat flux is zero, qi¼ 0. Such closure is very

common and it is called the adiabatic approximation of the

warm plasma model. Such approximation is justified when

the plasma conditions are such that the ion velocity distribu-

tion function remains symmetric (Maxwellian or drifted

Maxwellian) in the entire plasma system,37 and conse-

quently, hw3
i i ¼ 0. Of course, there are many mechanisms,

which can make the ion distribution function asymmetric in

such a way that hw3
i i 6¼ 0.37 The analysis of such mecha-

nisms is far beyond the scope of this work. If deviation of

ion distribution function from symmetric shape is small

enough, the ion heat flux is proportional to the temperature

gradient.37 In one dimension, qi is then written in the form

qi ¼ �K0 dTi
dx

; (26)

where K0 is the heat conduction coefficient. The steady-

state one-dimensional energy transport equation for the ions

reads

1

2
ui
dpi

dx
þ 3

2
pi
dui

dx
þ dqi

dx
¼ mifCXniu

2
i þ

1

2
miu

2
i

ne

s
: (27)

Equations (18) and (20) have been taken into account. When

(26) is inserted into (27), one gets

1

2
ui
dpi

dx
þ 3

2
pi
dui

dx
� K0 d

2Ti

dx2
¼ mifCXniu

2
i þ

1

2
miu

2
i

ne

s
: (28)

The heat conduction coefficient K0 can be modeled using the

kinetic theory of gases. It turns out that it is strongly temper-

ature dependent,37 and since temperature is space dependent,

K0 is also space dependent. But in order to illustrate the

effect of the heat flux, we will treat it as a given constant

coefficient. Using Eq. (17), Eq. (28) is written in one of the

following forms:

1

2
Vi

dPi

dn
þ 3

2
Pi

dVi

dn
� K1

d2H

dn2
¼ ZCXNiV

2
i þ

1

2
NeV

2
i ; (29)

or

1

2
Vi

dPi

dX
þ 3

2
Pi

dVi

dX
� K2

d2H

dX2
¼ eZCXNiV

2
i þ e

1

2
NeV

2
i ; (30)

where

K1 ¼ K0 s

kn0L2
; K2 ¼ K0 s

kn0LkD
(31)

are dimensionless heat conduction coefficients.

In Fig. 14, an example of the solution of the system of

Eqs. (9)–(13), (15), (16), and (30) is shown. The same

parameters as in Fig. 10 are selected, so that some compari-

son is possible: l¼ 1/3670.482, e ¼ 2� 10�4, and ZCX¼ 1.

The boundary conditions are Wð0Þ ¼ 0; Nið0Þ ¼ Neð0Þ ¼ 1;
Veð0Þ ¼ 0, and Pið0Þ ¼ Hð0Þ ¼ 0:3. The ion velocity and

electric field are found by the method presented in Fig. 3 and

they are Við0Þ ¼ 0:948683 and vð0Þ ¼ 0:001423. Since Eq.

(30) has a term with the second derivative of ion tempera-

ture, the first derivative must be specified as a boundary con-

dition. The value dH
dX

0Þ ¼ 0ð is selected. In this way, neither

ion heating nor cooling is enforced at the boundary. Before

systems (9)–(16) with (14) replaced by Eq. (30) can be

solved, the ion heat conduction coefficient must be selected.

The selection of this value is rather arbitrary, and it is one of

the weak points of the presented model. Based on discussion

in Sec. IX.6 in Ref. 37, the value K0 ¼ 1 W/mK is selected.

In order to obtain K2 from Eq. (31), specific plasma parame-

ters must be selected. The inclusion of ion heat flux into the

model through replacing Eq. (14) by (30) or (6) by (29),

therefore, reduces the generality of the model. Plasma

density and electron temperature that could correspond to

the edge plasmas in medium or small tokamaks, e.g.,

COMPASS,38 are selected: kTe¼ 5 eV and n0 ¼ 1018 m�3.

This gives the Debye length kD ¼ 1:662� 10�5 m. The mass

of a deuterium ion is mi ¼ 3:34� 10�27 kg. The normalizing

velocity is then c0 ¼ 15486 m/s, and together with e ¼ 2

�10�4, the ionization length L¼ 0.0831m is calculated.

From c0 and L, the ionization time s ¼ 5:37� 10�6 s is

obtained. Using all these results and formula (31), finally

K2 ¼ 281548 is found and inserted into Eq. (30).

Profiles of the potential WðXÞ, electric field vðXÞ, ion
and electron density NieðXÞ, and ion and electron velocity

VieðXÞ are very similar as shown in figures in Sec. III.

Intersection of the ion velocity ViðXÞ and ion sound velocity

VSðXÞ in plot (d) reveals the location XS of the sheath edge.

The sheath edge XS is marked by a thin vertical line also in

all other plots. But the ion temperature profiles HðXÞ shown
in graph (f) is very different than the ion temperature profiles

presented in Figs. 1, 2, and 7–10. The ion temperature shown

in Fig. 14(f) is almost constant in the entire solution domain.

This is understandable, since very large heat conduction

coefficient allows heat fluxes, which immediately “smooth

out” any temperature gradients that could appear for any rea-

son. What is much less understandable is that ion tempera-

ture also increases in the sheath region. In Section II,

mechanisms of ion heating in the pre-sheath have been iden-

tified. The first is the transfer of electric field energy into ion

thermal energy (see Fig. 9), and the second are charge

exchange collisions (see Fig. 10). But in both cases, ions are

then strongly cooled in the sheath. This cooling is due to adi-

abatic expansion of ions and this expansion is caused by their

strong acceleration by the electric field present in the sheath.

Electric field in Fig. 14(b) is even larger than electric fields

in Figs. 9 and 10, so even stronger ion acceleration and adia-

batic cooling could be expected. The result which implies

that the ions are heated also in the sheath is a consequence of

our approximation that the heat conduction coefficient is

constant everywhere in the system, including the sheath. In a
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more realistic model, one should take into account that the

heat conduction coefficient is space dependent and it

becomes negligibly small in the sheath. The problem of con-

ductive versus convective sheath energy transmission has

been studied by Tang and Guo.39 Their conclusion based on

particle in cell simulations is that the main energy transmis-

sion mechanism for the ions is convection, while in the case

of electrons also conduction plays an important role.

In Figs. 15 and 16, individual terms of Eqs. (14) and

(30) are analyzed separately. For practical purposes, the fol-

lowing notation is introduced:

A1 Xð Þ ¼ 1

2
Vi

dPi

dX
; A2 Xð Þ ¼ 3

2
Pi

dVi

dX
; A3 Xð Þ ¼ �K2

d2H

dX2
;

A4 Xð Þ ¼ eZCXNiV
2
i ; A5 Xð Þ ¼ e

1

2
NeV

2
i ;

Bj Xð Þ ¼
ð

Aj Xð ÞdX; j¼ 1;2;3;4;5: (32)

Once the profiles of NiðXÞ; NeðXÞ; ViðXÞ, and HðXÞ are

found from the system (9)–(16) or (9)–(13), (15), (16), and

(30), the profiles of A1ðXÞ to A5ðXÞ can be obtained easily.

The profiles B1ðXÞ to B5ðXÞ are obtained by numerical inte-

gration of the respective profiles AjðXÞ.
In Fig. 15, the profiles of A1ðXÞ; A2ðXÞ; A4ðXÞ, and

A5ðXÞ found from the solutions of systems (9)–(16) are pre-

sented in plots (a) and (b), while the respective B1ðXÞ;

B2ðXÞ; B4ðXÞ, and B5ðXÞ are displayed in graphs (d) and (e).

In plot (c), the negative second derivative of the ion tempera-

ture � d2H
dX2 is shown, and in (f), the negative derivative of the

ion temperature � dH
dX

is presented. The solution of systems

(9)–(16), which is shown in Fig. 10, is selected. The parame-

ters and boundary conditions are l¼ 1/3670.482, e¼2

�10�4, ZCX¼1, Wð0Þ¼0;Nið0Þ¼Neð0Þ¼1;Veð0Þ¼0;Pið0Þ
¼Hð0Þ¼0:3;Við0Þ¼0:948683, and vð0Þ¼9:48683�10�4.

Term A1ðXÞ gives the spatial profile of the rate of

change of internal energy density of ion fluid. The term

A2ðXÞ describes the energy density loss or gain due to expan-

sion or compression of ion fluid. The terms A4ðXÞ and A5ðXÞ
give the energy density loss or gain due to charge exchange

and ionization collisions. In plot (a), the profiles of A1ðXÞ
and A2ðXÞ found from the solutions of systems (9)–(16) are

displayed. As the ion fluid flows towards the wall in the posi-

tive X direction, it is expanded, and consequently, the work

is done by the fluid. So, the profile A2ðXÞ is positive every-

where in the system. Because the work has been done during

ion expansion, the ion fluid loses its internal energy, and this

results in a negative profile A1ðXÞ. But the loss of internal

energy is not exactly equal to the work done, because energy

loss by the work done is partially (but only in a very small

fraction) compensated by charge exchange and ionization

collisions. This can be seen in positive profiles A4ðXÞ and

A5ðXÞ displayed in plot (b). These two terms are on the right

hand side of Eq. (14), and therefore, they must be subtracted

FIG. 14. An example of the solutions of systems (9)–(13), (15), (16), and (30) for the following parameters and boundary conditions: l¼ 1/3670.482, e ¼ 2

�10�4, ZCX¼ 1, K2 ¼ 281548; Wð0Þ ¼ 0; Nið0Þ ¼ Neð0Þ ¼ 1; Veð0Þ ¼ 0; Pið0Þ ¼ Hð0Þ ¼ 0:3; Við0Þ ¼ 0:948683; vð0Þ ¼ 0:001423 and dH
dX

0Þ ¼ 0ð .
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from A2ðXÞ. In any case, their contribution is almost negligi-

ble, since they are more than 2 orders of magnitude smaller

than A1ðXÞ and A2ðXÞ. In accordance with Eq. (14), the sum

A1ðXÞ þ A2ðXÞ � A4ðXÞ � A5ðXÞ is zero.
In the pre-sheath region, both A1ðXÞ and A2ðXÞ are very

close to zero, but in the sheath they both change strongly. The

position of the sheath edge is indicated by a thin vertical line

and it is determined as shown in Fig. 2. The minimum value

of A1 is �0.01708, and the maximum value of A2 is 0.01757.

The maximum value of A4 is 7:833� 10�4, and the maximum

value of A5 is 1:372� 10�4. The terms A1 to A5 have the units

of c0n0kTek
�1
D . If the same plasma parameters as above are

selected (n0 ¼ 1018 m�3, kTe¼ 5 eV, kD ¼ 1:662 �10�5 m,

and c0 ¼ 15486 m/s), one unit of c0n0kTek
�1
D corresponds to

power density 7:46363� 108 W/m3. So, the minimum value

of A1 corresponds to �1:27479� 107 W/m3, while the maxi-

mum values of A2, A4, and A5 correspond to 1:31136� 107,

584626, and 102401W/m3, respectively.

The profiles BjðXÞ give the corresponding energy fluxes

in the units of c0n0kTe. For the “standard plasma parameters”

n0¼1018m�3, kTe¼5eV, and c0¼15486 m/s one unit of

c0n0 kTe corresponds to 12404W/m2. The profile B1ðXÞ
[plot (d)] is negative and decreases monotonically with a

sharp jump in the sheath. This indicates energy flow in the

direction from the wall towards the bulk plasma, because the

ion fluid loses its internal energy as it flows towards the wall.

On the other hand, B2ðXÞ is positive and increases monotoni-

cally and also has a sharp jump in the sheath. Energy flow

that corresponds to expansion of ion fluid has positive direc-

tion from the plasma towards the wall. Energy fluxes B4ðXÞ
and B5ðXÞ, which are due to collisions, are in agreement

with (32) and plotted as positive in graph (e), but in fact,

the corresponding energy flow is directed from the wall to

the plasma, because the ion fluid gains more and more

energy from collisions as it flows towards the wall. The flux

balance is given by B1ðXÞþB2ðXÞ�B4ðXÞ�B5ðXÞ. Note

that B1ðXÞ is negative, while B2ðXÞ;B4ðXÞ, and B5ðXÞ are

positive, and the total energy flux in the ion fluid is zero. At

the singularity point of the system X¼Xf, the values of the

energy fluxes given in the units c0n0kTe are the following:

B1ðXf Þ ¼ �0:21823; B2ðXf Þ ¼ 0:26772; B3ðXf Þ ¼ 0:033915,
and B4ðXf Þ ¼ 0:01558. It can be noticed that B1ðXf Þ
þB2ðXf Þ � B4ðXf Þ � B5ðXf Þ is indeed zero within the limits

of numerical precision. The corresponding values in units

W/m2 for the plasma parameters given earlier are as follows:

B1ðXf Þ ¼ �2707:01; B2ðXf Þ ¼ 3320:91; B3ðXf Þ ¼ 420:695,
and B4ðXf Þ ¼ 193:261.

Finally, both derivatives of ion temperature [� d2H
dX2 - plot

(c) and � dH
dX
—graph (f)] need some explanation. In the pre-

sheath region, both derivatives are very close to zero,

because in this region, the ion temperature changes very lit-

tle. Only in the sheath, both derivatives exhibit strong jumps,

FIG. 15. Profiles of AjðXÞ and BjðXÞ found from the solutions of the system (9)–(16) together with the negative first and second derivative of the ion temperature.

Selected parameters and boundary conditions are l¼ 1/3670.482, e ¼ 2� 10�4, ZCX¼ 1, Wð0Þ ¼ 0; Nið0Þ ¼ Neð0Þ ¼ 1; Veð0Þ ¼ 0; Pið0Þ ¼ Hð0Þ ¼ 0:3;
Við0Þ ¼ 0:948683, and vð0Þ ¼ 9:48683� 10�4. Thin vertical line indicates the position of the sheath edge.
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because ion temperature drops strongly in the sheath.

According to Eq. (30), the second derivative � d2H
dX2 is propor-

tional to term AjðXÞ, which gives the rate of change of

energy of the ion fluid due to various reasons. The maximum

value of � d2H
dX2 in Fig. 15(c) is 0.00344 given in the units

Tek
�2
D . For electron temperature kTe¼ 5 eV and plasma den-

sity n0 ¼ 1018 m�3, the Debye length is kD ¼ 1:662� 10�5,

and electron temperature is Te¼ 58043K. So, the peak

value of � d2H
dX2 corresponds to 7:22872� 1011 K/m2. In order

to estimate the corresponding power density, some heat con-

duction coefficient should be selected. When the system

(9)–(13), (15), (16), and (30) has been solved (Fig. 14), K0

¼ 1 W/mK has been selected, and then, K2 ¼ 281548 has been

found using the formula (31) and the values n0 ¼ 1018 m�3,

kD ¼ 1:662� 10�5, L¼ 0.0831m, k ¼ 1:38� 10�23 J/K,

and s ¼ 5:36602� 10�6 s. Then, K2 ¼ 281548 has been

inserted into Eq. (30). This time the procedure is reversed.

From the maximum value of � d2H
dX2 , which is 0.00344 and the

maximum value of A2, which is 0.01757, one estimates K2

	 5:11. Using the same values as above, n0 ¼ 1018 m�3, kD
¼ 1:662� 10�5, L¼ 0.0831m, k ¼ 1:38� 10�23 J/K, and

s ¼ 5:36602� 10�6 s, formula (31) gives K0 ¼ 1:81� 10�5

W/mK. Such negligibly small heat conduction is consistent

with convective (and not conductive) energy transfer through

the sheath (see also Ref. 39).

Similar estimation can be done also from the first deriv-

ative � dH
dX
. The peak value of the first derivative shown in

plot (f) is 0.02303. It is given in the units of Tek
�1
D . For the

earlier given plasma density, electron temperature, and

Debye length, this corresponds to 8:043� 107 K/m. The first

derivative of the ion temperature � dH
dX

is proportional to the

energy fluxes given by terms Bj. The maximum value of

B2ðXÞ is B2ðXf Þ ¼ 0:26772. In a similar way as above, one

estimates that K2 	 11:62. Using n0 ¼ 1018 m�3, kD ¼ 1:662
�10�5, L¼ 0.0831m, k ¼ 1:38� 10�23 J/K, s ¼ 5:36602
�10�6 s, and formula (31), we get K0 ¼ 4:13� 10�5 W/mK,

which is the same order of magnitude as above.

In Fig. 16, the profiles of A1ðXÞ; A2ðXÞ; A3ðXÞ; A4ðXÞ,
and A5ðXÞ found from the solutions of systems (9)–(13), (15),

(16), and (30) are presented in plots (a) and (b), while the

respective B1ðXÞ; B2ðXÞ; B3ðXÞ; B4ðXÞ, and B5ðXÞ are dis-

played in graphs (d) and (e). In plot (c), the negative second

derivative of the ion temperature � d2H
dX2 is shown, and in (f),

the negative derivative of the ion temperature � dH
dX

is pre-

sented. The respective solution of systems (9)–(13), (15), (16),

and (30) is shown in Fig. 14, and the parameters and boundary

FIG. 16. Profiles of AjðXÞ and BjðXÞ found from the solutions of the system (9)–(13), (15), (16), and (30) together with the negative first and second deriva-

tive of the ion temperature. The selected parameters and boundary conditions are l¼ 1/3670.482, e ¼ 10�4, ZCX¼ 0.2, Wð0Þ ¼ 0; Nið0Þ ¼ Neð0Þ ¼ 1;
Veð0Þ ¼ 0; Pið0Þ ¼ Hð0Þ ¼ 0:4; Við0Þ ¼ 1:095445; vð0Þ ¼ 0:001205; dH

dX
0Þ ¼ 0ð and K ¼ 2:81548� 109. Thin vertical line indicates the position of the

sheath edge.
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conditions are as follows: l¼ 1/3670.482, e ¼ 10�4, ZCX¼ 1,

Wð0Þ ¼ 0; Nið0Þ ¼Neð0Þ ¼ 1; Veð0Þ ¼ 0; Pið0Þ ¼Hð0Þ ¼ 0:3;
Við0Þ ¼ 0:948683; vð0Þ ¼ 0:001423; dH

dX
0Þ ¼ 0ð and K2

¼ 281548. In plot (a), the profiles of A1ðXÞ; A2ðXÞ, and A3ðXÞ
found from the solutions of systems (9)–(13), (15), (16), and

(30) are displayed. The profile A1ðXÞ is negative, because the
ions are losing internal energy, as they flow towards the wall.

The profile A2ðXÞ is positive, because the work is done by the

ion fluid during its expansion as it flows towards the wall. The

profile A3ðXÞ is negative. This is a consequence of the result

shown in Fig. 14(f), which indicates that the ions are heating,

as they flow towards the wall and so the second derivative

� d2H
dX2 is negative. The reasons for such surprising result have

been discussed in relation to Fig. 14. The energy balance given

by Eq. (30) can be qualitatively described in the following

way. As the ion fluid flows towards the wall, it is expanded,

and consequently, work is done, and this results in positive

profile of A2ðXÞ. Because the work is done by the ion fluid, its
internal energy decreases, resulting in a negative profile

A1ðXÞ. But the decrease in internal energy is smaller than the

work done, because it is partially compensated by charge

exchange and ionization collisions [positive profiles of A4ðXÞ
and A5ðXÞ shown in plot (b), which are on the right hand side

of Eq. (30)] and especially by the heat flow in the direction

from the wall towards the bulk plasma, i.e., in the direction of

the negative X axis. This results in negative profile A3ðXÞ. The
sum A1ðXÞ þ A2ðXÞ þ A3ðXÞ � A4ðXÞ � A5ðXÞ is zero, and

total energy is conserved.

Similarly, as in Fig. 15, the profiles in the pre-sheath

region the profiles A1ðXÞ; A2ðXÞ, and A3ðXÞ are very close to

zero, but in the sheath, a very strong jump of the respective

curves can be observed. The maximum value of A2 is 0.06692,

while the minimum values of A1 and A3 are �0.0223 and

�0.04408, respectively. Note that extreme values of A1 and A2

are larger than the respective values in Fig. 15. The maximum

values of A4 and A5 shown in plot (b) are 8:063� 10�4 and

1:2712� 10�4, respectively. These values on the other hand

are much closer to the corresponding values in Fig. 15.

Additional heat conduction term in Eq. (30) with a heat

conduction coefficient K2 assumed to be constant every-

where introduces an additional ion heating mechanism into

the system. This results in constant ion heating in the direc-

tion of positive X. If, in addition, the heat conduction coeffi-

cient is large, there is a constant heat flow in the negative

direction of X, and so, the increase in ion temperature is very

small. In plot (d), indeed a rather large negative heat flux

B3ðXÞ is clearly visible. The largest value, given in the units

of c0n0kTe, is at the wall, B3ðXf Þ ¼ �0:40442. For plasma

density n0 ¼ 1018 m�3 and electron temperature kTe¼ 5 eV,

this corresponds to �5016.59W/m2.

Both derivatives of ion temperature, displayed in graphs

(c) and (e), are four orders of magnitude smaller than the cor-

responding derivatives shown in Fig. 15. The maximum

value of � d2H
dX2 in Fig. 15(c) is 0.00344, while the minimum

value of � d2H
dX2 in Fig. 16(c) is �1:566� 10�7. The maxi-

mum value of � dH
dX

in Fig. 15(f) is 0.02303, while the mini-

mum value of � dH
dX

in Fig. 16(f) is �1:44� 10�6.

V. CONCLUSIONS

A one-dimensional, steady state, self-consistent, two-

fluid model has been used to analyze the effects of ion tem-

perature to the plasma wall transition in front of a negative

planar electrode. Continuity and momentum exchange equa-

tions are used for the electrons, while the continuity, momen-

tum exchange, and energy exchange equations are used for

singly charged positive ions. The electrons are assumed to be

isothermal, while for the ions, the closure is made by the

assumption that the heat flux is zero. Equations of the model

are solved numerically with a finite value of e. The ion tem-

perature is treated as a given, independent parameter, which

is included in the model as a boundary condition. Because

the system of equations becomes singular if the ion velocity

Vi drops below the ion thermal velocity Vith, finite Hð0Þ
means that also Við0Þ must be above a certain minimum

value. A numerical procedure how to find this minimum

value of Við0Þ together with the corresponding electric field

vð0Þ or gð0Þ is proposed. If ion temperature Hð0Þ is

increased, the minimum ion velocity Við0Þ and the corre-

sponding electric field vð0Þ also increase. In the limit of very

large ion temperatures Við0Þ approaches to the ion sound

velocity VS and the boundary X¼ 0 approaches to the sheath

edge XS. It has been shown that the minimum velocity Við0Þ,
which is found together with the corresponding electric

field vð0Þ or gð0Þ, corresponds to the ion thermal velocity
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jð0ÞHð0Þ
p

with jð0Þ ¼ 3. At n¼ 0 or X¼ 0 the ion flow is

adiabatic. In the pre-sheath region, the ions are accelerated

in the positive direction of n or X, and at the same time, they

also receive thermal energy. The presented model can

describe two sources of ion thermal energy. The first is the

electric field, and the second are charge exchange collisions.

If Hð0Þ and also consequently Við0Þ are low enough, so that

ion expansion is slow enough, the ions receive more energy

from these two sources than is the work done during their

expansion. In this case, ions are heating and expanding at the

same time. Close to the sheath edge and in the sheath, the

ion acceleration always [irrespective of Hð0Þ] becomes so

strong that their thermal energy is converted into kinetic

energy of ion beam and so in this region the ions are always

cooled down. If, on the other hand, Hð0Þ and Við0Þ are large
enough, the ion expansion is so fast that the ion temperature

is a monotonically decreasing function of n or X, but in a

large part of the pre-sheath their thermal energy loss due to

expansion is partially compensated from both sources men-

tioned above. So, in this region, the cooling of ions is slower

than it should be due to the work done by their expansion.

In the model presented in this work, the ions are, there-

fore, neither isothermal9–17 nor adiabatic.18–22 Instead, it is

possible to find the spatial profile of the ion temperature

HðXÞ and of the polytropic function jðXÞ as solutions of the
model equations. Ion flow is adiabatic only at the boundary

X¼ 0 of the system and close to the sheath edge and inside

the sheath. Nevertheless, basic conclusions on ion tempera-

ture effects are basically the same as in isothermal17 and/or

adiabatic21 models, where the polytropic coefficient is

treated as a given constant. These conclusions are larger ion

temperature results in larger excess of positive space charge
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in the sheath, and on average, larger electric field in the

sheath region. But there is one important difference between

two fluid models presented here and models where the fluid

equations for the electrons are replaced by the Boltzmann

relation. In the two-fluid model, the potential drop in the

sheath depends on the selection of the boundary condition

Veð0Þ for the electron velocity. If Veð0Þ ¼ 0 is selected, elec-

tron velocity at the sheath edge VeðXSÞ decreases with the

increase in ion temperature Hð0Þ. Because of that the

“sheath potential drop” also increases. The “sheath

thickness,” that is, the distance Xf � XS between the sheath

edge XS and the singularity Xf of model equations, decreases

with increasing ion temperature. In this case indeed, as

expressed by Ref. 21, larger ion temperature produces better

shielding of biased electrode from the plasma. If on the other

hand the boundary condition Veð0Þ ¼ Við0Þ is selected, the

electron velocity at the sheath edge VeðXSÞ increases with

increasing ion temperature Hð0Þ and it is approximately

equal to the ion sound velocity at the sheath edge. Because

of increasing VeðXSÞ the“ sheath potential drop” decreases.

The “sheath thickness” decreases also and it decreases in

such a way, that the average electric field in the sheath still

increases with increasing Hð0Þ. Also, the positive space

charge density in the sheath increases with increasing Hð0Þ.
So, the conclusion that larger ion temperature produces better

shielding of biased electrode from the plasma remains valid

also in the case when the boundary condition Veð0Þ ¼ Við0Þ is
selected.

An attempt has been made to include the ion heat flux

vector qi in the model. The simplest possible relationship

between the heat flux qi and ion temperature Ti has been

assumed, namely, qi ¼ �K0 dTi
dx
, where K0 is a constant heat

conduction coefficient. In order to solve the model, some

specific value of K0 must be assumed. In this work, K0 ¼ 1

W/mK has been assumed. It is believed that such choice is

the correct order of magnitude for the edge plasmas of

medium and small tokamaks.37 By introducing the heat flux

in this form on one hand, the generality of the model is

reduced since some specific plasma density and electron

temperature must be selected, otherwise the heat conduction

coefficient in the energy transfer equation cannot be normal-

ized. Such normalization is then valid only for the specifi-

cally selected plasma parameters. On the other hand,

additional heat conduction term in Eq. (30) with a heat coef-

ficient K2 assumed to be constant everywhere, introduces a

new ion heating mechanism into the system. This results in

constant ion heating in the direction of positive X. Such heat-

ing of ions takes place even in the sheath. Because the heat

conduction coefficient is nonzero, there is a constant heat

flow in the negative direction of X. Final result is an almost

isothermal ion flow in the entire system including the sheath.

Such result of the model does not correspond to widely

accepted belief18–23 that ion flow in the sheath is much closer

to adiabatic than to isothermal. Much better, but also mathe-

matically much more complicated way to include the ion

heat flux into a fluid model like presented in this work is to

make the closure of the fluid equations at a higher moment

of the Boltzmann equation. In this way, the system of fluid

equations obtains one additional equation, and consequently,

a solution for one additional unknown function—the ion heat

flux—can be obtained.
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