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Abstract
This paper deals with the numerical analysis of a test for the bending rigidity of textiles as 
proposed by Peirce. The mathematical model treats textile product as an elastica which is 
subject to large deflections. The results of the numerical calculations discussed in this paper 
are presented on the relevant graphs. The optimal conditions of Peirce’s test were also con-
sidered, in order to obtain the results of measurements most sensitive to changes of the input 
parameters. The results of the calculations are compared with the practical implementation 
of this test as commonly applied in textile laboratories.
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n Introduction
In most cases, authors who deal with the 
bending effect of textiles take advantage 
of Peirce’s theory as presented in the 
classic work [1], which contains the 
theoretical fundamentals on which most 
of today’s methods for the static meas-
urement of bending rigidity are based.
Peirce considered the large deflection of 
thin beams using the basic formula which 
describes the pure bending theory of an 
elastic beam bending within the limit of 
linear strain. This can be solved by using 
the Bernoulli-Euler law given by

1/r = M/C                    (1)
where: 
r  - the radius of curvature of the de-

flected curve, 
M - the moment occurring at any section 

within the beam, and C is the bend-
ing rigidity.

Assuming a constant value of the bend-
ing rigidity C = const., we obtaain the 
information that the bending moment is 
directly proportional to the curvature

k = 1/r
M = C k                     

(2)

Peirce proposed a simple test for describ-
ing bending rigidity, the scheme of which 
is shown in Figure 1. The starting point 
for this test is the measurement of the 
cantilever length l of a textile sample 
with one edge fixed on the platform 
and deformed under its own weight as 
a cantilever. As soon as the straight line 
connecting the edge of the platform and 
the leading edge of the fabric makes an 
angle of  q = 43° to the horizontal, the 
cantilever length l is measured.

Next, Peirce introduced in his consid-
erations the concept of bending length 
D defined as

D = l . f(q)                   (3)

where for the sample, as in Figure 1, the 
function f(q) can be assumed in the form

Hence

The fabric bending rigidity C is calcu-
lated by the formula

C = D3 q                       (6)

where q is the fabric weight per unit area.

The choice of inclination angle of he 
chord q =43° is primarily based on the 
ease of calculating the bending length as 
half of the cantilever length. For q =43° 
we have 

cos(q/2)/tg(q) » 0.998 » 1.

Thus  D = l/2 and bending rigidity is de-
fined in a simple way as

C = (l/2)3 q                      (7)

Finally, the bending length is a certain meas-
ure of bending rigidity.

D = (C/q)1/3                            (8)

n Numerical Analysis 
of Peirce’s Test 

In this paper, it is assumed that during 
the run of bending effect the flat strip 
of the fabric will be represented as its 
longitudinal section. The mathemati-
cal model will be described as a flat 
deflection curve; this will be treated as 
a heavy elastica, as shown in Figure 2. 
It is assumed that the particular longitu-
dinal sections do not act on each other 
by internal forces (plane stress). Further-
more, the constancy of properties along 
the whole width of the bending strip is 
assumed.

Therefore, instead of studying the strip of 
fabric, the numerical analysis will be con-

Figure 1. Peirce’s cantilever tester. 
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cerned with deflections of heavy elastica 
of a given bending rigidity and appropri-
ate linear weight. Furthermore, it will be 
assumed that the elastica is inextensible. 
It should also be pointed out that the as-
sumption of inextensibility is somewhat 
limiting. However, this assumption is 
often made in large-deflection analysis.

Each point of the centre line of elastica 
is defined by a curvilinear coordinate 
s measured along the elastica passes to 
the point x(s), y(s) in a fixed coordinate 
system. Internal forces occurring at any 
cross-section within the elastica are re-
duced to the following components: hori-
zontal force Fx(s), vertical force Fy(s) 
and the couple of forces M(s). 

The equilibrium of an infinitesimal sec-
tion of elastica ds (Figure 3), the assump-
tion of inextensibility and physical law 
(2) taking into consideration 

k = da/ds

lead to the following system of nonlinear 
first-order differential equations (9) which 
describe the elastica’s bending behaviour.

Equations (9) are the differential equa-
tions of heavy elastica in which the un-
knowns are the functions of variable s: Fx, 
Fy, M, a, x, y. The system of equations is 
completed by boundary conditions that 
are usually connected with the two ends 
of the elastica.

In the case of the fabric sample fixed as 
in Figure 4, the boundary conditions are 
as follows: 

n end A fixed: xA = 0, yA = 0, aA = 0
n end B free: FxB = 0,  FyB = 0, MB = 0.

Owing to FxB = 0,  FyB = 0, and dFx /ds = 0,  
dFy /ds = q, equations (9) can be expressed 
in simple form because the horizontal 
force is missing and the vertical force is 
described by very simple expression.

Fx = 0  
Fy = q(s-l)                        

(10)

For the above-mentioned example, a sys-
tem of four first-order differential equa-
tions was obtained.

Equations (11) and two algebraic equa-
tions (10) describe the fabric bending be-
haviour. The fabric, treated as an elastica, 
is fixed as in Peirce’s cantilever test.

Before solving the differential, equa-
tions (11) were transformed to dimension-
less form. For that purpose an additional 

parameter was defined. This parameter 
combines bending rigidity C with linear 
weight q according to formula (8). Pa-
rameter D is the bending length proposed 
by Peirce. All variables occurring in equa-
tions (11) were reduced to dimensionless 
form according to the formulae

Then equations (11) become

Finally, equations (13) were applied for 
calculation. Using parameter D brings 
about the situation that, in equations (13), 
it is not necessary to directly apply the 
values of C and q, but only their quotient.

The solution of the elastica equations 
with specified boundary conditions by 

Figure 2. The model of fabric approximate to elastica. 

Figure 3. Infinitesimal section of elastica showing forces acting on it. 

Figure 4. Elastica in fixed coordinate 
system. 

fabric

elastica
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means of elementary functions is not 
generally possible. Only for weightless 
elastica (q=0) are the solutions given with 
the help of elliptic integrals. This can be 
found (among other things) in work [2].

For that reason, the elastica equations 
were solved using numerical methods. 
In other words, solutions are sought in 
the form of numerical values of unknown 
functions in individual points of elastica. 
The assumed number of points of divi-
sion for elastica can affect the accuracy 
of the calculations.

n Numerical Solution of 
Differential Equations of 
Elastica Using Shooting 
Method 

Differential equations (11) or their di-
mensionless form (13) present a system 
of four ordinary differential equations 
with four unknowns which are the 
functions of curvilinear coordinate s. 
At the initial point of integration range 
(clamped end A) for s=0, only three val-
ues a, x, y are known, whereas the value 
of the bending moment M is unknown. 

For that reason, it is not possible to di-
rectly use the method which solves the 
initial value problem (for example the 
Runge-Kutta method). 

The shooting method was used to solve 
the system of differential equations 
(13). This method is described (among 
other things) in work [3]. Thanks to the 
shooting method, we can find the missing 
boundary conditions at the clamped end 
of the elastica (for s=0). In this case, the 
value of bending moment M is missing at 
the starting point.

The boundary conditions for each of the 
two ends of elastica are as follows.

Initial point A (s=0):  
known xA = 0, yA = 0,  aA = 0  
unknown MA= ?  
 

Final point B (s = l):
known  MB = 0,
unknown xB = ?, yB = ?,  aB = ? 

The unknown value of bending moment  
MA at the initial point A yields a so-called 
initial vector for the shooting method 

Figure 5. Graph of the angle q (l, D) in the form of contour lines (a) and 3D-graph (b). 

Figure 6. Graph of function q (l). Figure 7. Graph of function q (D). 

which in this case has one component. 
It should be near to a possible accurate 
solution. 

The bending moment M  is the function 
of s and ΜA.

M = M(s, MA)   

for s = l, M = M(l, MA) = MB    

Additionally, in the shooting method one 
nonlinear equation is solved which relates 
to the end B.

M(l,MA) = 0               (14)

To solve equation (14) the Newton-
Raphson method has been applied.

Because in Peirce’s test an angle of chord 
(Figure 1) is an essential parameter, the 
presentation of the results of the numeri-
cal calculations was limited only to this 
angle q, which was obtained by means of 
the coordinates xB, yB of end B according 
to the formula 

q = arc tg(yB/xB)             (15)

The calculations were carried out for the 
following range of l and D:

0.05m £ l £1.0m
0.25m £ D £0.6m

In this way, a table of the values of angle 
q for various l and D is obtained. The 
graph of the angle q as a function of 
two variables q = q(l, D) is shown in 
Figure 5 in the form of contour lines (a) 
and in the form of a 3D-graph (b). Ad-
ditionally, in Figure 5a, the contour line 
for q = 43° is denoted by a thick dashed 
line. Measurements are most often made 
at the angle of 43°.

0.2 0.4 0.6 0.8 1.0
0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60
D, m

l , m

 = 43o

 = const.

D , m l , m

 , deg

a) b)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

10

20

30

40

50

60

70

80  , deg

l , m

= 0,25 mD
D

D

D

D

D

= 0,30 m

= 0,40 m

= 0,50 m

= 035 m

= 060 m

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65
0

10

20

30

40

50

60

70

80  , deg

D , ml = 0,2 m

l= 0,4 m

l = 0,6 m

l = 0,8 m
l = 1,0 m

a) b)

D, m

l, m

D, m l, m

q, deg

q, deg q, deg

l, m D, m

q = 43o

q = const.



FIBRES & TEXTILES in Eastern Europe   October / December 2003, Vol. 11, No.  4 (43)56 57FIBRES & TEXTILES in Eastern Europe     October / December 2003, Vol. 11, No.  4 (43)

Figure 8. Graph of ∆q  in the form of contour lines. Figure 9. Graph of the angle q with the line of the most sensitivity q=53°. 

As we can conclude from Figure 5, the 
bending angle of the textile sample in-
creases along with an increase in length 
l or when its bending length D decreases 
(bending rigidity). Figure 6 shows a 
graph of the function q(l) for several se-
lected bending lengths D; Figure 7 shows 
a graph of the function q(D) for several 
selected lengths l of samples.

No experimental test is effective and 
reliable when its results are sensitive 
to changes in the values of the input 
parameters. In the case of Peirce’s test, 
this means that if the change in bending 
rigidity C or the length l of sample do not 
clearly affect bending angle q, then the 
bending rigidity cannot be estimated by 
this method. 

The change in length ∆l and bending 
length ∆D produce a change in the bend-
ing angle ∆q. Because the angle q is a 
function of two variables, the differential 
∆q can be numerically calculated at indi-
vidual points of the integration range, as 
it has the values of the bending angle q at 
these points.

Of most interest is the place where the 
function ∆q achieves its maximum, be-
cause in this test the greatest possible 
increment of the angle q is expected. 
The partial derivatives in equation (16) 
were calculated by the finite differences 
method using values of the angle q. By 
fixed relative increments

el = Dl/l
eD = DD/D,  

the increment ∆q is a function of the 
length l and bending length D. The maxi-
mum value of the function ∆q denotes 
the maximum sensitivity of the angle q 
to the changes in l and D. The graph of 
∆q for the assumed  el=ep=0.01 is shown 
in Figure 8, in which the maximum of 
the function ∆q by thick line is marked. 
As a result of the comparison of graphs 
of the angle q and its increments ∆q, it 
was found that maximum sensitivity of 
the angle q occurs for the value q=53°; 
this is greater by about 10 degrees than 
the value q=43° proposed by Peirce. This 
angle is marked in Figure 9 by a thick 
line. At this angle, the measurement is 
most sensitive to changes in the param-
eters l and D.

n Conclusions 
Numerical analysis of the mathematical 
model of Peirce’s test proved to be ef-
fective. The shooting method applied for 
solving the boundary value problem was 
sufficiently fast and stable. However, the 
disadvantage of this method for solving 
the equation of elastica is the limitation 
of its usage for relatively large bending 
rigidity. Below a certain limiting value 
(about 0.18 m for bending length), the 
shooting method may be divergent.

On the basis of numerical analysis, it 
was found that measurement is the most 
sensitive to changes in the parameters l 
and D for the angle q=43°. Small changes 

of l and D, of the order of 1%, cause a 
maximum change in the increment of the 
bending angle ∆q. 

The findings obtained differ by about 10° 
from Peirce’s recommendation regarding 
measurements by bending angle q=43°. 
However, this difference is relatively 
small and does not call into question the 
implemented tests of the bending rigid-
ity of textiles. It should also be pointed 
out that the choice of inclination angle 
of chord q=43° by Peirce is primarily 
based on the ease of calculation of bend-
ing length D. 

On the basis of Figures 8 and 9, it should 
also be noted that the increment ∆q rap-
idly decreases for small values of the 
angle q. Therefore if it is necessary to 
change the angle of measurement 53° it is 
better to increase its value, because then 
the high sensitivity of the obtained results 
will be maintained.
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