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Abstract: Elasto--plastic analysis for classical lateral earth pressures is presented in this paper
using the explicit finite difference method of FLAC. The developed numerical model consists of
a rigid structure for the gravity wall, a zero thickness interface for modelling the sliding and
separation between the wall and the backfill soil, and a Mohr--Coulomb soil model for the
backfill. The rigidwall was pushed into the backfill soil to induce passive failure and the ultimate
load required for the failure is calculated. Numerical results are compared with other available
solutions and numerical difficulties experienced in the analyses are discussed.
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1. INTRODUCTION

To date, limit equilibriummethods have often been used by practicing engineers to determine
lateral earth pressures. Among these are the Rankine, Coulomb, and Log-spiral techniques.
These limit equilibriummethods are based on the assumption that collapse is triggered along an
assumed failure surface and that, the shear stress at every point of this surface reach a limit shear
strength which is governed by soil shear strength parameters such as c (cohesion) and φ (friction
angle). The global force equilibrium solution is then solved repeatedly in order to find the lowest
load by changing the geometry of the failure surface.

An inherent limitation of the limit equilibriummethod is the need to define the general shape
of the failure surface in advance. A typical example of this limitation is the assumption of plane
failure surface in the calculation of passive resistance using Coulomb Theory. It is well known
that the assumption of plane failure surface is not reasonable for roughwall. It is particularly the
case for passivewalls inwhich, as the value of soil-wall friction increases, Coulomb Theorymay
give increasingly non-conservative prediction. To improve this drawback, the Log-Spiral earth
pressure theory was firstly described in detail by Terzaghi (1943) and Terzaghi et al. (1996).
Based on the Log--Spiral method, tables and charts of passive pressure coefficients were
produced for cohesionless soil and simple geometry condition (Caquot and Kerisel, 1948).

More recently, a novel numerical limit analysis using classical upper and lower bound
theorems have been performed for passive earth pressure problems (Shiau et al. 2004 and 2006).
Using an associated flow rule, their results typically bracket the true solution within 10% or
better. The numerical techniques, developed at Newcastle, have also been successfully applied
to a large number of geotechnical stability problems (Lyamin and Sloan, 2002a and 2002b).

In this paper, the classical passive earth pressure problems are investigated by using the
explicit finite difference code FLAC -- a popular numerical tool in Australia and many other
countries. A number of modelling issues in creating an accurate model are discussed. It is hoped
that this knowledge will enable some numerical pitfalls to be avoided by practicing engineers
in their future analysis.

2. STATEMENT OF THE PROBLEM

The numerical experiment presented in this paper consists of a vertical gravitywall and a level
backfill, as illustrated in Figure 1. The backfill soil is taken to be c - φMohr-Coulomb material
with a unit weight γ. The soil-wall interface roughness is represented by a friction angle δ and
an adhesion ca. For a c- φ backfill, δ= 0 and ca= 0 indicates a perfectly smooth wall while
a perfectly rough wall is modelled by adopting δ= φ and ca= c.

In a similarmanner to the bearing capacity equation of Terzaghi, the total passive thrust acting
on the wall, Pp, can be defined in terms of passive earth pressure coefficients Kpγ and Kpc,
according to Equation (1):

Pp= 12 γH
2Kpr+ cHKpc (1)
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rigid wall with interface properties

c, φ, γ

potential slip line for passive wall

Figure 1. Problem notation and potential failure mechanism
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For a cohesionless backfill soil, Equation (1) is reduced to Pp= 12 γH
2Kpr and is governed

by the soil-wall friction angle δ and the backfill frictional angle φ for a drained analysis. Using
equation (1), the values of Kpγ can be determined and compared with other available solutions.
To determine the value of Kpc, a weightless soil can be given in the analysis by setting γ= 0.

In all computations presented, a cohesionless backfill soil is assumed (c= 0) and thus Kpγ
is the only coefficient presented throughout this paper. Both associated flow rule and
non-associated flow rules will be examined in this paper.

3. EXPLICIT FINITE DIFFERENCE METHOD (FLAC) AND THE NUMERICAL MODEL

FLAC is a very popular tool in the design of many geotechnical structures by practising
engineers in Australia and many other countries. Although the code is based on the the explicit
finite difference method, it is not very different from a nonlinear finite element program. An
explicit time marching scheme (known as dynamic relaxation using the full dynamic equation
of motion, Otter et al. 1966) is adopted to solve the resulting equations which are identical to
those in the finite element formulation. To solve a static system using the dynamic equation of
motion, an artificial nodal damping is needed so that kinetic energy can be gradually removed.

Nodal unbalanced force is one of the main convergence criteria in this explicit method. In
order to minimise the initial oscillation of the system, small time stepping must be used. This
unavoidably increases the solution time to a certain extent. This also requires significant
experience and judgement when using this numerical code. For example, the analysis in this
paper requires applying a uniform velocity into the gravity wall so that a passive failure can be
estimated. In practice, themethodwould thus suggest a small velocity to be applied to the system
with a large number of time steps, thereby implying that the user would have to decide whether
sufficient time steps have been performed so that a solution close to failure obtained. However,
the method avoids the solution of large sets of equations (unlike the traditional finite element
method) -- a big saving for computer memory. Indeed, FLAC is comparable to a constant stress
triangular element in the finite element method despite the difference in solution scheme.

Figure 2 shows a typical mesh for the problem considered. The bottom and right hand edges
of the mesh are fixed since it is assumed that the failure mechanism is contained within the
proposed grid. Note that this condition needs to be checked for each case and in some instances
(e.g. for very rough soil-wall interfaces) larger meshes are necessary to ensure that the optimal
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failuremechanism is captured correctly. In all computations conducted, the right hand boundary
is taken to be five times the height of the wall.

An elastic material is assigned to the zones of the gravity wall while the backfill soil follows
a Mohr--Coulomb behaviour with either associated or non-associated flow rule. To model the
effect of sliding and/or separation on the soil-structure interface, a zero thickness interface is
used. Those nodes on the interface boundary are given a differentmaterial property from the one
adopted for the backfill soil. For cohesionless soil, a smooth wall is modelled by adopting a zero
interface friction angle δ. For a perfectly rough wall, the maximum value of wall friction δ is
equal to the backfill soil friction angle φ. Note that the nodes at the bottom of the wall actually
have no contact with the soil even though they have the same nodal coordinates. These nodes
are not allowed to move in the vertical direction in order to simulate a heavy gravity wall.

To induce passive failure, a rigid retaining wall of height H is pushed horizontally into the
soil. Physically this means that a small velocity should be applied to the right of the nodes that
are fixed in x and y direction at the edge of gravity wall. After the resulting problem is solved
for the imposed boundary conditions, the passive force Pp is obtained by adding up all the
reaction forces along the nodes at the edge of gravity wall. The relevant passive earth pressure
coefficients Kpγ can then be found by direct substitution in Equation (1) .

Figure 2. A typical finite difference grid for the soil-structure interaction analysis

u=v=0

H
loading direction

u=v=0

interface friction angle δ

(Apply Xvel)

vertical movement
along the bottom of
the wall is not
allowed; v=0

elastic zone for the wall
caand adhesion free forming surface

4. RESULTS AND DISCUSSION

4.1 Model Verification

The numerical model is firstly verified with the available solution using a smooth soil--wall
interface and a cohesionless backfill sand (φ= 40˚, c= 0). Presented in Figure 3 are contour
plots for comparing the maximum shear strain rate for two boundary conditions using an
associated flow rule. The first boundary condition (FIX) represents the case where the nodes
located along Side A are fixed, while the second boundary condition is for NO FIX. Figure 3
demonstrates that a better strain distribution can be obtained for the FIX condition even though
both cases yield similar failure mechanisms. Note that a large stress concentration is observed
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near the corner of the wall with NO FIX condition. The FIX and NO FIXmodels predict values
of Kpγ= 5.047 and Kpγ= 4.928 respectively. For this particular case (φ= 40˚, c= 0),
Rankine’s solution gives a value of Kpγ= 4.6, indicating that our numerical model predicts a
Kpγ value that is approximately 8% greater than the true solution. A deformed grid for the NO

FIX case is also shown in Figure 4, which clearly shows a shear band with a width of
approximately four elements.

Figure 3. A comparison of maximum shear strain rate between FIX and NO FIX cases
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nodes located on
this boundary are
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loading direction
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Figure 4. A deformed mesh for the NO FIX case in Figure 3

loading direction

To improve solution accuracy, the total number of elements adopted in Figure 2 are doubled
and a Kpγ value of 4.911 for the finer mesh (not shown in this paper) is calculated. It is thus
concluded that the solution can only be slightly improved by increasing the total number of
elements. A fan-shaped mesh centred about the bottom corner of the retaining wall has been
shown to improve the results considerably in their upper and lower limit analyses (Shiau et al.
2004 and 2006). This has the advantage of aligning stress discontinuities along the potential slip
plane and can be adopted in future analyses. Langen and Vermeer (1991) have also shown that
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the introduction of an internal interface (near the singular plasticity point) in the finite element
mesh would improve the computational results considerably. Intuitionally, the introduction of
a 45 degree edge cut (Figure 5) would also benefit the numerical solution.

c, φ, γ

Figure 5. A proposed 45 degree edge cut near the singular point

Pp

4.2 Associated and Non-Associated Flow

Classical limit equilibrium method and limit analysis theory assume an associated flow rule,
which restricts the direction of plastic flow such that ψ= φ. For non--associated materials, the
dilation angle ψ cannot be greater than the soil friction angle φ, whilst in real soils it is always
smaller than φ. Normality is sometimes presented as a serious restriction on the use of these
methods for geotechnical stability problems. Provided that the problem is not kinematically
restricted, this concern is of minor importance (Davis 1968), although it is possible to carry out
an analysis using a “residual” friction angle to model non-associated behaviour (Drescher and
Detournay 1993, Shiau et al. 2003).

Figure 6. A comparison of maximum shear strain rate for different dilation angles (FIX)
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Using the model verified above (FIX), numerical computations are conducted for
non-associated flow with different dilation angles. Shown in Figure 6 is a comparison of
maximum shear strain rate for different dilation angles (ψ= 0˚, 20˚, and 40˚). It indicates
that the useof associated flowover-estimates the passive earth resistance, as in reality thedilation
angle would range between zero and the internal soil friction angle.

Figure 7. Velocity contours for various wall frictions (associated flow)

δ∕φ LogS UB LB This Paper

17.50 20.10 18.64 20.501

Note: LogS, UB and LB are log-spiral, upper bound and lower bound results

δ∕φ LogS UB LB This Paper

13.08 12.87 11.30 13.422/3

δ∕φ LogS UB LB This Paper

10.50 10.03 8.79 10.501/2

δ∕φ LogS UB LB This Paper

8.17 7.79 6.87 8.261/3

δ∕φ LogS UB LB This Paper

4.60 4.61 4.60 5.050
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4.3 Soil-Wall Interface Friction

To compare the numerical results for various soil-wall interface frictions to those using
rigorous upper and lower bounds (Shiau et al. 2004 and 2006), the associated flow with soil
parameters φ= 40˚, ψ= 40˚, and δ∕φ= 0, 1∕3, 1∕2, 2∕3, and1 is adopted. Figure 7
shows the velocity diagrams (in contour format) for the comparison. Also shown in this figure
are the Kpγ values for the Log-Spiral method, Upper Bound, Lower Bound and FLAC.

Numerical results shown in Figure 7 predict reasonable Kpγ values for all rough wall cases.
For the smooth case, a value of Kpγ= 5.05 that is 8% higher than the true solution of

Kpγ= 4.60 is obtained. It is interesting to note that numerical results obtained using FLAC are
neither upper bound nor lower bound on the true solution. When a decision has to be made with
regard to the final ultimate passive resistance for design purposes, it seems that the bounding
results presented in Shiau et al. (2004 and 2006) are more reliable as the users would have a
knowledge of the range of true solutions.

5. CONCLUSIONS

A numerical study on classical ultimate passive earth pressure problem has been carried out
in this paper using a numerical tool called FLAC. The study covers a wide range of factors
including the boundary effect, associated and non-associated flow rule, and the effect of soil-wall
friction. Numerical results are compared with those using rigorous upper and lower bounds. It
is concluded that reasonable predictions can be made using this numerical tool, provided that
careful verification is made. The upper and lower bound results produced by Shiau et al. (2004
and 2006) are helpful in verifying the current numerical model. It would be interesting to see
more results published in the future using this model.
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