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NUMERICAL ANALYSIS OF MARKOV DECISION PROCESSES

L.M.M. Veugen, Delft
J. van der Wal, Eindhoven
J. Wessels, Eindhoven

Kurzfassung: In diese Arbeit werden einige Asvekte der numerische Bewerking von Mar-
koTTschen Entscheidungsprozessen mit Diskontierung diskutiert. Ins besondere wird
verzucht die Problemstruktur aus zu nitzenum effiziente Algorithmen zu bekommen., Als
Beispiele von Spezialstrukturen die ausgentitzt werden kdnnen, werden Periodizitdt
und umfangreiche Aktionenralme hervorgehoben. Flir die letzte Svezialstruktur wird
untersucht wie Aggregation und spéter Disaggregation von Niitzen sein kdnnen,

Abstract. For the numerical analysis of Markov decision nrocesses quite a lot of algo-
rithms have been presented in the literature. Nevertheless, really larae nroblems can-
not be solved efficiently by standard algorithms. It remains necessary to exnloit the
particular structure of the problem and to use these exnloitation nossibilities as a
selection criterion for the tyne of alqorithm. In this vaver we nroceed with the ex-
nloration of this area by investigating the nossibilities of exnloiting neriodicity

of demands and the structure of actions in some inventory-management models,

i: fﬁtroduction

Many different tyoes of algorithms have been nronosed for the numerical analvsis of
Markov decision processes. The develonment of new algorithms has led to an enormous
increase of comnutational efficiency and hence to the nossibility to analvze laraer
nroblems. However, really large nroblems are very hard to solve if one uses the new

algorithms &s standard algorithms, Only by expleiting the snecific nronerties of the

madeT, it is possible to handle large nroblems efficiently. For discounted Markov de-
cision processes this has been demonstrated by Hendrikx/van Nunen/Wessels in [2]. In

this paper, we wiil proceed with the investigation of this asnect.

The striking result in [2] is that one has to choose the alaorithm nrimarily on the
basis of the nossibilities it aives to exnloit the structure of the model for reduc-
ing the amount of work ner iteration. For instance, for a larae 3-noint inventorv
model with 1000 states, it is shown in [2] that the relativelv nrimitive successive
annroximation method is by far the most efficient. A1l other methods (with the excen-
tion of one version of bisection) require at least 10 times as much nrocess time.
Even action elimination is not recommendable, since the maximization sten can be exe-
cuted so efficiently, that the extra work for action elimination is not comnensated.
This efficiency of the maximization sten can onlv be reached by usina the snecific
structure of the problem.
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The main structural property that is wutilized in [2], is tynical for many decision
processes, particu}ar1y in the area of inventory manaagement and renlacement. It is
the property that all available actions have the form of a transition to a new, some-
times intermediate, state: if the inventory level is the state, then the action is
the level up to which we order.

In the usual notation for Markov decision nrocesses, this imnlies that if a labels
the action as well as the intermediate state, then the transition orobability D?j
does not depend on i and hence the maximization sten may be rewritten as

vn(i) = mgx'{r(i,a) +d._q(a)}

where
d _.(a) =87 plv .(J)
n-1 5 «j n-1

and r(i,a) is the one stage reward in state i if action a is chosen.

Often, also r(i,a) can be split up and allows further simnlification of the computa-
tion. By the way, this also shows that the model choice influences the computational
efficiency, viz. new inventory is a better choice for the action than order size.

The simplification given above may cause a huge diminishment of computational work,
as has been shown in [21, but it will also be clear, that it cannot always be annlied
if one replaces the standard version of the maximization step by the Gauss-Seidel
version. Here we already see that the simplification nossibilities determine the
choice of the algorithm.

In this paper we will present a brief discussion of two other structural nronerties
which might be exploited to reduce the process times. Both: nroperties will be dis-
cussed for some inventory-management models. The first pronerty is nerjodicity in
the demand (section 1) and the second nronerty the action structure (section 2). The
latter property can be exoloited in a simnle decomnosition alqgorithm. More elaborate
discussions of these topics will aopear in [6] and [71.

For lack of space, we will not start with a descrintion of the model and an overview
of the numerical methods. For these we refer to [2] and the review paners [3] and [4].
The model is the standard finite state and action Markov decision nrocess with the
criterion of total expected discounted rewards.

2. The exploitation of cyclic behaviour of the demands

Cyclic behaviour in the demand distribution frequently occurs., In the model it can

be incorporated by extending the state with an extra narameter which indicates the
phase in the cycle, cf. Riis [5]. When using standard successive annroximations as
solution method, the weak point is that all transition matrices inyolved are neriodic
and hence have more than one eigenvalue on the unit circle. As a consequence, the
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convergence of this method is only linear of order 8. The incorporation of the cycle

phase in the state does not give extra work periteration, since, because of the struc-
ture of the matrices, one iteration in this cyclic problem corresnonds computationally
to one iteration in its non-cyclic analogon. The problem, however, is the slow conver-

gence.

In order to speed up convergence, it is necessary to replace the orocess by a non-
cyclic process which is equivalent with respect to costs and decisions. A natural can-
didate is the embedded process with the cycle length as time period. This is not very
attractive numerically, since actions are now c-stage strategies which require the
pre-computation of all c-stage transition probabilities, if c is the cycle length.
However, this candidate may be approximated by a well-chosen Gauss-Seidel steo for

the original process. The remaining weakness is the stop criterion, since though Gauss-
Seidel usually converges faster, the extranolations are weaker. In [2] this is solved
by intermitting some pre-Jacobi steps (or standard successive apnroximation stens) in
order to obtain good unper and lower bounds for v*. Rearettably, the neriodicity de-
teriorates the quality of the extravolations for nre-Jacobi nrocedures. A remedy is
found in the construction of extrapolations for the narts of the rewards vector for
each cycle phase separately. This again stems from the idea of working with ¢ as time
period. In fact this is equivalent to the construction of extranolations based on the
difference between the expected income over n and n+l cvcles in the original nroblem
with time dependent demands. For details see [6].

As an illustration we give processing times in seconds for 2 variants of the cash-
regulation problem treated in [71: the first has 30 stock levels and the second 80.
The cycle Tength is one week, which corresnonds to ¢ = 10, since the time unit is half
a weekday. g = .999. By a star we indicate processing times of runs aborted, because
of passing iteration no. 300. The methods are as follows

J-MQ =:pre-Jacobi with standard MacQueen extranolations.
GS-MQ = Gauss-Seidel with standard MacOueen extrapolations based on an extra
inserted pre-Jacobi sten,
GS-GS = Gauss-Seidel with the aforementioned smecially tailored extrapola-

tions,

+

Methods | oroblem 1 | nroblem 2

J - MQ 27.2" 104.6"
GS - M0 243" 99.0"
GS - GS .6 1.1

If one combines these methods with bisection in situations where a bisection sten is
possible, cf. 2] or Bartmann |11, then the second method imnroves considerably as
is shown by the results on the next nage.



Method nroblem 1 | nroblem 2

J - M 29.1% 111.0"
GS - MO 1.9 3.6
GS - GS .6 1.1

3. Aggregation and disaggregation of actions

In problems of inventory or renlacement tyne, one may often annly the simniified
successive aporoximation procedure as mentioned in the introduction. When using this
simolified procedure the maximization sten is very fast even for many actions. So,
for inventory type orobiems, aggregation in the action snace cannot be exnected to be
very helnful. However, if old decisions have influence on new decisions, because of
some time-lag, then the old actions have to be incornorated in the state snace. The
effect will ususally be a huge state snace. In such cases agqreaation of the actions
might be helpful for obtaining a first annroximate solution, which can be followed

by a disaggregation sten. So the solution method consists of two nhases. In nhase 1
the action sSpace is thinned, by only maintainding some actions as renresentatives of
an interval of actions (order sizes). Naturally one selects these renresentatives as
midnoints of their resnective intervals. The size N of these intervals indicates the
degree of aggregation. Aggregation of this tyne is verv simnle and natural, since it
does not require any apnroximation of transition nrobabilities or rewards (for more
general aggregation cf. Whitt [8]). In this first nhase the nroblem with the thinned
action snace is solved. In the next nhase the action snaces denend on the state of the
system, namely, for each state we introduce the interval of actions of which the re-
presentative was optimal for that state in the first nhase. For a more detailed ana-
lysis of this and more refined procedures comnare [7].

Here we will confine ourselves to the results for one typical examole. This example

is again a cash-regulation problem of a bank. Now, the morfnings and afternoons are
again supposed to have their own demand distribution {demand can be negative), but no
longer vary with the day of the week, so the periodicity is only 2 and hence less im-
portant than in the previous examole. At the end of an afternoon a vartial decision
has to be taken, namely, whether an armed car has to apnear at the end of the next
morning. It also has to be decided how much money this car should have available. If
it is decided that the car comes, then it is possible to decide on the exact size of
deposit or intake by the bank at the last moment. Of course, the intake is constrained
by the available amount in the car.

As a result of this decision set-up the states in the morning consist of the stock
Tevel at the end of the morning together with the decision of the previeus afternoon.
For a situation with 80 allowed stock levels this state space becomes huge and can be
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made much slimmer by aggregation in the action space. The effect of different levels
Q of aggregation on the process time in seconds is shown below. Of course, Q = 1 means
direct computation without aggregation, The method used in each phase is successive

approximation with the GS- GS method of the orevious section.

Q phase 1 | phase 2 | total
1 32.9 - 32.9
2 17.4 5.1 22.5
4 9.9 7.5 17.4
5 8.4 7.5 15.9
10 4.9 7.4 12.3
16 3.4 12.5 15.9
20 3.4 15.0 18.4
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