
 

Numerical analysis of Markov decision processes

Citation for published version (APA):
Veugen, L. M. M., Wal, van der, J., & Wessels, J. (1981). Numerical analysis of Markov decision processes.
(Memorandum COSOR; Vol. 8118). Technische Hogeschool Eindhoven.

Document status and date:
Published: 01/01/1981

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 22. Aug. 2022

https://research.tue.nl/en/publications/2af87647-6aaa-4ba6-907b-472ae9064548


EINDHOVEN UNIVERSITY OF TECHNOLOGY 

Department of Mathematics and Computing Science 

STATISTICS AND OPERATIONS RESEARCH GROUP 

Memorandum COSOR 81 - 18 

Numerical Analysis 
of Markov Decision Processes 

by 

L.M.M. Veugen, Delft 
J. van der Wal, Eindhoven 

J. Wessels, Eindhoven 

Eindhoven, the Netherlands 

December 1981 



NUMERICAL ANALYSIS OF MARKOV DECISION PROCESSES 

L.M.M. Veugen, Delft 
J. van der Wal, Eindhoven 

J. Wessels, Eindhoven 

Kurzfassung: In diese Arbeit werden einige Asoekte der numerische Bewerkung von Mar"" 
koffscfien Entscheidungsprozessen mit Diskontl'erung diskuttert. Ins besondere wi'rd 
verzucht die Problemstruktur aus zu n[tzenU'lll effiziente Algori'thmen zu bekommen. Als 
Beispiele von Spezialstrukturen die ausgenUtzt werden konnen, werden Periodizit~t 
und umfangreiche AkttonenraUme hervorgehoben. FUr die letzte Soezialstruktur wird 
untersucht wie Aggregation und spMter Disaggregation von NUtzen sein Konnen. 

Abstract. For the numerical analysis of Markov decision ~rocesses quite a lot of algo-· 
rithms have been presented in the literature. Nevertheless, really large oroblems can­
not be solved efficiently by standard algorithms. It remains neces·sary to exoloit the 
particular structure of the oroblem and to use these exoloitation oosstbilities as a 
selection criterion for the tyoe of alllorithm. In this oa!)er we nroceed w·ith the ex.,. 
oloration of this area by inve~tigatfnij the oosstbilities of exnloittng oeriodicity 
of demands and the structure of actions in some inventory-management models. 

1. Introduction 

Many different ty!,es of algorithms have been !,>ro!,>osed for the numerical anal~sis of 

~arkov decision orocesses. The develoQment of new algorithMs has lerl to an enormous 

increase of com!,>utational efficiency and hence to the oossibility to analyze laroer 

~roblems. However, really large Qroblems are very hard to solve if one uses the new 

algorithms as standard algorithms. Only by exploiting thes~)ecific ~rooerties of the 

model, it is possible to handle large I'\roblems efficiently. For discouhted Markov de­

cision processes this has been demonstrated b,Y Hendri'kx/van Nunen/W'essels in [2]. In 

this paper~ we will proceed with the investigation of this asoect. 

The striking result in [2] is that one has to choose the aloorithm ~rimarily on the 

basis of the oossibil ities it gives to ex!'loit the structure of the model for reduc"" 

ing the amount of work ~er iteration. For instance, for a laroe 3-noint inventory 

model with 1000 states, it is shown in [2] that the relatively nrimitive successive 

aQoroximati'onme'thod is by far the most efficient. All other methods (with the excelJ­

tion of one version of bisection) require at least 10 tiMes as much Qrocess tiMe. 

Even action elimi'nation is not recoln!TJendable, since the maximization ste~ can be exe­

cuted so efficiently, that the extra work for action elimination is not cOl"1nensated. 

This efficiency of the maximization stery can only be reached by usino the snecific 

structure of the oroblem. 
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The main structural oroperty that isutfHzed in [2], is tYDica1 for many decision 
processes, particularly in the area of inventory manaoement and ren1acement. It is 
the Droperty that all available actions have the form of a transition to a new, some­
times intermediate, state: if the inventory level is the state, then the action is 
the level up to which we order. 

In the usual notation for Markov decision nrocesses, this imolies that if a labels 
the action as well as the intermediate state, then the transition 0. robability o~ . 

. 1 J 
does not depend on i and hence the maximization steo may be rewritten as 

where 

vn(i) = max {r(i,a) + dn_1(a)} 
a 

dn_1(a) = ~ ~ P~jVn-l(j) 
J 

and r(i,a) is the one stage reward in state i if action a is chosen. 

Often, also r{i,a) can be solit up and allows further simo1ification of the comouta­
tion. By the way, this also shows that the model choice influences the comoutational 
efficiency, vii. new inventory is a better choice for the action than order size. 

The simplification given above may cause a huge diminishment of comoutationa1 work, 
as has been shown in [2], but it will also be clear, that it cannot always be aoolied 
if one replaces the standard version of the maximization step by the Gauss-Sei'del 
version. Here we already see that the simplification oossibiliti.es determine the 
choice of the algorithm. 

In this paper we will present a brief discussion of two other structural oroherties 
which might be exploited to reduce the process times.. Both: nf"ooerties wi'll be dis-, 
cussed for some inventory-management models. The fi'rst orooerty' fs neri'odi'city ; n 
the demand (section 1) and the second orooerty the action structure (section 2). The 
latter orooerty can be exoloited in a simnle decomoosition algorithm. More elaborate 
discussions of these tooics will aooear in [6J and [7J. 

For lack of space, we will not start with a descr;ntion of the model and an overview 
of the numeri ca 1 methods. For these we refer to [2J and the rev; ew oaners [3J and [4J. 
The model is the standard finite state and action Markov decision orocess with the 
criterion of total expected discounted rewards. 

2. The exploita'tiM of cyclic behaviour of the demands 

Cyclic behaviour in the demand distribution frequently occurs. In the mode1 it can 
be ; ncorporated by extend; ng the s.tate wtth an extra oarameter whi ch indi cates the 
ohase in the cycl e, cf. Rii s [5J. When usi ng standard success he aooroximations as 
solution method, the weak ooint is that all transition matrices involved are neriodic 
and hence have more than one eigenvalue on the unit circle. As a consequence, the 
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convergence of this method is only linear of order ~. The incorooration of the cycle 
phase in the state does not give extra work per iteration, since, because of the struc­
ture of the matrices, one iteration in this cyclic oroblem corresnonds comoutationally 
to one iteration in its non-cyclic ana10gon. The orob1em, however, is the slow conver­
gence. 

In order to speed up convergence, it is necessary to reolace the orocess by a non­
cyclic process which is equivalent with respect to costs and decisions. A natural can­
didate is the embedded process with the cycle length as time oeriod. This is not very 
attractive numerically, since actions are now c-stage strategies which require the 
pre-computation of all c-stage transition orobabilities, if c is the cycle length. 
However, this candidate may be a~oroximated by a well-chosen Gauss-Seidel sten for 
the original process. The remaining weakness is the stop criterion, since though Gauss­
Seidel usually converges faster, the extraoolations are weaker. In [2J this is solved 
by intermitting some ore-Jacobi steps (or standard successive aonroximation steps) in 
order to obtain good uoper and lower bounds for v*. Regrettably, the oeriodicity de­
teriorates the quality of the extraoo1ations for ore-Jacobi nrocedures. A remedy is 
found in the construction of extrapolations for the narts of the rewards vector for 
each cycle phase separately. This again stems from the idea of working with c as time 
period. In fact this is equivalent to the construction of extra~olations based on the 
difference between the expected inuome over nand n+1 cycles in the original oroblern 
with time dependent demands. For details see [6J. 

As aA illustration we give processing times in seconds for 2 variants of the cash­
regulation problem treated in [7J: the first has 30 stock levels and the second 80. 

The cycle length is one week, which corresoonds to c = 10, since the time unit is half 
a weekday. a = .999. By a star we indicate orocessing times of runs aborted, because 
of passing Heration no. 300. The methods are as follows 

J .. MQ;: _pre-Jacobi with standard Macqueen extrapolations. 

GS-MQ - Gauss-Seidel with standard Macqueen extrapolations based on an extra 
inserted ore-Jacobi s te~. 

GS-GS - Gauss-Seidel with the aforementioned snecially tailoree extraoola­
tions. 

Methods !lroblem 1 orob 1 em 2 

J - MQ I 27.2* 104.6* 

GS - Mf! 24.3* 99.0* 

GS - GS .6 
I 

1.1 

If one combines these methods with bisection in situations where a bisection steo is 
possible. cf. ['7] or Bartmann Ill. then the second method imnroves considerably as 
is shown by the results on the next oaqe. 
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1- Method I') rob lem 1 T)rob 1 em 2 

J - Mq 29.1* 111.1)* 

r,s - MO 1.9 3.6 

GS - GS .6 1.1 

3. Aggregation and disaggregation of actions 

In oroblems of inventory or rel')lacement tYT)e, one may often anl')ly the simT)lified 
successive aooroximation orocedure as mentioned in the introduction. When using this 
simolified orocedure the maximization steo is very fast even for many actions. So, 
for inventory tyre oroblems, aggregation in the action sl')ace cannot be eXT)ected to be 
very heloful. However, if old decisions have influence on new decisions, because of 
some time-lag, then the old actions have to be incorl')orated in the state snace. The 
effect will ususally be a huge state ST)ace. In such cases aggregation of the actions 
might be heloful for obtaining a first al')l')roximete solution, which can be fol lowed 
by a disaggregation steo. So the solution ~ethod consists of two T)hases. In T)hase 1 
the action space is thinned, by only Maintaining some actions as renresentatives of 
an interval of actions (order sizes). Naturally one selects these renresentatives as 
midl')oints of their resl')ective intervals. The size 0 of these intervals indicates the 
degree of aggregation. Aggregation of this tyne is very simryle and natural, since it 
does not require any aOT)roximation of transition ryrobabilities or rewards (for more 
general aggregation cf. Whitt [8]). In this first ohase the nroblem I'lith the thinned 
action SQace is solved. In the next ohase the action sryaces del')end on the state of the 
system, namely, for each state we introduce the interval of actions of which the re­
presentative was optimal for that state in the first ryhase. For a more detailed ana­
lysis of this and more refined procedures comoare [7]. 

Here we will confine ourselves to the results for one tyoical examole. This examole 
is again a cash-regulation problem of a bank. Now, the mornings and afternoons are 
again supposed to have their own demand distribution (demand can be negative). but no 
longer vary with the day of the week. so the periodicity is only 2 and hence less im­
portant than in the previous examole. At the end of an afternoon a oartia1 decision 
has to be taken, namely, whether an armed car has to aOl')ear at the end of the next 
morning. It also has to be decided how much money this car should have available. If 

it is decided that the car comes, then it is possible to decide en the exact si2e of 
deposit or intake by the bank at the last moment. Of course, the intake is constrained 
by the available amount in the car. 

As a result of thi.s decision set":'"{Jp the states in the morning constst of the stock 
1 eve 1 a t the end of the morni n9 together with the deci s ion of the orevi "US afternoon. 
For a situation with 80 allowed stock levels this state soace becomes huge and can be 
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made much slimmer by aggregation in the action space. The effect of different levels 
Q of aggregation on the orocess time in seconds is shown below. Of course, Q = 1 means 
direct computation without aggregation. The method used in each Dhase is successive 
approximation with the GS- GS method of th.e orevious section. 

Q phase 1 phase 2 total 

1 32.9 .... 32.9 
2 17.4 5.1 22,5 

4 9.9 7.5 17.4 
5 8.4 7.5 15.9 

10 4.9 7.4 12.3 

16 3.4 12.5 15.9 
20 3.4 15.0 1S.4 
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