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Abstract This paper presents a numerical method for the characterization of Markov-perfect

equilibria of symmetric differential games exhibiting coexisting stable steady states. The

method relying on the calculation of ‘local value functions’ through collocation in overlap-

ping parts of the state space, is applicable for games with multiple state variables. It is applied

to analyze a piecewise deterministic game capturing the dynamic competition between two

oligopolistic firms, which are active in an established market and invest in R&D. Both R&D

investment and an evolving public knowledge stock positively influence a breakthrough prob-

ability, where the breakthrough generates the option to introduce an innovative product on the

market. Additionally, firms engage in activities influencing the appeal of the established and

new product to consumers. Markov-perfect equilibrium profiles are numerically determined

for different parameter settings and it is shown that for certain constellations the new product

is introduced with probability one if the initial strength of the established market is below a

threshold, which depends on the initial level of public knowledge. In case, the initial strength

of the established market is above this threshold, and the R&D effort of both firms quickly

goes to zero and with a high probability the new product is never introduced. Furthermore,

it is shown that after the introduction of the new product the innovator engages in activities
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weakening the established market, although it is still producing positive quantities of that

product.

Keywords Markov-perfect equilibrium · Skiba curve · Collocation · R&D competition ·
Product innovation

1 Introduction

Since the seminal contributions of Sethi [19], Skiba [20] and Dechert and Nishimura [9],

it has been shown that rational planning over an infinite planning horizon can go along

with outcomes that crucially depend on initial conditions. Such outcomes are denoted as

history-dependent solutions, and the basins of attraction of the different long-run equilibria

are separated by Skiba thresholds. Apart from environmental and resource economics, where

such path dependencies have received a lot of attention (e.g., [22]), Skiba phenomena have

also been identified in different dynamic industrial organization problems (e.g., [3,4,17]).

Due to the nonlinear structure underlying such problems with multiple long-run equilibria,

which are mostly represented by stable steady states, (partial) analytical characterizations of

optimal dynamics in Skiba scenarios can typically be given only for dynamic optimization

models with one-dimensional state spaces. Therefore, different numerical approaches have

been developed to characterize optimal solutions in problems with multiple stable steady

states. These methods rely on the numerical calculation of stable paths in the state-costate

system derived from the Maximum Principle [13,15], nonlinear model predictive control

[14], or collocation [4].

In spite of this rich literature, relatively little attention has so far been paid to Skiba

phenomena arising in dynamic models with multiple decision makers, where strategic inter-

actions occur. Dechert and O’Donnellv [10] show path dependency of the state trajectory in

a Markov-perfect equilibrium of a stochastic discrete time shallow lake game. Dockner and

Wagener [12] obtain a similar insight in a deterministic and continuous time version of the

game. Both of these contributions deal with games with one state variable. To the best of our

knowledge, for no differential game with more than one state variable has a Markov-perfect

equilibrium exhibiting multiple locally stable steady states been calculated.

The aim of this paper is to fill this gap. The difficulty is that numerical methods rely-

ing on the canonical system derived from the Maximum Principle typically cannot be

used to characterize Markov-perfect equilibria, since knowledge about the derivatives of

the feedback strategies is needed to formulate the costate equations. Instead, we employ

Hamilton–Jacobi–Bellman equations to characterize the value functions of the players and

the feedback strategies. The technical challenge in this respect is that in scenarios with coex-

isting stable steady states the feedback strategies of the players typically exhibit jumps, which

result in kinks in the value functions so that they are not everywhere differentiable. Standard

collocation methods based on polynomial approximations of the value functions are not able

to capture such kinks. Therefore, we propose an adaptation of a collocation algorithm, where

’local value functions’ on parts of the state space are generated and the actual value function

of the game is found as the upper envelope of these local value functions.

We use our method to solve a problem in the area of Industrial Organization where

incumbent firms have an option to innovate. In particular, we consider a duopoly in which

the two firms compete on a homogenous established product market, while at the same time

they are involved in an innovation race. The one who obtains the innovation breakthrough
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first gains the opportunity to introduce a new product on the market. The new product is a

strategic substitute of the established one, and it is better than the old one. Due to, e.g., patent

protection, the innovation laggard will never innovate, so it will keep on operating just on

the established product market.

It is an investment problem where initially the firms can invest in means (e.g., public

relations, lobbying) to increase the reservation price of the established product. At the same

time, they can invest in R&D to raise the innovation probability. R&D investments of both

firms have an additional effect in that they increase a public knowledge stock, which in turn

has a positive effect on the innovation hazard rate. After the innovation breakthrough, the

winner of the innovation race can invest to increase the reservation price of the new product.

As such, this technically leads to a multi-mode differential game (see Dockner et al.

[11]). Mode 1 describes the situation before the innovation breakthrough where we have

two state variables, namely the reservation price of the established product and the public

knowledge stock. Mode 1 passes into mode 2 at the uncertain point in time where firm 1

wins the innovation race. The two state variables in mode 2 are the reservation prices of the

established and the new product. In case, firm 2 wins the race, mode 1 is followed by mode

3, which has the same state variables as mode 2 with the difference that now firm 2 controls

the development of the reservation price of the new product.

Essentially, three different solutions will prevail. First, for high R&D costs, either innova-

tion will not occur, or the innovation probability will be very low in the extraordinary case of a

very high initial public knowledge stock. Second, in the opposite case, thus where R&D costs

are low, either one of the firms will eventually innovate with probability one. Third, in case

R&D costs are neither low nor high, technically the most interesting situation arises where

history-dependent equilibria occur. In a state plane with the established product reservation

price on the horizontal axis and the public knowledge stock on the vertical axis, an upward-

sloping Skiba curve separates the initial situations leading to different solutions. Below the

Skiba curve, the initial knowledge stock is too low to guarantee a profitable innovation policy.

Therefore, the firms refrain from innovating and the resulting trajectory converges to a steady

state where nobody innovates and both firms are active on the established product market.

Above the Skiba curve, the firms are engaged in an innovation race where the resulting tra-

jectory converges to a steady state with a relatively high public knowledge stock. Since both

firms keep on investing in R&D, with probability one either one of the firms will eventually

innovate.

If we review the existing literature from an application point of view, thus considering

dynamic innovative duopolies, two papers have to be mentioned. First, we note that Breton

et al. [2] also analyze a setup with a public knowledge stock. Their result is similar to our

Skiba solution in that initial public knowledge should be high enough to guarantee that the

innovation will be obtained in the long run. The difference is that in Breton et al. [2] the R&D

decision is binary, they consider process innovation instead of product innovation, and they

have a discrete-time model, whereas our model is in continuous time. Employing a piecewise

deterministic dynamic oligopoly game like the present paper, is also done in Haurie and Roche

[16]. However, where we consider Markov-perfect equilibria, they develop Open-loop Nash

equilibria with jumps that relate to market size, rather than designing a new product as in our

case. An important observation at this point is that, to our knowledge, our paper is the first

to develop history-dependent equilibria in a piecewise deterministic game.

The paper is organized as follows. Section 2 develops the model, whereas Sect. 3 describes

the derivation of the Markov-perfect equilibria. Section 4 provides a detailed account of the

numerical approach used in the paper. Solutions with a unique steady state, thus where

either R&D investment costs are high or low, are discussed in Sect. 5. The conceptual and
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numerical challenges associated with the Skiba scenario are treated in Sects. 6 and 7 presents

the economic insights obtained using the methodology developed in the previous section.

Section 8 concludes.

2 The Model

We consider the interaction of two firms producing a homogeneous established product based

on an old technology. The inverse demand for the established product at any time t is given

by

po(t) = αo(t) − (q1o(t) + q2o(t)),

where q f o(t) is the output of firm f = 1, 2 of the old product. The reservation price αo(t),

which is influenced by the public acceptance of the old product and its production technology

as well as by potential market obstacles due to regulatory measures, evolves over time with

αo(0) = αini
o . Due to growing environmental concerns, the reservation price would converge

over time toward a level α̃o ≤ αini
o if firms do not engage in measures enhancing the accep-

tance of the old technology. Such measures of firm f = 1, 2 boosting the acceptance of the

established product, including public relations activities or lobbying with policy makers, are

subsumed as I f o(t) ∈ R. The market size then evolves according to

α̇o = (I1o + I2o) − δo(αo − α̃o). (1)

At the same time both firms engage in R&D investments I f r ≥ 0, f = 1, 2 in order to

develop a new product based on a cleaner technology. For simplicity, it is assumed that the

firm which develops the new product first will be able to prevent the competing firm from

entering that market due to patent protection or other technological reasons. The hazard rate

of firm f is given by

h(I f r , z) = γ I f r z, γ > 0

where z(t) is the public knowledge stock. This formulation of the hazard rate captures that the

firms need to invest in own R&D in order to transform the publicly available knowledge into

an innovation breakthrough. Furthermore, we assume that there are spillovers from the firms’

R&D investment to the public knowledge stock. Hence, the dynamics of the knowledge stock

reads

ż = β(I1r + I2r ) − δr (z − z̃), β, δr > 0 (2)

where z̃ would be the stationary level of the public knowledge stock in the absence of firms’

R&D.

Once one of the firms has reached the innovation breakthrough it is able to offer a new

cleaner product, which is horizontally differentiated from the old product and has a reservation

price αn . The inverse demand system now reads

po = αo − (q1o + q2o) − ηq f n

pn = αn − η(q1o + q2o) − q f n,
(3)

where it is assumed that firm f ∈ {1, 2} is the innovator and η ∈ (−1, 1) denotes the

horizontal differentiation parameter. For positive values of η the established and the new

product are substitutes and in what follows we will focus on such a scenario. Similar to the

established market, also the reservation price of the new product evolves over time and can
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be influenced by activities of the firm producing the new product, denoted by Iin ∈ R. In

particular, we have

α̇n = Iin − δn(αn − α̃n) (4)

and αn(0) = αini
n < α̃n . The new product is assumed to be based on a more appealing

and cleaner technology, which implies that in the absence of any firm activities in the long

run the reservation price for the new product would be higher than that of the established

product. Hence, we assume α̃n > α̃o. Marginal production costs are assumed to be constant,

symmetric across firms and identical for both products. To save notation, we normalize them

to zero.

We model the interaction between the firms as a multi-mode differential game (see e.g.,

Dockner et al. [11] or Dawid et al. [8]). The initial mode m1 denotes the time period before

the new product is introduced, whereas the mode m2 corresponds to scenario where firm 1

has innovated (and firm 2 therefore will stick to the old product forever) and mode m3 to the

analogous case with firm 2 as the innovator. The mode process m(t) is a Markov process on

the set of modes M := {m1, m2, m3} in continuous time with m(0) = m1. The transition rate

from m1 to m2 is given by h(I1r , z), that from m1 to m3 by h(I2r , z) and all other transition

rates are zero.

In each mode quantities are determined by Cournot competition and straightforward cal-

culations yield for mode m1

q
m1

1o = q
m1

2o =
αo

3
, π

m1

1 = π
m1

2 =
(αo

3

)2
(5)

for quantities and market profits.

Furthermore, in mode m2 we obtain, under the assumption that all quantities are positive,

q
m2

1o =
(2 + η2)αo − 3ηαn

6(1 − η2)
, q

m2

2o =
αo

3
, q

m2

1n =
αn − ηαo

2(1 − η2)
. (6)

Prices are obtained by inserting these expressions into (3) and the market profits read

π
m2

1 =q
m2

1o po

(

q
m2

1o , q
m2

2o , q
m2

1n

)

+q
m2

in pn

(

q
m2

1o , q
m2

2o , q
m2

1n

)

, π
m2

2 = q
m2

2o po

(

q
m2

1o , q
m2

2o , q
m2

1n

)

.

(7)

Analogous results arise in mode m3 with firm 2 as the innovator. Concerning the costs

of the different firm activities, it should first be noted that R&D investments are always

nonnegative, whereas the activities I f o, I f n influencing the general acceptance of a product

could in principle be negative, in particular, for a firm that is active on both markets. Hence, we

assume quadratic costs for such activities, where cost functions are symmetric across firms,

i.e., ξh = νh

2
I 2

f h with h ∈ {o, n}, whereas R&D costs are of the form ξr = μr Irh + νr

2
I 2

f r . In

this formulation, for simplicity, the parameters associated with the linear lobbying cost are

normalized to zero. Whereas this normalization does not affect the qualitative properties of

the solution, such a normalization is not possible for the R&D costs. If R&D costs are purely

quadratic then optimal R&D investments are always positive, which precludes the existence

of a steady state with zero hazard rate. This would be a substantial alteration to the model,

of which the potential existence of such a steady state is an important characteristic.

The instantaneous payoff of firm f in the different modes is therefore given by

F
mk

i = π
mk

i − ξo(I f o) − ξn(I f n) − ξr (I f r ), i = 1, 2.

The objective of firm f is to maximize its infinite horizon expected discounted payoff

under discount rate r > 0, subject to the state dynamics (1), (2) and (4), the mode process

m(t) as well as the control constraints I f r ≥ 0, f = 1, 2 and
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I1n = I2n = 0 m(t) = m1

I2n = 0 m(t) = m2

I1n = 0 m(t) = m3.

(8)

These constraints capture that a firm can influence the reservation price of a product only if

it is active on the corresponding market.

3 Characterization of Equilibria

In order to analyze the investment behavior of the firms in this model, we consider stationary

Markov-perfect equilibria (MPE) of the game. A stationary Markovian strategy of firm f

is given by a triple (φ f o, φ f r , φ f n), where each of these feedback strategies has the form

φ f h : [0, ᾱo] × [0, z̄] × [0, ᾱn] × M �→ R for h ∈ {o, n} and φ f r : [0, ᾱo] × [0, z̄] ×
[0, ᾱn] × M �→ R

+
0 . The upper bounds of the state variables, ᾱo, z̄, ᾱn are assumed to be

sufficiently large to ensure that the stable steady states characterized in the following analysis

are interior. Although we write the feedback in this general form, clearly some components

are irrelevant in some modes. In particular, due to (8), φ f n = 0 has to hold in mode m1 and

for the non-innovator also in mode m2 (respectively, m3). Furthermore, φ f r = 0 in modes

m2 and m3 since no more innovations are possible. Also, the state variable αn is constant

in mode m1 and the knowledge stock z irrelevant in modes m2 and m3. To ease notation

in what follows we will drop these arguments in the corresponding modes. In accordance

with the literature (see Dockner et al. [11]), we consider only non-anticipating strategies,

i.e., strategies where firms cannot condition their actions on realizations on the time of mode

transitions which lie in the future.

3.1 Post-Innovation Phase

In order to characterize the equilibrium strategy profile and the induced dynamics, we start by

considering modes m2 and m3. Since these modes are structurally symmetric, we can restrict

attention to m2. No transition out of this mode is possible, which means that the firms are

essentially engaged in an infinite horizon time-autonomous deterministic differential game.

Taking into account that the state z is irrelevant in m2, the value functions of the two firms

can therefore be written as V
m2

f (αo, αn). The Hamilton–Jacobi–Bellman (HJB) equations

for the two firms read

r V
m2

1 (αo, αn) = max
I1o,I1n

[

π
m2

1 (αo, αn) − ξo(I1o) − ξn(I1n)

+
∂V

m2

1

∂αo

(I1o + φ2o(αo, αn) − δo(αo − α̃o))

+
∂V

m2

1

∂αn

(I1n − δn(αn − α̃n))

]

, (9)

r V
m2

2 (αo, αn) = max
I2o

[

π
m2

2 (αo, αn) − ξo(I2o) +
∂V

m2

2

∂αo

(φ1o(αo, αn) + I2o − δo(αo − α̃o))

+
∂V

m2

2

∂αn

(φ1n(αo, αn) − δn(αn − α̃n))

]

. (10)
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Maximization of the right hand sides of these two HJB equations gives

φ
m2

f o (αo, αn) =
1

νo

∂V
m2

f (αo, αn)

∂αo

, f = 1, 2, φ
m2

1n (αo, αn) =
1

νn

∂V
m2

1 (αo, αn)

∂αn

. (11)

The interpretation of these terms is standard and straightforward. Due to the quadratic cost

functions, the optimal effort in changing the reservation prices is proportional to the marginal

value of such a change in terms of future discounted profits for the considered firm. Taking

into account (7), it is easy to see that the game in mode m2 has a linear-quadratic structure

and we therefore consider value functions that are quadratic polynomials of the states, i.e.,

V
m2

f = A f + B f αo + CFαn + D f α
2
o + E f α

2
n + F f αoαn, f = 1, 2.

Inserting this expression into (11) and the HJB Eqs. (9) and (10), and comparing the coeffi-

cients of the different terms on the left and the right hand side of the HJBs, generates a system

of 12 nonlinear equations for the 12 unknown parameters in the value function. This system

can be easily solved numerically using standard algorithms like a Newton method. Simi-

lar to the case of capital accumulation games with asymmetric product ranges (see Dawid

et al. [7]), typically there are multiple solutions among which only a single one induces

dynamics with a single steady state and therefore implies that the transversality conditions

for the firms’ optimization problems are satisfied. The equilibrium dynamics in mode m2 is

then characterized by a unique stable steady state and in what follows we will only consider

parameter constellations where both firms produce positive quantities of all the products they

are offering in that steady state. The analysis of mode m3 is analogous to that of mode m2

with the roles of the two firms inverted.

3.2 Pre-Innovation Phase

In mode m1 the two firms are competing to generate the breakthrough to the new product and

technology. Hence, in this mode the situation of the two firms is symmetric and we will restrict

attention to symmetric equilibria where φ
m1

1h (αo, z) = φ
m1

2h (αo, z) = φ
m1

h (αo, z), h ∈ {o, r}
for all (αo, z) ∈ [0, ᾱo] × [0, z̄]. In such a scenario, the two firms also have symmetric value

functions and denoting this value function by V
m1

1 = V
m1

2 = V m1 we obtain the following

HJB equation in mode m1:

r V m1(αo, z) = max
Io,Ir

[

(αo

3

)2
− ξo(Io) − ξr (Ir ) +

∂V m1

∂αo

(

Io + φm1
o (αo, z) − δo(αo − α̃o)

)

+
∂V m1

∂z

(

β(Ir + φm1
r (αo, z)) − δr (z − z̄)

)

+ γ Ir z

×
(

V
m2

1 (αo, α
ini
n ) − V m1(αo, z)

)

+ γφm1
r (αo, z)z

(

V
m2

2 (αo, α
ini
n ) − V m1(αo, z)

)]

. (12)

The feedback functions in mode m1, therefore, are given by

φm1
o (αo, z) =

1

νo

∂V m1(αo, z)

∂αo

, (13)

φm1
r (αo, z) =

1

νr

max

[

β
∂V m1(αo, z)

∂z
+ γ z

(

V
m2

1 (αo, α
ini
n ) − V m1(αo, z)

)

− μr , 0

]

.

(14)
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The above expression for φr highlights that the optimal level of R&D investment is deter-

mined by three effects. First, R&D carried out by the firm increases the public knowledge

stock thereby influencing the future value of the game for the firm. Second, own R&D

positively affects the probability of a breakthrough at time t , which would make the firm

monopolist thereby inducing a jump in the value function of
(

V
m2

1 (αo, α
ini
n ) − V m1(αo, z)

)

.

Third, investment is (negatively) influenced by the R&D cost parameters νr and μr .

4 Numerical Method

Inserting the optimal feedback strategies into (12) yields after minor transformations the fol-

lowing formulation of the HJB equation, which is the basis for the numerical characterization

of the equilibrium outcome:

0 =
(αo

3

)2
− ξo(φ

m1
o (αo, z)) − ξr (φ

m1
r (αo, z)) +

∂V m1

∂αo

(

2φm1
o (αo, z) − δo(αo − α̃o)

)

+
∂V m1

∂z

(

2βφm1
r (αo, z) − δr (z − z̄)

)

+ γφm1
r (αo, z)z

(

V
m2

1 (αo, α
ini
n ) + V

m2

2 (αo, α
ini
n )

)

− (r + 2φr (αo, z)z)V m1(αo, z). (15)

This is a nonlinear partial differential equation for V m1 , and it is easy to see that contrary to

the situation in mode m2 the general form of the solution of this equation cannot be guessed

and a closed form solution seems infeasible. Hence, we rely on a numerical collocation

method to calculate an approximate solution for (12), see e.g., Dawid et al. [4] or Vedenov

and Miranda [21]. In particular, taking as state space [αl
o, α

h
o ] × [zl , zh] we construct a set

of basis functions {Bio,iz (αo, z), io = 1, .., no, iz = 1, .., nz} such that

bio,iz (αo, z) = Tio−1

(

−1 +
2(αo − αl

o)

αh
o − αl

o

)

Tiz−1

(

−1 +
2(z − zl)

zh − zl

)

where Ti (x) denotes the i-th Chebyshev polynomial and no, nz are parameters determining

the number of basis functions. We denote the number of basis functions by n = nonz . The

value function is then approximated by

V̂ m1(αo, z) =

no
∑

io=1

nz
∑

iz=1

cio,iz bio,iz (αo, z),

which can be rewritten in a more compact way as V̂ m1(αo, z) = �cT · �b(αo, z), with �c and
�b being n-dimensional vectors such that �ci = cio,iz (respectively, �bi = bio,iz ) for i =
(io − 1)nz + iz, io = 1, . . . , no, iz = 1, . . . , nz . Here and in what follows all vectors are

column vectors, �vT denotes the transpose of the vector �v and · the matrix product.

In order to determine the weights �c of the base functions in this approximation, we require

that V̂ m1 satisfies the HJB Eq. (12) on a set of nodes N = No×Nz , where No = {α
io
o }io=1,...,no

(respectively, Nz = {ziz }iz=1,...,nz ) denote the set of no(nz) Chebyshev nodes on the interval

[αl
o, α

h
o ]([zl , zh]).1 Overall, the requirement that (15) holds at all nodes in N generates n

nonlinear equations, which are used to determine the weights �c.

1 Since the state space is only two dimensional in our game the use of the full tensor product of one-dimensional

base functions and collocation nodes is computationally feasible for the problem at hand and turns out to imply
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More formally, we first introduce the three matrices B, Bαo and Bz , which contain the

values of all base functions and their partial derivatives at all nodes in N :

Bi, j = b jo, jz (α
io
o , ziz ), B

αo

i, j =
∂b jo, jz (α

io
o , ziz )

∂αo

, Bz
i, j =

∂b jo, jz (α
io
o , ziz )

∂z

with i = (io − 1)nz + iz, j = ( jo − 1)nz + jz, io, jo = 1, . . . , no, iz, jz = 1, . . . , nz .

Furthermore, we define the following vectors �w f , f = 1, 2, capturing the value of the term

γ zV
m2

f at all nodes in N

�w
f

i = γ ziz V
m2

f (αio
o , ziz ), i = (io − 1)nz + iz, io = 1, . . . , no, iz = 1, . . . , nz .

Using this notation, the values of the feedback strategy at all nodes for a given vector of

approximation weights �c can be expressed as

�I o = 1
νo

Bαo �c
�I r = 1

νz
max

[

(β Bz − γ Z B)�c + �w1 − μrIn×n, 0
]

,
(16)

where In×n is a n×n matrix of 1s, Z is a n×n matrix with Zi, j = ziz , i = (io−1)nz +iz, io =
1, . . . , no, iz = 1, . . . , nz, j = 1, . . . , n and the maximum in the second line is applied to

each entry of the matrix. Using these vectors, the firm’s instantaneous payoff, the state

dynamics and the discount rate, adjusted for the transition rate to mode m2, at all nodes in

N can be directly calculated. We collect them in the vectors �f , �go, �gz, �r , which are defined

as follows

�fi =
(

α
io
o

3

)3

− ξo( �I o
i ) − ξr ( �I r

i )

�go
i = 2 �I o

i − δo(α
io
o − α̃o)

�gz
i = 2 �I r

i − δr (z
iz − z̃)

�ri = r − 2γ �I r
i ziz ,

(17)

where again i = (io − 1)nz + iz, io = 1, . . . , no, iz = 1, . . . , nz . We can now write the

system of equations derived from the condition that (15) has to hold on all nodes in N , as

�f + (�go · IT
n ) · Bαo · �c + (�gz · IT

n ) · Bz · �c + γ diag( �w1 + �w2) · �I r − (�r · IT
n ) · B · �c = 0. (18)

Here, diag(v) denotes the diagonal matrix of vector v and In the n-dimensional vector of

1s. It should be noted that �I o as well as �I r , and therefore also �f , �go, �gz and �r depend on �c,

which implies that (18) is nonlinear with respect to �c. In order to find a vector �c satisfying

(18), we use an iterative algorithm, with the properties that in each step only a linear system

has to be solved and the fixed point of the iteration is a solution of (18). In particular, we

consider a sequence of vectors �c(s), s = 0, 1, . . . and adjust the notation developed above by

denoting the vector of feedback controls which are calculated based on �c(s) as �I o(s), �I r (s).

Analogously for the vectors �f , �go, �gz, �r . In each step of the iteration, �c(s) is determined as

the solution to the following linear system of equations:

K (s − 1) · �c(s) = �f (s − 1) + γ diag( �w1 + �w2) · �I r (s − 1). (19)

with

K (s − 1) =
(

(�r(s − 1) · IT
n ) · B − (�go(s − 1) · IT

n ) · Bαo − (�gz(s − 1) · IT
n ) · Bz

)

.

good convergence and approximation properties. For higher dimensional state spaces, the use of sparse grids

methods, like Smolyak bases and nodes (e.g., [18]), is required in order to obtain acceptable approximations

of the value functions in MPEs of similar games, see Dawid et al. [5].
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Intuitively, in each iteration first, the feedback controls of the players at all nodes N , based on

the previous approximation of the value function, are determined and then the value function

which results from these strategies is calculated. Clearly, if the value function calculated in

this way coincides with the approximation on which the determination of the control values

was based then this value function satisfies (15) in all nodes in N . More formally, any fixed

point �c of (19) is a solution to (18).

Overall, the numerical algorithm can be summarized as follows:

(i) Choose no, nz and calculate the nodes in N . Choose the stopping condition ǫ.

(ii) Calculate B, Bαo , Bz as well as �w1 and �w2.

(iii) Choose �c(0).

(iv) Calculate �I o(0), �I r (0) as well as K (0) and �f (0)

(v) While Stopping Condition is not satisfied, iterate the following steps for s = 1, . . .

– Calculate �c(s) by solving (19).

– Calculate �I o(s), �I r (s) as well as K (s) and �f (s) based on �c(s).
– Calculate the change in value function at all nodes: �(s) = B · (�c(s) − �c(s − 1)).

Check Stopping Condition that maxi=1,...,n | �(s)i | < ǫ.

(vi) Set V̂ m1(αo, z) = �c(s)T · �b(αo, z) and caculate the feedback functions based on (13)

and (14) using this approximation.

(vii) Check (e.g., by a plot of the vector field) that the state dynamics resulting from these

feedback functions is inward pointing at the entire boundary of the state space.

If the algorithm converges, the quality of the obtained solution is judged by considering

the maximum of the relative deviation in (15) from zero, i.e., res = max
[

(αo,z)

V̂ m1(αo,z)
|αo ∈

[αl
o, α

h
o ], z ∈ [zl , zh]

]

, where (αo, z) denotes the absolute value of the right hand side in the

HJB Eq. (15) for V m1 = V̂ m1 . Since the value function is in our game strictly positive on the

entire state space, this indicator is well defined. For all results presented in this paper, we have

ǫ < 10−3. The aim of the algorithm is to find (approximate) value and feedback functions

which satisfy the HJB equation on the entire state space, whereas the algorithm itself only

guarantees that the HJB equation holds (approximately) on the set of nodes N . Therefore,

it is essential to check the residual of the HJB equation on the entire state space rather than

only on N . A small residual on the entire state space ensures that the value function used by

the firm to determine its feedback strategies is indeed very close to the expected discounted

profit of the firm generated by the profile of feedback strategies used by both firms, no matter

what the initial condition is. It should also be noted that if point (vii) in the description of

the algorithm holds, then this implies that the transversality conditions of both players are

satisfied.

In general, there is no guarantee for the convergence of this algorithm and the choice of the

number of nodes and of the vector �c(0) determining the initial approximation are crucial in this

respect. Concerning the number of nodes, there is not only a tradeoff between the quality of the

approximation and the computation time, but an extensive number of experiments also shows

that the stability of the algorithm, in the sense that it converges for reasonably well chosen

initial conditions, deteriorates as the number of nodes increases. Unfortunately at this point,

there does not seem to be a rigorous mathematical analysis available, which characterizes the

relationship between the value of n and the stability properties of the algorithm. In light of this

tradeoff, the values no = nz = 10 have been chosen for the numerical analyses in this paper,

since this number of nodes generates solutions with very small residuals in the HJB equation

and at the same time the stability properties of the algorithm are still very good for the model
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considered here. In principle, alternative approaches, like a Newton algorithm, could also be

applied to find a solution of the nonlinear system of equations (18), however our numerical

experiments indicate that for this class of problems the chosen approach has better stability

properties, in a sense that convergence of the iterative algorithm can be obtained for a larger

set of parameters and initial values �c(0). The number of iterations needed till convergence

varies strongly depending on the parameter setting and the initialization. Whereas in most

of the scenarios considered below convergence was obtained in less than 10 iterations, also

scenarios with approximately 100 iterations till convergence have been encountered.

With respect to the choice of �c(0), the most crucial task is to come up with an initial

vector which generates convergence for the default parameter setting(s). Analyses of the

implications of variations in the parameters can then be carried out using a continuation

method, in which the parameter under consideration is changed in small steps and in each

step the previous solution is used as the initial value when the algorithm is applied to the new

parameter constellation. However, a continuation method can also be applied to generate the

initial value �c(0) for the default parameter setting. In this respect, it is useful to first consider

the problem for a variation of the default setting, in which the discount rate is replaced by a

much larger value. This essentially static problem can be solved easily, and then the discount

rate can be stepwise reduced until its default value is reached.

5 Scenarios with Unique Steady States in Mode m1

Figure 1 illustrates the results generated with the method described in the previous section

by showing the value function in mode m1, the equilibrium feedback function for R&D

investment in mode m1, as well as the dynamics in the state space for a base parameter

setting2 and two different values of the R&D cost parameter μr . Whereas from a theoretical

perspective, there is no guarantee that the equilibria shown here are unique for each of the

parameter constellations, and our numerical explorations (e.g., with alternative initializations

�c(0) of the algorithm) have not generated any alternative equilibria.

Considering the R&D investment functions and the state dynamics, it can be clearly

seen that qualitatively different equilibrium behavior emerges under these two levels of

R&D costs. For low values of μr (left panels) firms invest in R&D for almost all levels

of the public knowledge stock and public R&D investment alone is sufficient to move the

level of the knowledge stock into the regions where firms choose a positive level of R&D.

Accordingly, the unique stable steady state under this MPE profile is characterized by positive

R&D investments of both firms, which also implies a positive hazard rate. Hence, with

probability one the innovation breakthrough will eventually be reached by one of the firms,

and a transition to mode m2 or m3 occurs. A substantially different picture emerges for high

levels of R&D costs (right panels). In such a setting, the minimal knowledge stock needed to

induce positive R&D investments of firms is so large that it is never reached in the absence

of firms’ R&D. Furthermore, even if the initial stock would be above this threshold the firms

R&D investment would be too small compared to the speed by which knowledge becomes

obsolete such that the knowledge stock would still decrease. Hence, in the unique steady state

both firms abstain from R&D investment, which implies that, although the public knowledge

stock converges to a positive level z̃, the hazard rates of both firms are zero. This means

2 The base parameter setting has been chosen in such a way such that the different assumptions made are

satisfied and quantities of both firms remain positive through the game. It is given by α̃o = 1, α̃n = 1.25, z̃ =
0.2, δo = δn = δz = 0.2, γ = 0.3, β = 0.5, νo = νn = 50, νr = 4, r = 0.05, αini

n = 0.75, αl
o =

0.75, αh
o = 1.35, zl = 0, zh = 2.
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Fig. 1 Value functions in mode m1 (upper panels), R&D investment (middle panels) and induced state

dynamics (lower panels) for μr = 0.2 (left) and μr = 1 (right)

that, whenever the initial value of the knowledge stock is in the part of the state space where

φ
m1
r = 0, with probability one the breakthrough is never reached and both firms stay only

active on the established product market.

Comparing the value functions for the two values of μr , one can make the at first sight

the observation that for high values of the acceptance of the established product (αo) and low

levels of the public knowledge stock (z) an increase in the R&D cost parameter μr induces an

increase in the value function of the firms. For such values of the state variables, it is profitable

for the firms to coordinate on not engaging in the R&D race. However, for low values of μr

it is rational for each firm to invest in R&D regardless of whether the competitor pursues
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the innovation breakthrough or not. A high value of the R&D cost parameter then allows the

firms to coordinate in equilibrium on not investing, which increases their profit compared

to a situation where both engage in R&D. The situation is different if the acceptance of

the established product is low and the public knowledge stock is high. In such a scenario,

firms gain substantially from introducing the new product and at the same time the hazard

rates are relatively large, which implies that the expected duration of R&D expenditures till

the breakthrough are relatively small. Here, the expected gain from innovation outweighs

the costs and hence the value for the firms is larger if the R&D costs are so small that in

equilibrium there is positive R&D investment and transition to modes m2 or m3 occurs with

probability one.

6 Calculating Markov-Perfect Equilibria with Coexisting Stable Steady
States

6.1 Theoretical Considerations

Figure 1 as well as the intuitive discussion above shows that the firms’ incentive to invest

in R&D is an increasing function of the public knowledge stock as well as a decreasing

function of the acceptance of the old product. Considering now values of the R&D cost

parameter between the two used in Fig. 1, one would expect that for some values of μr firms

have no incentive to invest in R&D if the knowledge stock is close to the level z̃, but in

equilibrium engage with sufficient effort in R&D for large values of z such that a knowledge

stock substantially above z̃ can also be sustained in the long run. For such values of μr ,

the MPE of the game in mode m1 exhibits coexisting stable steady states. Although such

phenomena so far have hardly been treated in the framework of MPEs in differential games,

the extensive literature on coexisting stable steady states in dynamic optimization problems

(e.g., [3,4,15]) implies that generically the actions of the players exhibit a jump along the

curve separating the basins of attraction of the two stable steady states, which in the literature

is referred to as Skiba curve.

In general, this insight generates conceptual and numerical problems for the analysis.

First, there is a conceptual problem, since the jump in the action of the opponent along a

curve may induce a discontinuity of the value function of a player. In particular, this happens

if the player chooses values of the own controls such that the state does not cross the curve.

For asymmetric games, this implies that generically the player has an incentive to keep the

state on one side of the curve, namely the side where her value function is strictly larger. This

implies that in such a game an MPE inducing two coexisting stable steady states separated by

a Skiba curve can only exist under rather restrictive conditions. In particular, a Skiba curve

can exist if there is a controllability problem in the sense that the player cannot choose the

own controls such that the state moves from the part of the state space associated with the

lower value to the other part associated with the higher value. This issue is discussed in more

detail in Dawid et al. [6].

In the framework of a symmetric game, like the one considered here, the existence of a

symmetric MPE with coexisting stable steady states is less problematic, because in such an

equilibrium the value functions of both players coincide. If the boundary between the basins

of attraction of the two stable steady states is determined by the intersection of the ’local value

functions’ around the steady states (which are identical for both players), none of the players

has a jump in the value function, and the problem sketched above for asymmetric games does
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not arise. The local value functions capture the value of the game under trajectories which

result from optimal behavior of both players under the constraint that the state converges to a

certain (locally stable) steady state. More formally, let us assume that the state space in mode

m1 can be separated into two closed regions Sa, Sb such that Sa ∪ Sb = [αl
o, α

h
o ] × [zl , zh]

and the intersection S = Sa ∩ Sb is a connected curve in the state space. Assume further

that there exist functions V
m1
a , V

m1

b which are continuous on Sa (respectively, Sb) and are

continuously differentiable in the interior of these regions. Furthermore, V
m1
a (V

m1

b ) satisfies

the HJB equation (12) on the interior of Sa (Sb) and we have V
m1
a = V

m1

b along the curve S.

Finally, we define φ
m1

hx , h = o, r, x = a, b as the feedback function resulting from inserting

V
m1
x into (13) [respectively, (14)].

The fact that the two feedback functions exhibit jumps along the curve S in the state space

raises technical problems when considering the dynamic optimization problem of firm f

that results from inserting the feedback function of the other firm into the state dynamics

and the transition rates between modes. After this insertion, neither the state dynamics nor

transition rates between modes are continuous on the entire state space and therefore the

assumptions required for the standard result that the value function is the unique solution

(in the viscosity sense) of the HJB equation (see e.g., Theorems 2.8 and 2.12 in Bardi and

Capuzzo-Dolcetta [1]) do no longer hold. Actually, without these continuity assumptions in

general the dynamic optimization problem might not even be well defined, since for an own

control path inducing that the set of points in time at which the state crosses S has positive

measure, the solution to the state dynamics would not be well defined. Addressing this general

technical issue, which arises quite naturally in differential games if the feedback strategies

are not restricted to functions that are continuous with respect to the state is beyond the scope

of this paper. Hence, in what follows we restrict attention to strategy profiles, where for each

initial condition the set of points in time where the firms’ controls jump along the induced

state trajectory have measure zero. As will become clear from our numerical analysis below,

in the game considered here this restriction of the strategy space is not restrictive.

Given that we consider this strategy space, the following proposition shows that the com-

bination of the two local profiles described above generates a Markov-perfect equilibrium.

Proposition 1 The symmetric profile φ f h = φh, h = o, r, f = 1, 2 with

φh(αo, z) =

{

φha(αo, z) (αo, z) ∈ Sa

φhb(αo, z) else

constitutes a Markov-perfect equilibrium of the game in mode m1 if the two regions Sx , x =
a, b are invariant under the state dynamics (1, 2) for I f h = φh(αo, z), h = o, r, f = 1, 2.

Proof Consider the optimization problem of firm 1 assuming that firm 2 is choosing the

considered strategy (φo, φr ). Since V
m1
x is a smooth function satisfying the HJB equation

of firm 1 in the region Sx , x = a, b and trajectories stay bounded in Sx if firm 1 uses the

feedback function (φox , φr x ), it follows from standard arguments that no other feedback

strategy can generate a larger expected value for firm 1 as long as the state trajectory does not

leave the region Sx . Consider now an initial condition (αo, z)ini in the region Sx , x = a, b

and assume that there is an alternative feedback function (φ̃o, φ̃r ) generating a strictly higher

expected value for firm 1 than (φo, φr ) does. Due to the argument given above it must be

that the state trajectory induced by the profile (φ̃o, φ̃r ), (φo, φr ) crosses at least once the

boundary S between the two regions. In what follows we show that this assumption results

in a contradiction, where we first deal with the case where the induced trajectory exhibits a

finite number of jumps and, as a second step demonstrate that this implies also a contradiction

for all trajectories which cross S infinitely often.
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First, we consider the case with a finite number of intersections with S. Denote by (α̂o, ẑ)

the last point where the trajectory hits S. And assume without loss of generality that the

trajectory is in region Sa before it hits (α̂o, ẑ). Since V
m1
a (α̂o, ẑ) = V

m1

b (α̂o, ẑ), the expected

discounted payoff under the trajectory after hitting (α̂o, ẑ) must be V
m1
a (α̂o, ẑ). Since V

m1
a

is the value function for firm 1 for the problem on Sa this implies that if (α̃0, z̃) is any state

on the trajectory between (α̂o, ẑ) and the previous point where S is hit, the expected value in

that state cannot be larger than V
m1
a (α̃0, z̃). The same argument can then be applied to the

previous part of the trajectory running in Sb and so on until the initial condition is reached.

Hence the value at (αo, z)ini cannot be larger than V
m1
x , which yields a contradiction.

Second, assume that the induced trajectory crosses S infinitely often. Denote this tra-

jectory by (α̃(t), z̃(t)). Given the assumption that this trajectory yields a higher value for

firm 1 compared to Vx ((αo, z)ini ) we must have Ṽ ((αo, z)ini )) > Vx ((αo, z)ini )), where Ṽ

denotes the value generated by trajectory (α̃(t), z̃(t)). Furthermore, we consider the trajectory

( ˜̃α(t), ˜̃z(t)) given by

( ˜̃α(t), ˜̃z(t)) =

{

(α̃(t), z̃(t)) t < T

(α̃(T ), z̃(T )) t ≥ T .

for some given T such that (α̃(T ), z̃(T )) /∈ S. We denote the value generated by this trajectory

by
˜̃

V . Due to the exponential discounting in the objective function of firm 1 and the fact that

the instantaneous profit function is bounded from above, we have

lim
T →∞

˜̃
V ((αo, z)ini ) = Ṽ ((αo, z)ini ) > Vx ((αo, z)ini ).

Therefore, there exists a T̃ such that
˜̃

V ((αo, z)ini ) > Vx ((αo, z)ini ). The assumption that

the set of times where (α̃(t), z̃(t)) intersects S has measure zero, implies that ( ˜̃α(t), ˜̃z(t))
intersects with C only finitely often. Hence, we obtain a contradiction to the statement which

was shown in the first part of this proof. ⊓⊔

Proposition 1 implies that pasting in a continuous way two functions, which satisfy the

mode m1 HJB equation on parts of the state space, yields the symmetric value function in this

mode for a symmetric Markov-perfect equilibrium, provided that the two regions are invariant

under the induced equilibrium dynamics.3 Although in the context of the considered model

we show this property only for a scenario with two invariant parts of the state space, our

argument also holds in scenarios with a larger number of invariant subspaces as long as the

local value functions coincide at the boundaries between the associated regions.4

6.2 Numerical Approach

Whereas Proposition 1 provides a theoretical foundation for the characterization of symmetric

MPEs with multiple stable steady states, also the numerical computation of the value function

in such scenarios is not straight forward. A jump of the firms’ actions along the Skiba

curve implies that the value function V m1 exhibits a kink along this curve. The fact that the

collocation method relies on a polynomial approximation of the value function implies that

the approximate value function V̂ m1 by definition is smooth on the considered state space and

therefore cannot exhibit a kink. Hence, the procedure described in Sect. 4 has to be adjusted

3 Our formulation of the invariance corresponds to the condition that the dynamics is inward pointing used

in Dockner and Wagener [12]

4 We are grateful to an anonymous referee for making this observation



570 Dyn Games Appl (2017) 7:555–577

if we deal with parameter constellations under which the MPE feedback strategies induce

state dynamics with multiple stable steady states.

In order to generate the ’local value functions’ around the two coexisting steady states, we

first generate two overlapping regions of the state space on which the local value functions

are calculated such that each region contains only one steady state. The curve S is then

determined as the intersection of the two local value functions. It is obvious that at a potential

steady state with no R&D investment we must have z = z̃. On the other hand, Fig. 1 and

the consideration of the complementarity between knowledge stock and R&D investment

suggests that the steady state with positive R&D is characterized by a knowledge stock

substantially above z̃. Hence, we choose the two overlapping regions of the state space

as Ra = [αl
o, α

h
o ] × [0, zh

a ] and Rb = [αl
o, α

h
o ] × [zl

b, zh], where αl
o, α

h
o , zl , zh are given

according to our base parameter setting and we have zb
l < za

h . For values of the R&D costs

μr between the values considered in Fig. 1 the collocation algorithm is applied separately

to these two regions. It is then checked whether each of the two regions is invariant under

the induced state dynamics, and, if this is the case, the (approximate) value functions are

appropriate local value functions on the considered part of the state space.5

In order to foster the generation of such appropriate local value functions, which induce

dynamics under which the region is invariant, it is useful to carefully select the initial guess of

the value function for the iteration in the collocation algorithm. To this end, when considering

the region surrounding the low investment equilibrium (i.e., Ra), we initially calculate the

value function for a value of μr , which is sufficiently large such that the zero R&D steady

state is the only stable fixed point in the whole state space (e.g., μr = 1, see Fig. 1). The initial

guess �c(0) for the collocation for the actual value of μr is then obtained by a continuation

method by decreasing μr in small steps and always recalculating the approximate value

function with the initial guess in the collocation given by the value function of the previous

step. Alternatively, a homotopy method could be used. However in multi-mode problems,

in which typically numerically determined value functions from other modes appear in the

HJB equation, the derivative of the right hand side of that equation with respect to the

changing parameter, which is needed for the homotopy, is often not available. Similarly, the

approximate value function on Rb is obtained through a continuation method increasing μr

from a value where the unique stable steady state in the state space exhibits positive R&D

investment.

To determine the boundary between the basins of attraction of the two locally stable steady

states, the difference between the two local value functions Ra and Rb is considered in the

region [αl
o, α

h
o ] × [zb

l , za
h]. If the equation Ra(α, z) − Rb(α, z) = 0 holds on a closed curve

S such that on both sides of S the state dynamics, generated by the feedback strategies based

on the corresponding local value function, points inward, then Proposition 1 can be used to

conclude that the combination of the feedback strategies gives a Markov-perfect equilibrium

profile. Due to the fact that Ra(α, z) − Rb(α, z) is a polynomial in (α, z) the line S can

be easily calculated, if such a line exists. In the following section we use this approach

to analyze the firms’ equilibrium investment behavior in scenarios with two stable steady

states.

5 To be more precise, in such a scenario for each initial condition in the considered region there is no path

staying in the region which generates a larger expected value than the local value function.
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Fig. 2 Local value functions in mode m1 in region Ra (red) and Rb (blue) for μr = 0.27

Fig. 3 Equilibrium feedback strategies for activities on the established market (left) and R&D investment

(right)

7 Economic Analysis for Scenarios with Multiple Steady States
in Mode m1

7.1 Pre-Innovation Phase

Applying the procedure described in the previous section allows us to compute the value

functions and corresponding feedback functions of an MPE for parameter settings of the

model where two stable steady states exist in the pre-innovation mode. Figure 2 shows the

result of these calculations for μr = 0.27 and zl
b = 0.35, zh

a = 0.6. The local value function

on Ra is depicted in red, whereas that on Rb is blue. The Skiba curve S, determined by the

intersection of the two functions, can be clearly seen and the value function V m1 is the upper

envelope of the two local value functions.

AS argued above, it follows from Proposition 1 that the value function V m1 corresponds to

a symmetric Markov-perfect equilibrium in mode m1 and in Fig. 3 we depict the equilibrium

feedback functions for activities building up acceptance of the established product and for

R&D investment. We observe that both feedback functions exhibit jumps along the Skiba

curve S. The state dynamics induced by this symmetric equilibrium strategy profile is shown

in Fig. 4. It can be clearly seen that indeed two locally stable steady states exist and their

basins of attraction are separated by the Skiba curve S indicated as a black line. We denote
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Fig. 4 State dynamics under the equilibrium feedback strategies and equilibrium trajectories for zini = 0.5

and αini
o = 1 (green line), respectively, αini

o = 1.25 (red line)

the equilibrium in the lower part of the state space, characterized by zero R&D as (αo, z)l∗
m1

and the steady state with positive R&D as (αo, z)h∗
m1

.

Considering again the equilibrium feedback functions it can be observed that, when mov-

ing from the basin of attraction of (αo, z)h∗
m1

to that of (αo, z)l∗
m1

, not only the investment in

R&D exhibits a downward jump, but also the firms’ activities for strengthening the old market

jumps upward. This is quite intuitive since in the basin of attraction of (αo, z)l∗
m1

, and there

is a positive probability that the new product is never introduced and therefore the expected

future returns of increasing the reservation price for the established product are larger com-

pared to the scenario where the state converges to (αo, z)h∗
m1

. This is also reflected in the

observation that αl∗
o,m1

> αh∗
o,m1

. Furthermore, quite in accordance with intuition, investment

in the strength of the established market decreases with the level of public knowledge stock in

the basin of attraction of the positive innovation steady state. The fact that the expected time

till the introduction of the new product decreases with z is driving this effect. No significant

effect of z on φ
m1
o can be observed in the basin of attraction of the no-innovation steady

state. Investment in the strength of the established market increases with αo in both basins

of attraction. This is due to the fact that the quantities of the established product firms sell

increase with αo and therefore the marginal profit from increasing αo becomes larger the

larger the established market already is.

Turning to the firms’ equilibrium investment in R&D, we observe the same qualitative

properties as in the two cases depicted in Fig. 1. Due to the complementarity between public

knowledge and firms’ R&D, these investments increase with z. Furthermore, a large reserva-

tion price on the established market reduces the firms’ incentive to invest in R&D. Together,

these two properties imply that the Skiba curve, along which the firms’ strategies jump, is

upward sloping in the state space. This in turn implies that for a given level of the public
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knowledge stock the initial strength of the established market (captured by αo) can determine

whether in equilibrium there is persistent investment in the development of the new product,

which would mean that the product is introduced with probability one. Such a scenario arises

only if the initial strength of the established market is sufficiently small (i.e., (αo, z) is left

of the Skiba curve in Fig. 4). If the established market is strong, then, apart from a short

transient phase, firms abstain from investment in R&D, which implies that the probability

that the new product reaches the market is close to zero.

These insights have important implications for the understanding of the introduction of

a new product which is (abstracting from the firms’ activities to influence acceptance of the

products) more attractive for consumers than the established one. The result suggests that

under certain constellations of the R&D cost parameters and the level of public knowledge

stock, the strength of the established market might prevent the development and the intro-

duction of the new product. This insight has clear policy implications, which are discussed

in more detail in Sect. 8. Our results are also interesting from a technical perspective, since

to our knowledge this is the first instance of an MPE with coexisting stable steady states in

a differential game in which the dimension of the state space is larger than one and also the

first instance of such a phenomenon in a multi-mode differential game.

7.2 Post-Innovation Phase

After one firm has introduced the new product, the market dynamics and the incentives of the

competitors to invest in activities strengthening the established (as well as the new) market,

change significantly. Without loss of generality, we focus on the case of mode m2 where firm

1 has been successful in introducing the new product. According to our assumption that the

new market for technical reasons or due to patent protection is characterized by such high

entry costs for firm 2 that this firm never enters, we have an asymmetric scenario, in which

firm 1 can influence the development of the strength of both markets, whereas the activities

of firm 2 are restricted to the established market.

Figure 5 shows the feedback functions of both firms in mode m2 for our base parameter

setting. Considering firm 2, which is only active on the established market, it can be observed

that investments in strengthening that market are positively affected by the size of that market

(like in mode m1) and negatively affected by an increase in αn . The intuition for this effect

is similar to the one discussed for m1, namely that an increase in αn reduces the quantity

firm 2 sells on the established market, which reduces the incentive to invest in an increase

in the (reservation) price of the established product. The monotonicity properties of firm 1’s

activities for influencing αo are the same as those of the investment of firm 2, however, Fig. 5

shows that it can actually be optimal for firm 1 to engage in costly activities to reduce the

strength of the established market although the firm is still active on that market. In particular,

this is true if the strength of the new market is above a certain threshold, where, as is to be

expected, this threshold is an increasing function of the strength of the established market.

The activities of firm 1 with respect to the strength of the new market are always directed

toward an increase in the size of that market. Analogous to the established market the level

of these activities are positively influenced by the strength of the market itself and negatively

affected by the size of the other market.

Figure 6 shows the evolution of the reservation prices in the two markets and the corre-

sponding trajectories of investments in both modes under the assumption that the realization

of stochastic innovation time is τ = 40. This means that we consider a situation where

the size of the established market has more or less reached the steady state value of the

pre-innovation phase before the innovation occurs. It can be clearly seen that the innovation
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Fig. 5 Equilibrium feedback functions for investment in the established market (upper panels) and the new

market (lower panel) in mode m2
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Fig. 6 Equilibrium dynamics of the reservation prices of both markets (left panel) and of investments in the

dynamics of the reservation prices (right panel) in both modes and (αo, z)ini = (1, 0.5). The time of the

introduction of the new product is assumed to be τ = 40.

leads to a downward jump in the investment of firm 1 in the established market and at the

same time to an upward jump of the activities of firm 2 on that market. The effort of firm 1

to strengthen the new market after its emergence are substantially larger than both the firms’

efforts on the established market prior to innovation and also those of firm 2 on the established

market after the innovation. This is due to the large market power of firm 1 with respect to

the new product, which results in large output quantities. Shortly after the innovation, the

investments of firm 1 with respect to the evolution of αo become negative and stay negative

in the long run. Therefore, the size of the established market shrinks to a value which is
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Fig. 7 Quantity dynamics under the equilibrium feedback strategies in both modes and (αo, z)ini = (1, 0.5).

The time of the introduction of the new product is assumed to be τ = 40.

only slightly above the level α̃o which would emerge in the long run without effort by any

of the firms to influence the reservation price on that market. The reservation price of the

new product in the long run is larger than that of the established product, which does not

only reflect the higher basic attractiveness of that market (captured by α̃n > α̃o) but also the

substantially larger (net) investments in activities boosting the acceptance of that product and

its underlying technology.

The dynamics of output quantities corresponding to this scenario (see Fig. 7) highlights

the close connection between the firms investments in the evolution of the different markets

and their output quantities on these markets. Contrary to the investments, the output of firm 2

on the established market exhibits however no upward jump after the innovation. The effects

of the downward jump in the output of firm 1 on the established market is exactly neutralized

by the positive quantity of the new product, such that initially the quantity of firm 2 remains

unchanged after the innovation and only eventually decreases as the reservation price on

the old market goes down. Furthermore, the figure shows that for the considered parameter

setting the innovator over time reduces its output on the established market essentially to

zero thereby realizing a full transition from the old product and technology to the new one.

It should however be noted that firm 1 starts engaging in activities decreasing the size of the

established market at a point in time where it still produces substantial positive quantities

of that product. Overall, we end up in a scenario where each of the two firms completely

focuses on one of the two markets.

8 Conclusions

The most important contribution of this paper is technical in the sense that, to our belief, this

is the first paper generating a history-dependent solution in the setting of a Markov-perfect

equilibrium of a differential game with more than one state variable. In a model with two

state variables, a Skiba curve separates the basins of attraction of the different locally stable
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steady states. We design an adaptation of a collocation algorithm to develop the numerical

solution.

We apply our method to a duopoly model where the two identical incumbent firms both

have an option to carry out a product innovation. In a state plane with public knowledge on

the vertical axis and the reservation price of the established product on the horizontal axis,

the Skiba curve is upward sloping. If the initial values of the state variables are such that this

point is situated below the Skiba curve, the firms do not innovate. On the other hand, if this

point is located above the Skiba curve, it follows that with probability one the new product

will eventually be introduced on the market.

The location of a Skiba curve forms an important input for the policy maker. Consider a

situation where the new product is more environmental friendly and the initial values of the

state variables are such that it is located below the Skiba curve. Then, the market outcome

will be that the cleaner new product will not be invented. Essentially the policy maker has

two methods to still make innovation work. The first method is to move the initial point in the

state plane in such a way that it enters the desired area, which is above the Skiba curve. To

do so, the policy maker could either move the point of the initial states upward by increasing

public knowledge, for instance by subsidizing universities to do research in this area. Or the

policy maker could move this point to the left by taxing the use of the more dirty established

product, which reduces the reservation price.

The second method is to enlarge the basin of attraction of the innovation steady state, thus

moving the Skiba curve downward. This can be done by subsidizing R&D investments.

It is important to note that the Skiba curve is only an input for the policy maker: it just shows

what is needed to change an (undesired) market outcome. However, to determine whether it

is in fact optimal to do so requires a richer setting in which welfare should be optimized such

that, besides firm profits, also costs of the specific policy measure and consumer surplus are

taken into consideration.

Acknowledgements Financial support from the German Science Foundation (DFG) under Grant DA 763/4-1,

the Dutch Science Foundation (NWO) under Grant 464-11-104, the Flemish Science Foundation (FWO) under

Grant “G.0809.12N” is gratefully acknowledged. We thank two anonymous referees for helpful comments.

To avoid any conflict of interest, this paper was handled by the editor-in-chief and not the guest editors of this

special issue.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-

tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and

reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Bardi M, Capuzzo-Dolcetta I (2008) Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman

equations. Birkhäuser, Basel

2. Breton M, Vencatachellum D, Zaccour G (2006) Dynamic R&D with strategic behavior. Comput Oper

Res 33:426–437

3. Caulkins JP, Feichtinger G, Grass D, Hartl RF, Kort PM, Seidl A (2015) Skiba points in free end time

problems: the option to sell the firm. J Econ Dyn Control 51:404–419

4. Dawid H, Keoula M, Kopel M, Kort PM (2015) Product innovation incentives by an incumbent firm: a

dynamic analysis. J Econ Behav Organ 117:411–438

5. Dawid H, Keoula M, Kopel M, Kort PM (2016a) Capacity investment and product innovation leadership.

Bielefeld University, Mimeo

http://creativecommons.org/licenses/by/4.0/


Dyn Games Appl (2017) 7:555–577 577

6. Dawid H, Keoula M, Kort PM (2016b) Skiba phenomena in Markov perfect equilibria of asymmetric

differential games. In: Dawid H, Doerner KF, Feichtinger G, Kort PM, Seidl A (eds) Dynamic perspectives

on managerial decision making: essays in honor of Richard F. Hartl. Springer, Berlin, pp 63–76

7. Dawid H, Kopel M, Kort PM (2010) Dynamic strategic interaction between an innovating and a non-

innovating incumbent. CEJOR 18:453–463

8. Dawid H, Kopel M, Kort PM (2013) R&D competition versus R&D cooperation in oligoplistic markets

with evolving structure. Int J Ind Organ 31:527–537

9. Dechert WD, Nishimura K (1983) A complete characterization of optimal growth paths in an aggregated

model with a non-concave production function. J Econ Theory 31:332–354

10. Dechert WD, O’Donnell SI (2006) The stochastic lake game: a numerical solution. J Econ Dyn Control

30:1569–1587

11. Dockner EJ, Jorgensen S, Van Long N, Sorger G (2000) Differential games in economics and management

science. Cambridge University Press, Cambridge

12. Dockner E, Wagener F (2014) Markov perfect Nash equilibria in models with a single capital stock. Econ

Theor 56:585–625

13. Grass D (2012) Numerical computation of the optimal vector field: exemplified by a fishery model. J

Econ Dyn Control 36:1626–1658

14. Grüne L, Semmler W, Stieler M (2015) Using nonlinear predictive control for dynamic decision problems

in economics. J Econ Dyn Control 60:112–133

15. Haunschmied JL, Kort PM, Hartl RF, Feichtinger G (2003) A DNS-curve in a two-state capital accumu-

lation model: a numerical analysis. J Econ Dyn Control 27:701–716

16. Haurie A, Roche M (1994) Turnpikes and computing of piecewise open-loop equilibria in stochastic

differential games. J Econ Dyn Control 18:317–344

17. Hinloopen J, Smrkolj G, Wagener F (2013) From mind to market: a global, dynamic analysis of R&D. J

Econ Dyn Control 37:2729–2754

18. Maliar L, Maliar S (2014) Chapter 7: Numerical methods for large scale dynamic economic models. In:

Schmedders K, Judd K (eds) Handbook of Computational Economics, vol 3. Elsevier Science, Amsterdam,

pp 325–477

19. Sethi SP (1979) Optimal advertising policy with the contagion model. J Optim Theory Appl 29:615–627

20. Skiba AK (1978) Optimal growth with a convex–concave production function. Econometrica 46:527–539

21. Vedenov DV, Miranda MJ (2001) Numerical solution of dynamic oligopoly games with capital investment.

Econ Theor 18:237–261

22. Wagener F (2003) Skiba points and heteroclinic bifurcations, with applications to the shallow lake system.

J Econ Dyn Control 12:555–560


	Numerical Analysis of Markov-Perfect Equilibria with Multiple Stable Steady States: A Duopoly Application with Innovative Firms
	Abstract
	1 Introduction
	2 The Model
	3 Characterization of Equilibria
	3.1 Post-Innovation Phase
	3.2 Pre-Innovation Phase

	4 Numerical Method
	5 Scenarios with Unique Steady States in Mode m1
	6 Calculating Markov-Perfect Equilibria with Coexisting Stable Steady States
	6.1 Theoretical Considerations
	6.2 Numerical Approach

	7 Economic Analysis for Scenarios with Multiple Steady States  in Mode m1
	7.1 Pre-Innovation Phase
	7.2 Post-Innovation Phase

	8 Conclusions
	Acknowledgements
	References


