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ABSTRACT 

Numerical s o l u t i o n s of the v e l o c i t y p r o f i l e s f o r 

laminar, s t r a t i f i e d f low of two i m m i s c i b l e , Nev/tonian l i q u i d s 

i n a c i r c u l a r pipe were determined f o r v i s c o s i t y r a t i o s of 

1, 10, 100 and 1000 at v a r i o u s i n t e r f a c e p o s i t i o n s . These 

r e s u l t s were used to c a l c u l a t e the t h e o r e t i c a l v o l u m e t r i c 

flow r a t e enhancement f a c t o r s , power r e d u c t i o n f a c t o r s and 

hold-up r a t i o s , which f o r laminar flow depend only upon the 

v i s c o s i t y r a t i o and the i n t e r f a c e p o s i t i o n . The maximum 

v o l u m e t r i c f l o w r a t e enhancen.erit f a c t o r s and maximum power 

r e d u c t i o n f a c t o r s , and the corresponding input volume r a t i o s , 

were determined. Dimensionless q u a n t i t i e s were used, making 

the r e s u l t s a p p l i c a b l e to any pipe diameter, any l i q u i d 

v i s c o s i t i e s . a n d any pressure g r a d i e n t , p r o v i d i n g laminar flow 

of both phases p r e v a i l s . 

The t h e o r e t i c a l r e s u l t s were compared to the 

experimental r e s u l t s of R u s s e l l , Hodgson and Govier f o r 

h o r i z o n t a l cocurrent f l o w of a m i n e r a l o i l and water i n a 

c i r c u l a r pine. As expected, the two sets of r e s u l t s d i f f e r e d 

c o n s i d e r a b l y i n the r e g i o n of t u r b u l e n t water f l o w . As 

turbulence decreased however, the d i f f e r e n c e decreased, u n t i l 

i n the laminar region very good agreement between the 

t h e o r e t i c a l and experimental r e s u l t s was obtained. 
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NOMENCLATURE 

a - constant i n polynomial equation 

b - constant i n polynomial equation 

c - constant i n polynomial equation 

d - constant i n polynomial equation 

D - diameter of pipe 

e - constant i n polynomial equation 

f - e x t e r n a l f o r c e 

S~ ~ g r a v i t a t i o n a l constant 

h - d i s t a n c e between e q u a l l y spaced p o i n t s i n Douglass-
Avakian method 

k - c o e f f i c i e n t of h 

L - l e n g t h of pipe 

p - d i s t a n c e from i n t e r i o r nodal p o i n t to the boundary 

P - pressure 

A P - f r i c t i o n a l pressure drop 

q - d i s t a n c e from e x t e r n a l nodal p o i n t to the boundary 

Q - v o l u m e t r i c flow r a t e 

r - r a d i a l d i s t a n c e from centre of the pipe 

R - J r a d i u s of-'pipe 

Re - Reynolds number 

s - h a l f the d i s t a n c e between i n f i n i t e p a r a l l e l p l a t e s 

t - time 

u - v e l o c i t y i n the x d i r e c t i o n 

u' - dimensionless v e l o c i t y , i n x d i r e c t i o n 

U - average v e l o c i t y i n x d i r e c t i o n 



v - v e l o c i t y i n the y d i r e c t i o n 

V - s u p e r f i c i a l v e l o c i t y 

w - v e l o c i t y i n the z d i r e c t i o n 

W - power per u n i t l e n g t h 

x v - C a r t e s i a n c o o r d i n a t e ; h o r i z o n t a l d i s t a n c e along the 
l e n g t h of the pipe 

x' - ^, di i n e n s i o n l e s s 

X - v a r i a b l e i n polynomial equation 

y - C a r t e s i a n c o o r d i n a t e ; v e r t i c a l d i s t a n c e from bottom of 
the pipe 

y' - dimensionless 

Y - v a r i a b l e i n polynomial equation 

z - C a r t e s i a n c o o r d i n a t e ; h o r i z o n t a l d i s t a n c e across the pipe 

z' - •g, dimensionless 

Z - v a r i a b l e i n polynomial equations, Z = Y - 3h 
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- v i s c o s i t y 

yU.' - v i s c o s i t y r a t i o = '^/ju^ 
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S u b s c r i p t s 
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i - i n t e r f a c e 
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INTRODUCTION 

The p i p e l i n e transportation of heavy crude o i l i s 

d i f f i c u l t because of the high v i s c o s i t y of the o i l . Large 

and closely-spaced pumping stations are required to over-

come the high f r i c t i o n a l pressure drop associated with very 

viscous o i l . I t has been found (1,2,3.4,6) that addition 

of water to the o i l decreases the resistance to flow and 

f o r c e r t a i n proportions of water, the same volumetric flow 

rate of o i l can be maintained at lower pressure gradients 

and lower power requirements. 

Clarke (1), i n a private communication to Russell 

and Charles (2), reported, r e s u l t s using a heavy viscous 

crude o i l flowing i n a 0.375-inch p i l o t pipeline at Reynolds 

numbers of 10 to 20. The pressure gradient was reduced by 

f a c t o r s of 6 to 12 when 7-13% water was introduced. The 

shape of the i n t e r f a c e was not known but " i t was suggested 

that the water wetted the insi d e of the pipe p r e f e r e n t i a l l y . " 

Clark and Shapiro (3) patented a method, described 

by Russell and Charles (2),whereby they injected water and 

demulsifying agents into the flowing crude o i l . Using o i l s 

of v i s c o s i t i e s estimated at 800 to 1000 cp., r e s u l t s were 

reported f o r laminar flow i n a 6-inch commercial p i p e l i n e 



2 

3 m i l e s l o n g . They observed pressure g r a d i e n t r e d u c t i o n 

f a c t o r s r a n g i n g from 7«8 to 10 .5 w i t h the i n j e c t i o n of 

7-24 % water, and the maximum r e d u c t i o n f a c t o r at a water 

i n p u t of 8-10%. 

C h i l t o n and Handley (4) patented a process i n 

1958 which was subsequently mentioned i n a l e t t e r by 

C h i l t o n ( 5 ) . They observed a pressure drop r e d u c t i o n by 

adding a f i l m of water a-t the w a l l of a pipe c a r r y i n g 

extremely h i g h l y v i s c o u s crude o i l . Over a 5 0-foot l e n g t h 

of approximately one-inch p i p e l i n e there appeared no mixing 

of the o i l and water, and the water f i l m remained e s s e n t i a l l y 

i n t a c t over t h i s d i s t a n c e . 

R u s s e l l , Hodgson, and Govier' (6) s t u d i e d 

s t r a t i f i e d f l o w of a r e f i n e d m i n e r a l o i l and water i n a 

28-foot t r a n s p a r e n t p i p e l i n e w i t h a 0.806-inch diameter. 

The o i l , which had a v i s c o s i t y of 18 cp., was observed to 

be f l o w i n g above the water i n the la m i n a r r e g i o n . At a 

water content of 10%, the pressure g r a d i e n t was reduced by 

a f a c t o r of 1.2 at Reynolds numbers of 10 to 400. The 

authors a l s o found t h a t hold-up r a t i o was a f u n c t i o n of the 

input volume r a t i o i n the laminar r e g i o n , and was a l s o a 

f u n c t i o n of v e l o c i t y of the l i q u i d s i n the t u r b u l e n t 

r e g i o n . 

The experimental r e s u l t s d i s c u s s e d above are 
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summarized in Table I as in Russell and Charles (2). 

While the maximum pressure gradient reduction factor for an 

o i l of viscosity 18 cp. was listed as 1.2, which corresponds 

to 10% by volume of water input, examination of the actual 

data of Russell, Hodgson and Govier (6,7) showed factors as 

high as 1.52, which occurred at approximately 40% water 

input. 

The existence of an interface between the o i l and 

the water i s substantiated by the findings of Tipman and 

Hodgson (8) and Pavlov (9) as discussed by Russell and 

Charles(2). The former investigators found that the 

viscosity of an o i l and water emulsion i s almost always 

greater than that of the pure o i l . Therefore Russell and 

Charles concluded that a pressure gradient reduction can 

only occur i f the water flows as a separate phase. 

Two flow models for s t r a t i f i e d laminar flow of 

two immiscible liquids were investigated theoretically by 

Russell and Charles (2). The f i r s t model studied was that 

of a more viscous l i q u i d , A, flowing above a less., viscous 

li q u i d , B, between i n f i n i t e parallel plates. Equations 

relating pressure drop to geometry, flow rates and 

viscosities were developed. This was done by applying force 

balances to the two liquids and assuming that the velocities 

of the two are equal at the interface, which results in 

expressions for the volumetric flow rates of the more 



TABLE I 

PREDICTED AND OBSERVED PRESSURE GRADIENT REDUCTION FACTORS FOR OIL-WATER FLOW (2) 

Maximum predicted Maximum 
gradient reduction observed 

Reference Oil Type 
Oil 

gravity, 
Oil 

viscosity, 

factor pressure 
gradient 
reduction 
factor 

Oil Type 
. °API cp. 

Concentric 
flow 

Parallel 
plates 

pressure 
gradient 
reduction 
factor 

Clarke(l) Crude 7.0 800-1000* 400-500 3-4 12 

Clark and Shapiro (3) Crude 13.4 800-1000** 400-S00 3-4 10.5 

Russell et a l (6) Refined 38 18 9 2.2 1.2 

) 

* o 
Estimated viscosity of McMurray oil-sand o i l at ?0 C , the temperature at which the 

observations were made. 

� * 
Estimated from a general knowledge of the viscosity of heavy crude o i l s at normal 

pipeline temperatures. 
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viscous l i q u i d , . Q t̂ and the less viscous l i q u i d , Q̂ . The 

minimum fractional pressure gradient was found "by 

differentiating the expression for Q^/("^;) with respect 

to the i n t e r f a c i a l position, and equating the result to 

zero. Optimum positions of the interface for the greatest-

reduction in the pressure gradient were determined for 

viscosity ratios greater than one. As reported in Table I, 

the maximum pressure gradient reduction factor i s 4- for an 

o i l of viscosity 1000 cp. and 2.2 for an o i l of viscosity 

18 cp., flowing with water between parallel plates. It was 

also shown that the minimum power requirement could be 

A P 

computed by differentiating the expression for ~£Y, ̂ A + 

with respect to i n t e r f a c i a l position and equating the result 

to zero. 

The second model studied was that of concentric 

flow of two immiscible liquids in a circular pipe. The less 

viscous l i q u i d flowed next to the pipe wall as an annulus, 

with the more viscous liquid flowing inside of i t . Force 

balances were again employed to obtain expressions for the 

volumetric flow rates of the two liquids. By differentiating 
A. P 

the expression for Q,/( ) with respect to the in t e r f a c i a l 
A A L 

position and equating the result to zero, an in t e r f a c i a l 

position was determined for the maximum pressure gradient 

reduction. As before, optimum positions were found for 

viscosity ratios greater than one. Expressions were also 

obtained for maximum pressure gradient reduction factors, 
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by comparing the pressure drop f o r two-phase flow to the 

pressure drop i f the pipe were f l o w i n g f u l l of the more 

v i s c o i i s l i q u i d at i t s same vol u m e t r i c flow r a t e . The 

pressure g r a d i e n t r e d u c t i o n f a c t o r s f o r c o n c e n t r i c flow 

are very much gre a t e r than those obtained f o r p a r a l l e l 

p l a t e f l o w , as i s shown i n Table I . For an o i l of v i s c o s i t y 

1 0 0 0 cp., the maximum pressure g r a d i e n t r e d u c t i o n f a c t o r i s 

5 0 0 and f o r a v i s c o s i t y of 18 cp., i t i s 9 . Power r e d u c t i o n 

f a c t o r s were determined i n a manner s i m i l a r to t h a t of 

determining pressure g r a d i e n t r e d t i c t i o n f a c t o r s . The 

p o s i t i o n of the i n t e r f a c e f o r maximum power r e d u c t i o n f a c t o r 

was c l o s e r to the w a l l of the pipe than the i n t e r f a c e 

p o s i t i o n f o r maximum pressure g r a d i e n t r e d u c t i o n f a c t o r . 

The r e s u l t s , summarized i n Table I , show t h a t 

those values d e r i v e d from the two t h e o r e t i c a l models are 

q u i t e d i f f e r e n t from each other and a l s o quite d i f f e r e n t 

from the a v a i l a b l e f i e l d data. Maximum pressure gradient 

r e d u c t i o n f a c t o r s determined e x p e r i m e n t a l l y f o r the two 

crude o i l s f a l l between the values p r e d i c t e d by the two 

t h e o r e t i c a l models. However, the v a l u e s of the maximum 

f a c t o r measured f o r the r e f i n e d o i l , which was observed to 

be f l o w i n g as a s t r a t i f i e d l a y e r , f e l l below those p r e d i c t e d 

by the t h e o r e t i c a l models. R u s s e l l and Charles concluded 

t h a t f o r s t r a t i f i e d flow i n a c i r c u l a r pine, the maximum 

pressure gradient r e d u c t i o n f a c t o r f a l l s below t h a t 
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p r e d i c t e d f o r p a r a l l e l p l a t e f l o w . Since the measured 

va l u e s f o r the crude o i l s were 10.5 arid 12, which are above 

the 3-4 p r e d i c t e d f o r p a r a l l e l p l a t e f l o w , they concluded 

t h a t i n these cases the f l o w must be i n t e r m e d i a t e between 

c o n c e n t r i c and s t r a t i f i e d f l o w . I t i s thought t h a t such a 

c o n c l u s i o n cannot be drawn, because of the absence of the 

t h e o r e t i c a l s o l u t i o n f o r s t r a t i f i e d f low i n a c i r c u l a r pipe 

and because of the sparseness of the a v a i l a b l e experimental 

d a t a . 

The purpose of the present study was to provide 

the t h e o r e t i c a l s o l u t i o n f o r the case of s t r a t i f i e d laminar 

flow of two i m m i s c i b l e Newtonian l i q u i d s i n a c i r c u l a r p ipe. 

The r e s u l t s c f t h i s i n v e s t i g a t i o n could then be used to 

p r e d i c t pressure g r a d i e n t and power r e d u c t i o n f a c t o r s f o r 

t h i s type of f l o w as w e l l as hold-up and optimum inpu t 

r a t i o s . A l s o , the added r e s u l t s could be used to e i t h e r 

s u b s t a n t i a t e or d i s p u t e the above c o n c l u s i o n of R u s s e l l and 

C h a r l e s . The two l i q u i d s i n v o l v e d do not n e c e s s a r i l y have 

to be o i l and water but can be any two immiscible l i q u i d s , 

and t h e r e f o r e the model was solved f o r v i s c o s i t y r a t i o s , 

r a t h e r than absolute v i s c o s i t i e s , of 1.0, 10, 100 and 1000. 

The cases of v i s c o s i t y r a t i o s of 10,.100 and 1000 were 

solved f o r 8 d i f f e r e n t i n t e r f a c e p o s i t i o n s . Dimensionless 

flow equations were solved n u m e r i c a l l y , u s i n g r e l a x a t i o n 

methods, to o b t a i n v e l o c i t y p r o f i l e s f o r any s i z e of pipe. 

Volumetric f l o w r a t e s were e a s i l y determined from the v e l o c i 
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p r o f i l e s . From these d a t a , values of the pressure gradient 

r e d u c t i o n f a c t o r s and power r e d u c t i o n f a c t o r s were 

determined as w e l l as l o c a t i o n of the i n t e r f a c e f o r the 

maximum f a c t o r s . The r e l a t i o n s h i p between hold-up r a t i o , 

i n p u t volume r a t i o and v i s c o s i t y r a t i o were a l s o shown. 

The t h e o r e t i c a l r e s u l t s were compared to the 

experimental case of s t r a t i f i e d flow (6) f o r a v i s c o s i t y 

r a t i o of 20.1, w i t h regards to hold-up r a t i o s , f r i c t i o n a l 

pressure drop and pressure g r a d i e n t r e d u c t i o n f a c t o r s . 



COMPUTATIONS 

A. V e l o c i t y P r o f i l e s 

a. Theory 

The present study c o n s i d e r s the s t r a t i f i e d , 

laminar flow of two i m m i s c i b l e , i n c o m p r e s s i b l e , Newtonian 

l i q u i d s i n a c i r c u l a r p i p e . A schematic diagram of the 

fl o w s i t u a t i o n i s shown i n f i g u r e 1 w i t h the co o r d i n a t e 

a x i s marked. 

y 

z 

Figure 1. Schematic Diagram of Flow Model 
( l i q u i d B more dense than l i q u i d A) 

The b a s i c assumption i s made that the v e l o c i t y a 

the pipe w a l l i s zero. I t i s f u r t h e r assumed t h a t at the 

i n t e r f a c e both l i q u i d s d i s p l a y the same v e l o c i t i e s and 

equal but opposite shear s t r e s s e s with' respect to the 
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i n t e r f a c e . These boundary c o n d i t i o n s can be a p p l i e d to the 

Navier-Stokes momentum equations, which d e s c r i b e the flow. 

The Navier-Stokes equation f o r an i n c o m p r e s s i b l e 

f l u i d f l o w i n g i n the x d i r e c t i o n i s expressed as 

Dt " u a x ay dz Tt = x" ̂  ax T ^ 4 * ^ ^ ( 1 ) 

Because l a m i n a r , s t r a t i f i e d flow i s assumed in' a conduit of 

constant c r o s s - s e c t i o n a l area, there i s no f l o w i n the y and 

z d i r e c t i o n s and the Navier-Stokes equations v a n i s h f o r these 

two coordinate d i r e c t i o n s . 

The c o n t i n u i t y equation f o r s t e a d y - s t a t e f l o w of 

an i n c o m p r e s s i b l e f l u i d i s 

d5 + 5y +

 6z ~ 0 ( 2 ) 

Because there i s flow o n l y i n the x d i r e c t i o n , v = 0 and 

w = 0 and t h e r e f o r e 

i£ - 0 

A l s o s i n c e s t e a d y - s t a t e e x i s t s , 

^ = 0 
at u 

and t h e r e f o r e Du = 0 
Dt 

(3) 

W 

(5) 
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From equation (3) i t follows that 

» 0 (6) 

<ix2 

As there are no significant external forces in the x 

direction, 

f = 0 (7) 

The Navier-Stokes momentum equations thus reduce to the 

following; single equation for the case of steady-state, 

laminar flow of an incompressible liquid in the x direction: 

Equation (8) applies to each liqu i d , using i t s respective 

viscosity. 

At the interface, the condition of equal and 

opposite shear stresses i s expressed as 

Equations (8) and (9) restricted by the requirement of no 

s l i p at the wall and ;at the interface describe completely 

the flow conditions investigated. 

The absolute quantities of these equations are 

transformed to dimensionless quantities, so that the results 

are applicable to any pressure gradient, pipe diameter and 
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v i s c o s i t y r a t i o of the two phases, r a t h e r than to s p e c i f i c 

pressure g r a d i e n t s , pipe diameters and v i s c o s i t i e s . This 

i s achieved by l e t t i n g : 

u» = / (10) 

where D A . *L ( - *|) (11) 

The q u a n t i t y i s the average v e l o c i t y i n a pipe f l o w i n g 

f u l l of l i q u i d A at the same pressure gradient as i n the 

two-phase f l o w . The f o l l o w i n g dimensionless d i s t a n c e s are 

used: 

r-l, »� - f (is) 

S u b s t i t u t i o n of equations ( 1 0 ) , (11) and (12) i n t o 

equations (8) and (9) converts the Navier-Stokes equation to 

and the shear f o r c e e q u a t i o n to 

— ± — A = — 2 (14) 

The f i n i t e d i f f e r e n c e approximation of equation (13) 

as shown i n M i c k l e y , Sherwood and Reed (10), i s expressed as 

u ' , - 2u' + u' , U ' , - 2U' + U ' , M* 
m-l,n m,n m+l,n + m,n-l m,n m,n+l _ _ Q ^ A ( - J . 5 ) 

( A y ' ) 2 ( A Z ' ) 2 
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The relaxation pattern, as shown in figure 2, is 

obtained by letting z\y' = A z ' and substituting subscripts 

1,2,3 and 4- for m,n-l, ra+l,n, m,n+l and m-l,n respectively. 

These four points are situated on straight lines at right 

angles to each other and at equal distances from the central 

point 0, which i s substituted for m̂ n. 

Figure 2. Relaxation Pattern 

Equation (15) then simplifies to 

+ u' 2 + u' 3 + u'^ - 4u» Q + 8~£( A y ' )
2 = 0 (16) 

which i s the general numerical flow equation to be applied 

to each l i q u i d . This equation i s solved by relaxation 

methods-which are described b r i e f l y in Appendix I. 
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The general procedure for obtaining a numerical 

equation applicable at the interface i s found in Allen (11), 

and was followed in this study. The f i n i t e difference 

approximation to equation (14) i s 

( UV U ' A 5) . <
UVU ,B 3) (17) 

By examining the relaxation pattern at the interface, as in 

figure 3 below, i t i s seen that the velocities u'. and u '-n 
A l H3 

are f i c t i t i o u s because u'^ i s in liquid B and u'^ i s in 

liquid A. 

Figure 3. Relaxation Patterns at the Interface 

Therefore u'. and u' p must be eliminated by substitution, 
A l !'3 
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Rewriting equation (16) as i t applies to each 

liq u i d , A and B , and le t t i n g -—— = zx , a dimensionless 

viscosity ratio, the following two equations result: 

u' + u' + u' + u» - 4u' + 8 ( A y ' ) 2 = 0 (18) 
' 1 2 3 4 o 

U ' B I
 + U ' B 2

 + U ' B 5
 + U ' B 4 " 4 U * B

 + 8^c'(Ay') 2= 0 (19) 

Multiplying equation (18) "by /A.' and subtracting equation 

(17) from i t eliminates u 1. . Subtraction of equation (19) 
A l 

from the resulting equation, eliminates u* n . Since the 

velocities at the interface are assumed equal, u' A = u' B , 
o o 

u'. = U'T, and u'» = u'^ , and therefore the f i n a l 
A2 B2 4 4 

equation at the interface i s 

Equations (18) and (19) in the main body of each l i q u i d , 

respectively, equation (20) at the interface, and no s l i p 

at the wall f u l l y describe the flow conditions. These 

equations were solved by relaxation methods to obtain point 

velocities throughout a relaxation grid for viscosity ratios 

of 10,100 and 1000 at 8 different interface positions. 

Points of the grid which were outside the curved boundary,on 

which a l l velocities are zero, were assigned negative values 

by extrapolating linearly as in figure 4. 
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Figure 4. Boundary C o n d i t i o n s 

In the case of a v i s c o s i t y r a t i o of one, the two 

l i q u i d s f l o w as one, t h a t i s , without any d i s c o n t i n u i t y i n 

the r a t e of shear. Therefore the same v e l o c i t y p r o f i l e 

e x i s t s f o r a l l i n t e r f a c e p o s i t i o n s . The g r i d p o i n t 

v e l o c i t i e s were c a l c u l a t e d by r e l a x a t i o n methods and from 

the F o i s e u i l l e e quation, 

u 

U 

Therefore u* 

The v e l o c i t y p r o f i l e obtained from the P o i s e u i l l e equation 

was used to c a l c u l a t e d e r i v a t i v e r e s u l t s f o r seventeen 

i n t e r f a c e p o s i t i o n s . 

( R 2 - r 2 ) 

R 

4/x 

2 

£ _ 2 ( R 2 - r 2 ) 
TJ " R 2 

(22) 

(11) 

(22a) 
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b. Sample Calculations 

Sample calculations are shown for a viscosity ratio 

of 10 and an interface situated mid-way between the centre 

and bottom of the pipe. If y i s the vertical height of the 

interface from the bottom of the pipe, this position 
•p 

corresponds to y^ = T>. Each case was solved for three 

different grid sizes, progressing from a coarse grid to a 

fine grid, unless a reasonable estimate of the velocities 

could be made directly for the finer grid. 

I n i t i a l grid size = ̂  

1 ? 1 
Therefore Ay» = £ and ( A y ' ) = j j -

and the resulting flow equations are 

for liquid A: u' +u' +u' +u' -4u' +2.00 = 0 (18a) 

1 2 3 4 o 

at interface: 0.182u' +u' +1.82u' +u'. -4u' +3.64 = 0 (20a) 

1 2 3 4 o 

and for liquid B: u 1^ +u' +u' +u'T3 -4u' +20.0 = 0 ( 1 9 a ) 

E l B2 B 3 B4 Bo 

These equations were solved by relaxation methods, 

typical calculations of which are shown in figure 5« Only 

half of the pipe cross-section was considered because the 

velocity profile i s symmetrical about the ve r t i c a l axis 

through the centre of the pipe. This condition of symmetry 

was imposed when performing the relaxation about the 

verti c a l axis, as il l u s t r a t e d in figure 7. 



- 0 . 4 3 

0 - 0 . 5 3 

1.88 
2 .00 1.30 \ 

2 .50 1.60 

- 1 . 3 0 - 0 . 9 6 

- 1 . 9 0 - 1 . 4 6 

� 0.10 - 0 . 0 6 

- 0 5 0 + 0 . 1 4 

- 0 . 0 2 + 0 0 2 

� 0 0 3 + 0 0 1 

� 0 . 0 2 

2.94 
2.95 2.19 
2 . 9 0 2 . 2 0 
3.50 2 .00 
- 2 . 8 0 � 0 . 9 0 

- 0 . 1 0 � 0 . 3 0 

+ 0 . 4 0 + 0 - 9 0 

- 0 1 0 + 0 . 6 0 

+ 0 . 3 0 - 0 . 2 0 

+ 0 . 1 8 - 0 . 0 7 

- 0 . 0 2 - 0 0 2 

- 0 . 0 1 + 0 . 0 2 

- 0 . 0 3 + 0 .01 

+ 0 0 1 

3.51 2.53 
3 5 0 2 .40 
3 .00 1.80 
+ 1 . 6 0 + 2 . 3 7 

+0 .31 - 0 . 2 7 / 

+ 1.71 � 0 . 2 3 / 

- 0 . 2 9 + 0 6 9 / 

- 0 0 3 + 0 0 3 / 

+ 0 0 6 + 0 0 4 / 

+ 0 - 0 2 *0X>2' 
0 

- 0 . 8 4 
- 0 . 8 0 
- 0 . 6 0 

LIQUID A 

0.43 

0 .53 

fl' = 10 

0 8 4 
� 0 . 8 0 
- 0 . 6 0 

INTERFACE 

LIQUID B 

Figure 5. Sample Relaxation Calculations 

(small numbers denote residuals) 
(large numbers denote values of u'). 
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Intermediate g r i d s i z e = ^ 

Therefore A y ' = | and ( A y ' ) 2 = ^ 

and the r e s u l t i n g -How equations are 

f o r l i q u i d A: u'. +u'i. +u' . +u', -4u'. +0.50 = 0 (18b) 
A l A 2 A 3 A 4 A o 

at i n t e r f a c e : 0.182u'„ +u'. +1.82u\ +u' -4u' +0.91 = 0 (20b) 
*1 A 2 A 3 A 4 A o 

and f o r l i q u i d B: u' +u'n +u' +u' -4u' +5.00 = 0 (19b) 
B 1 B 2 B 5 B 4 B Q 

These equations are sol v e d i n a s i m i l a r manner to the 

equations f o r the c o a r s e r g r i d . 

R 
F i n a l g r i d s i z e = g 

1 2 1 
Therefore A y ' = g and ( A y 1 ) = 

and the r e s u l t i n g f l o w equations are 

f o r l i q u i d A: u' A +u'& +u'fl +u' -4u' A +0.12 = 0 (18c) 
A l A 2 A 3 4 A o 

at i n t e r f a c e : 0.182u' +u' +1.82u'A +u\ -4u'. +0.23 = 0 (20c) 
al A2 A3 A 4 A o 

and f o r l i q u i d B: u' +u' + U ' , , +U' t i -4u'.r, +1.25 = 0 (19c) 
B l B 2 B3 B 4 B o 

These equations are so l v e d as p r e v i o u s l y , 

c. R e s u l t s 

F i n a l p o i n t v e l o c i t i e s are shown f o r g r i d s i z e s 

R R R 

of ?y, £ and g i n f i g u r e s 6,7 and 8 r e s p e c t i v e l y , f o r the 

sample case of y i = and JUL X = 10. H o r i z o n t a l and v e r t i c a l 
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v e l o c i t y p r o f i l e s f o r t h i s case are shown i n f i g u r e s 9 aud-

i o , r e s p e c t i v e l y . 

In f i g u r e 1 1 , v e l o c i t y p r o f i l e s through the c e n t r a l 

v e r t i c a l a x i s are compared f o r v i s c o s i t y r a t i o s of 1 0 , 1 0 0 

R 
and 1 0 0 0 , w i t h the i n t e r f a c e again at y±=> 



Figure 6. Sample of F i n a l P o i n t V e l o c i t i e s f o r G r i d 

S i z e A y' = | 

( s m a l l numbers denote r e s i d u a l s ) 



Figure 7. Sample of Final Point Velocities for Grid 
Size A y ' = y^' 
(small numbers denote residuals) 
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Figure 8. Sample of F i n a l P o i n t V e l o c i t i e s f o r G r i d S i z e 

A y ' = i ( s m a l l numbers denote r e s i d u a l s ) 



n-ure 9 . Horizontal Velocity Profiles for Interface 9t 



Figure 10. Vertical Velocity Profiles for Interface at 
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B. V o l u m e t r i c Flow Rates 

a. Theory 

The v o l u m e t r i c f l o w r a t e i s equal to the product 

of average v e l o c i t y and c r o s s - s e c t i o n a l area. Volumetric 

f l o w r a t e s f o r the study are approximated by assuming th a t 

a nodal p o i n t i n the g r i d i s the average v e l o c i t y f o r a 

square area of dimensions A y ' by A z ( , w i t h the nodal 

point at i t s c e n t r e . At the boundary, r e c t a n g u l a r - l i k e and 

t r i a n g u l a r - l i k e areas s m a l l e r than ( A y ' ) ( z 1 ) are l e f t 

over by t h i s procedure. These areas are approximated by 

r e c t a n g l e s , and the average v e l o c i t y computed as the 

a r i t h m e t r i c average of the v e l o c i t i e s at the f o u r corners 

of the r e c t a n g l e . The v e l o c i t i e s at the corners are found 

by i n t e r p o l a t i o n between nodal v e l o c i t i e s and boundary 

v a l u e s . The product of the point v e l o c i t i e s and the 

corresponding areas, i n c l u d i n g the boundary approximations, 

i s expressed as 2 u ' A ( A y')( A z 1 ) f o r l i q u i d A and as 

2 u' B( A y' ) ( A z ' ) f o r l i q u i d B. Transforming these 

expressions t o absolute v a l u e s the f o l l o w i n g r e l a t i o n holds: 

S u ' A ( A y ' ) ( A z » ) - A

 u •> - ^ (23) 
A U A R ^ A f u i i / r r 

where O ^ f ^ i i s the v o l u m e t r i c f l o w r a t e f o r the pipe flowing 

f u l l of l i q u i d A , under the same pressure g r a d i e n t as f o r 

the two-phase f l o w . The v o l u m e t r i c f l o w r a t e f a c t o r . 
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^ A ^ A f u l l ' a n e x P r e s s i ° n £°r comparing two-phase to one-

phase flow at equal pressure g r a d i e n t s . Factors g r e a t e r 

than u n i t y c o n s t i t u t e an advantage, because they s i g n i f y 

t h a t at the same pressure g r a d i e n t , more l i q u i d A can be 

t r a n s p o r t e d by two-phase flow than by single-phase f l o w . 

F a c t o r s s m a l l e r than u n i t y s i g n i f y an opposite e f f e c t . The 

equation f o r e v a l u a t i n g the v o l u m e t r i c flow r a t e f a c t o r i s 

QA_ ^ 2 u ' A ( ̂  y')( A, z') ( 2 3 ) 

Q A f u l l Tt 

Prev i o u s authors ( 2 ) have compared pressure 

g r a d i e n t r e d u c t i o n f a c t o r s at constant v o l u m e t r i c f l o w 

r a t e s . The f o l l o w i n g steps show the r e l a t i o n s h i p between 

t h i s f a c t o r and the v o l u m e t r i c f l o w r a t e f a c t o r of the 

present study. 

P o i s e u i l l e ' s e q uation f o r one-phase lam i n a r flow 

can be w r i t t e n as 

aP 
( ~ 3 x " ) f u l l = c l QA f u l l ( 2 4 ) 

S i m i l a r l y , f o r two-phase f l o w , since equation (8) i n d i c a t e s 

d i r e c t p r o p o r t i o n a l i t y between pressure g r a d i e n t and 

v e l o c i t y , 

( -H) .= c 2 Q A ( 2 5 ) 

t h e X 1 5A_ = f l ( 2 6 ) 
Q A f u l l C 2 
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and i f Q A f u n = QA, 

t h e n ' ( ~ H > f u l l C l ™ 

(- ^ ) 
-V,A V c3x f u l l 

Therefore — at equal pressure g r a d i e n t s = — r « 

at equal flow r a t e s (28) 

Thus the v o l u m e t r i c flow r a t e enhancement f a c t o r and the 

pressure g r a d i e n t r e d u c t i o n f a c t o r are the same. 

The maximum v o l u m e t r i c f l o w r a t e f a c t o r i s 

c a l c u l a t e d u s i n g the Douglass-Avakian method, as d e s c r i b e d 
p 

i n Appendix I I I , a p p l i e d to the seven p o i n t s , g a p a r t , between 

yj. = 0 and yi = jpR. A f o u r t h degree polynomial i s thus 

obtained, r e l a t i n g QA/Q^fu]_x
 t 0 i n t e r f a c e p o s i t i o n . 

T h i s polynomial i s d i f f e r e n t i a t e d and the r e s u l t equated 

to zero, to give the value and l o c a t i o n of the maximum 

v o l u m e t r i c flow r a t e f a c t o r . 

b. Sample C a l c u l a t i o n s 

Sample c a l c u l a t i o n s f o r v o l u m e t r i c flow r a t e s are 

based on the case of ytvc' = 10 and an i n t e r f a c e p o s i t i o n of 

y^ = The f i n a l p o i n t v e l o c i t i e s f o r t h i s case are shown 

i n f i g u r e 8. 

For most i n t e r i o r p o i n t s , except those near the 

boundaries, ( A y ' ) ( A z " ) = ^ and 
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2 U ' A 
= 0.49 + 0.97 + 1.40 + 1.78 + 2.11 + 2.39 + 2. 63 

+ 2.8$ + 3.oo + 3.15 + 3.28 + 0.39 + 0.86 + 1. 29 

+ 1.66 + 1.98 2.26 + 2.49 + 2.68 + 2.84 + 2. 98 

+ 3.10 + 0.68 1.10 + 1.46 + 1.77 + 2.04 + 2. 26 

+ 2.44 + 2.58 + 2.69 + 2.79 + 0.43 + 0.83 + 1. 19 

+ 1.49 + 1.74 + 1.94 + 2.10 + 2.22 + 2.30 + 2. 36 

+ 0 . 5 0 + 0.85 + 1.14 + 1.37 + 1.55 + 1.68 + 1. 76 

+ 1.79 + 1.80 + 0.43 + 0 .71 + 0.92 + 1.08 + 1. 18 

4 1.21 + 1.19 + 1.11 + 0.42 + 0.54 + 0.61 + 0. 60 

+ 0 .51 = 

At the v e r t i c a l a x i s and i n t e r f a c e ( ^ y ' ) ( A z ' ) = j^g and 

£ u ' A = 0 . 5 3 + 1.01 + 1.44 + 1.82 + 2.15 + 2.43 + 2.67 

+ 2 .88 + $.05 + 3 . 2 0 + 3-34 + 3.40 + 5.21 + 2.88 

+ 2.42 + 1.81 + 1.01 = 39.25 

At the i n t e r s e c t i o n of the v e r t i c a l a x i s and the i n t e r f a c e 

( A y ' ) ( A z ' ) = ^ and u' A = 3-46. 

For boundary areas approximated by ( A y ' ) ( A z ' ) = 

•£u' A = 0 .12 + 0 .27 + 0 . 2 2 + 0 .23 + 0 .23 '+ 0.22 + 0 .27 

+ 0 . 1 3 + 0 . 1 4 + 0 . 3 8 + 0 . 3 6 = 2.57 

For boundary areas approximated by ( A y ' ) ( A z ' ) = -g^g 

2 u ' A = 0.14 + 0.15 + 0.13 + 0.10 + 0.11 + 0.12 + 0.15 

+ 0.12 = 1.02 



For boundary areas approximated by ( A y ' ) ( A z . t ) = 

30 

1 
5 T 5 

2u' A = 0.08 + 0.06 + 0.08 + 0.06 + 0.06 + 0 . 0 9 = 0 . 4 3 

Therefore 2 V A ( A y ' ) ( A zl) - 9 or 1.655 

( ^ 2 ^ 2 , 5 2 ) o r 0 > 5 2 6 ? 

+ (3.46,1.02) o r 0 > 0 1 ? 5 

+ 0j|3 o r 0,00084 

= 2.00 

This value i s only f o r one h a l f of the pipe; therefore f o r 

the whole pipe 

2 u ' A ( A y ' ) ( A z ' ) = 4 .00 

and 
4.00 = 1.27 

Q A f u l l ^ 

The volumetric flow rate summation f o r l i q u i d B i s performed 

i n exactly the same manner. For the whole pipe, ^ ^ ( A y 1 ) 

O z ' ) = 1.44. 

Sample c a l c u l a t i o n s f o r l o c a t i n g the maximum 

volumetric flow rate f a c t o r are i l l u s t r a t e d f o r a v i s c o s i t y 

r a t i o of 10. The data f o r t h i s case are presented i n Table 
QA . • 

III . L e t t i n g X = -gp and Y = i n t e r f a c e p o s i t i o n and 
^ A f u l l 

following the Douglass - Avakian method, described i n 

Appendix I I I , the c a l c u l a t i o n table below can be set up: 
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Y X Z k kX k 5X k 4X 
=Y-0.375 

0 1 .00 - 0 . 3 7 5 - 3 - 3 . 0 0 9 . 0 0 - 2 7 . 0 0 81 .00 
0.125 1.12 . - 0 . 2 5 0 - 2 -2.24 4.48 -8 .96 17.92 
0.250 1.20 ' - 0 . 1 2 5 -1 - 1 . 2 0 1.20 - 1 . 2 0 1.20 
0.370 1.27 0 0 0 0 0 0 
0 .500 1.27 0.125 1 1*27 1.27 1.27 1.27 
0.625 1.18 0.250 2 2.36 4 . 72 9.44 18.88 
0.750 1.06 0.375 3 3.18 9.54 28.62 85.86 

0.37 30.21 2.17 206.13 

2 3 - 4 

The constants i n the polynomial X = ia+bZ+cZ +dZ +eZ are 

then c a l c u l a t e d as 

a - = 
524(8.10) - 245(30.21) + 21(206.13) i on 

= 1.2/ 

^ 397(0.37) 7(2.17) n 9 U 
b = l 5 l 2 ( o : i 2 5 ) " 2 l 6 ( 0 . i 2 5 ) = ° - 2 1 4 

c - -840,(8.10) + 679(30.21) - 67(206.13) _ _ 2 0 6 

c _ 3168 (0 . 125)2 -

A -7(0.37) +2.17; _ N QQR 
d = 216(0.125)3 =-0.998 

e = 
72(8 .16) - 67(30.21) +7(206.13) = 2 < 5 9 

3168(0125)^ 

The f o u r t h degree polynomial which f i t s the seven p o i n t s 

best i s then 

X = 1.27 + 0.214 Z - 2.06 Z 2 - 0.998 Z 5 + 2.59 Z 4 

and d i f f e r e n t i a t i n g , 

dX = 0 + 0.214 - 4.12 Z - 2 .99 Z 2 + 10.4 7? 

At 

dZ 

Z = 0 . 0 5 0 , ff=o 

Therefore the maximum v o l u m e t r i c flow r a t e f a c t o r occurs 

at Y = ( 0 . 0 5 0 + 0.375)R = 0.425R and the maximum value of 
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'-Afull 

X = 1.27 + 0.011 - 0.005 = 1.28 

c. C a l i b r a t i o n of Numerical Method 

The numerical s o l u t i o n of s t r a t i f i e d laminar flow 

of two l i q u i d s i n a c i r c u l a r pipe was examined f o r accuracy 

by two methods. F i r s t , i t was checked against the a n a l y t i c a l 

r e s u l t s f o r s i n g l e - l i q u i d flow given by P o i s e u i l l e ' s equation. 

Secondly, s i m i l a r numerical equations were derived f o r 

s t r a t i f i e d flow of two l i q u i d s between p a r a l l e l plates and 

solved by r e l a x a t i o n methods. These r e s u l t s were compared to 

the a n a l y t i c a l r e s u l t s reported by R u s s e l l and Charles (2). 

The diraensionless, numerical equation f o r single 

l i q u i d flow i s 

u ^ + u ' 2 + u' 5 + u\ - 4u' Q + 8 ( A y ' ) 2 = 0 (18) 

and f o r a g r i d size of A y = g, equation (18) becomes 

u', + u' 0 + u ' z + u'„ - 4u' + 0.12 = 0 

1 2 ^ 4 o 

This equation was solved by r e l a x a t i o n methods to obtain 

dimensionless point v e l o c i t i e s on the g r i d . In the f i r s t 

approximate s o l u t i o n , the res i d u a l s were unbalanced, that i s , 

there was a predominance of e i t h e r negative or p o s i t i v e 

r e s i d u a l s . Comparing t h i s unbalanced numerical s o l u t i o n 

to the a n a l y t i c a l s o l u t i o n of P o i s e u i l l e , the average per 

cent deviation of the v e l o c i t i e s was 1.25%. The residuals 



33 

were then balanced so t h a t the sum of a l l the r e s i d u a l s 

was approximately zero, and the average per cent d e v i a t i o n 

of the v e l o c i t i e s i n t h i s case was 0.4-5%. 

The v o l u m e t r i c flow r a t e s were c a l c u l a t e d f o r the 

two cases of unbalanced and balanced r e s i d u a l s . The 

a n a l y t i c a l r e s u l t i s 2 u ' ( A y ' ) ( A z l ) whereas f o r the 

unbalanced numerical s o l u t i o n , 2u* ( A y 1 ) ( A z 1 ) = 3.16 and 

f o r the balanced numerical s o l u t i o n , 2 u' ( A y ' ) ( A z ') = 3.14. 

The d e v i a t i o n f o r the unbalanced s o l u t i o n was thus 0.64^- and 

f o r the balanced case was undetectable i n three s i g n i f i c a n t 

f i g u r e s . Throughout the i n v e s t i g a t i o n , the r e s i d u a l s were 

not completely balanced; the above r e s u l t s show t h a t good 

agreement can n e v e r t h e l e s s be expected. 

TO 

For a l a r g e r g r i d s i z e of A y = JJ-, 2 u ' ( A y ' ) ( A z ' ) 

= 3 . 2 6 , which i s a d e v i a t i o n of 3 .8% from the a n a l y t i c a l 

r e s u l t . Therefore a g r i d s i z e of A y = -g was chosen, 

because of the b e t t e r agreement w i t h the a n a l y t i c a l r e s u l t . 

When the i n t e r f a c e was a d i s t a n c e g above the 

bottom of the pi p e , there were no g r i d p o i n t s i n the region 

of flow of l i q u i d B w i t h a g r i d s i z e of A y = g. Therefore 

a g r i d s i z e of A y = was used. E r r o r s i n the c a l c u l a t i o n 

of 2 u ' p ( A y ' ) ( A z ' ) u s i n g the l a r g e r g r i d , e s p e c i a l l y at 

high v i s c o s i t y r a t i o s , were e l i m i n a t e d by u s i n g the s m a l l e r 

g r i d f o r which point v e l o c i t i e s could be obtained i n the 

main body of l i q u i d B. 
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A s o l u t i o n f o r two-phase flow with the in t e r f a c e 

a distance ^ above the bottom of the pipe and a g r i d size of 

•p 

A y = ^ was calculated using three-figure accuracy, then 

rec a l c u l a t e d using two-figure accuracy. As the diffe r e n c e 

i i i the volumetric flow rate factors was 3'6%> a l l c a l c u l a t i o n s 

were subsequently performed with three-figure accuracy. 
t 

The numerical s o l u t i o n was also checked against 

an analogous case of s t r a t i f i e d laminar flow of two l i q u i d s 

between i n f i n i t e p a r a l l e l plates. Numerical equations f o r 

t h i s model were derived i n a manner s i m i l a r to those derived 

i n the present i n v e s t i g a t i o n , and are 

for l i q u i d A: u' A + u' A - 2u' Q + 3 ( ^ y ' ) 2 = 0 (29) 
1 3 

at i n t e r f a c e : u ' ^ u ' ^ u ' ^ ^ A y ' ) 2 = 0 (30) 

and f o r l i q u i d B: u ' B + u ' B - 2u' B + 3 M.1 ( A y ' ) 2=0 (3D 
'1 ~J3 o 

These dimensionless equations were solved by r e l a x a t i o n 

methods f o r the case of JLA.
 1 = 1000 and the i n t e r f a c e at y i = s, 

where the plates are a distance 2s apart, using a g r i d size 

of A y = g. The point v e l o c i t i e s were solved a n a l y t i c a l l y 

using the expressions given by Russell and Charles (2). The 

two r e s u l t s are shown i n figure 12, where i t i s seen that a l l 

corresponding point v e l o c i t i e s match up exactly f o r three-

figure accuracy. 
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Figure 12. Comparison of A n a l y t i c a l and Relaxation 

Results f o r P a r a l l e l Plate Flow 
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These two checks show that the numerical solution 

employed i n t h i s study agrees extremely wel l with those 

a n a l y t i c a l solutions a v a i l a b l e , and can therefore be 

considered very r e l i a b l e f o r the three s i g n i f i c a n t figures 

reported. 

d. Results 

Calculated values of the numerical flow rate 

factors f o r d i f f e r e n t interface positions are presented i n 

Tables I I , I I I , IV and V f o r v i s c o s i t y r a t i o s of 1 , 10,100 

and 1000 r e s p e c t i v e l y . 

In figure 13, the volumetric flow rate f a c t o r i s 

plotted against the in t e r f a c e p o s i t i o n f o r the four v i s c o s i t y 

r a t i o s investigated. Flow area f r a c t i o n s were calculated 

from the interface positions as described i n Appendix I I , 

and figure 14 i s a plot of volumetric flow rate f a c t o r versus 

flow area f r a c t i o n of l i q u i d P. for a l l four v i s c o s i t y r a t i o s . 

The maximum volumetric flow rate f a c t o r s , recorded i n Table 

VI are plotted i n fig u r e 15 against the v i s c o s i t y r a t i o s . 
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Table I I 

Volumetric Flow Rates, yx1 = 1 . 0 

y i 2 u ' A ( A y ' ) ( A z ' ) 2 U « ( A J - K A Z 1 ) ^ 

^Afull 

0 3 . 1 6 0 1 . 0 0 

R / 8 3 . 1 4 0 . 0 2 0 . 9 9 4 
R /4 3 . 0 7 0 . 0 9 0 . 9 7 2 

3 R / 8 2 . 9 4 0 . 2 2 0 . 9 3 0 
R / 2 2 . 7 5 0 . 4 1 0 . 8 7 0 

5 R / 8 2 . 5 1 0 . 6 5 0 . 7 9 4 
3 R / 4 2 . 2 2 0 . 9 4 0 . 7 0 3 

7 R / 8 1. 9 1 1 . 2 5 0 . 6 0 4 
R 1. 5 8 1 . 5 8 0 . 5 0 0 

9R /8 1 . 2 5 1 . 9 1 0 . 3 9 6 

5 R A 0. 9 4 2 . 2 2 0 . 2 9 7 
11 R /8 0 . 6 5 2 . 5 1 0 . 2 0 6 

3 R / 2 0. 4 1 2 . 7 5 0 . 1 3 0 

13R /8 0 . 2 2 2 . 9 4 0 . 0 7 0 

7 R A 0 . 0 9 3 . 0 7 ... ^ 0 . 0 2 6 
1 5 R / 8 0 . 0 2 3 . 1 4 0 . 0 0 6 

2 R 0 3 . 1 6 0 

Table I I I 

Volumetric Flow Rates, //*' = 1 0 

y, 2 u ' U y ' ) U z ' ) 2 u ' ( A y ' ) ( A z ' ) . 
a ^Afull 

0 3 . 1 4 0 1 . 0 0 

R /8 3 . 5 3 0 . 0 6 1 4 1 . 1 2 

R / 4 ' 3 . 7 6 0 . 2 8 2 1 . 2 0 

3 R / 8 3 . 9 9 0 . 7 2 4 1 . 2 7 

R /2 4 . 0 0 1 . 4 4 .1.27 
5R /8 3.72 2 . 4 5 .. 1 . 1 8 

3 R / 4 3 . 3 3 5 . 8 0 1 . 0 6 

R 2 . 4 3 7 . 7 8 . : 0 . 7 7 4 

3 P / 2 0 . 5 9 0 2 0 . 1 . 0 . 1 8 8 

2.R 0 0 
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0 
R/8 
R/4 

3R/8 

R/2 
5R/8 
3R/4 
R 
3R/2 
2R 

Table IV 

Volumetric Flow Rates, juJ = liOO 

S u ' A ( A y ' ) ( A Z ' ) 2 u ' T , ( A y
, ) ( A 2 ' ) 

3.14 
3.85 
4.1? 
4 . 3 4 

4 . 3 1 

3 .95 
3 .50 
2.55 
0.615 

0 

0 
0.127 
0.801 
2.92 
7.24 

14.6 
25.6 
61.2 
188 

Q •A f u l l 

1.00 
1.23 
1.33 
1.38 
1.37 
1.26 
1.11 
0.812 
0.196 
0 

0 
R/8 
R/4 
3R/8 
R/2 

5R/8 
3 R A 

R 
3R/2 
2R 

Table V 

Volumetric Flow Rates, /A* = 1000 

2 u ' A ( A y ' ) ( A z ' ) 2 u ' B ( A y ' ) ( A z ' . ) 

3.14 
3.93 
4 . 2 7 

4.42 
4.39 
4.02 
3.56 
2.60 
0.619 
0 

0 
0.559 
5.47 

24.0 
64.1 

135 
242 
596 

1860 

Q, J A 

Q A f u l l 

1.00 
1 . 2 5 

1 . 3 6 

1.41 
1.40 
1.28 
1 . 1 3 

0.828 
0 . 1 9 6 

0 
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Table VI 

Maximum Volumetric Flow Rate Factors 

Viscosity Ratio, /x' 1,0 10 100 1,000 

Maximum 1.00 1.28 1 , 3 8 1 , 4 1 

^ A f u l l 

Interface Position, j± 0 0.425R 0.390R 0.385R 



Figure 13 • Variation of Volumetric Flow Rate Factor with 

Interface Position o 



0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 

FLOW AREA FRACTION OF LIQUID B 

Figure 14. V a r i a t i o n of V o l u m e t r i c Flow Rate Factor w i t h 

Flow Area F r a c t i o n 



Figure 15 • Maximum Volumetric Flow Rate Factors and Corresponding 

Input Volume F r a c t i o n s f o r Various V i s c o s i t y R a t i o s 
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C. Power Requirements 

a. Theory 

The power requirement per u n i t l e n g t h of pipe i s 

the product of the pressure drop per u n i t l e n g t h and the 

t o t a l v o l u m e t r i c f l o w r a t e of both l i q u i d s . In the case 

of two-phase f l o w , i t i s expressed as 

Pozer = w = (. | | ) ( Q a + Q b ) (32) 

and f o r the pipe f l o w i n g f u l l of l i q u i d A, as 

W f u l l =

 (~ f l ^ f u l l ^ A f u l l ) (33) 

i f Q A - Q A f u l l 

W f u l l 
W 

(-

^ < i x ; f u l l 
(- ±E) 
^ a x ; 

f o r constant (34) 

and from equation (28), 

i . e , 

W f u l l 

W f u l l 

Q A f o r c o n s t a n t ( - r r ) 
o X 

Q A f u l l 1+ 

Q 
A 

Q • A f u l l 2 u ' A ( A y ' ) ( A z ' ) 1 + 

(35) 

(36) 

and t h e r e f o r e the power r e d u c t i o n f a c t o r , 11 ™ , i s , e a s i l y 

c a l c u l a t e d from the data of the previous s e c t i o n . 
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To obtain the maximum power reduction factor and 

thus the minimum power requirement for two-phase flow, the 

Douglass - Avakian method was applied over seven equidistant 

J? 

points, at increments of jg. The smaller increments were 

chosen because the maximum power reduction factors occur at 

interface positions closer to the bottom of the pipe, and, the 

plot of power reduction factor versus interface position,has 

a greater curvature, than in the case of volumetric flow rate 

factors. 

Since the previous calculations were for. increments 
•p p 

of g, the intermediate values for increments of -jg were 

obtained by interpolation of the previous data. Prom the 
Q A , 

polynomial relating •« and interface position, the 
y A f u i l 

volumetric flow rate factors for the intermediate.points 

were determined and by equation ( 2 3 ) , 2 u ' A ( A y ' ) ( A z
1 ) was 

calculated. Intermediate values of S u ' B ( A y ' ) ( A z
 1 ) were 

2 3 

interpolated from a polynomial of the form, X = a+bY+cY +dY ,, 

where X = 2 u , p ( A y ' ) ( A z l ) and Y was the interface position. 

The constants of the polynomial were evaluated from four 

pairs of values calculated previously for increments of g. 

The Douglass - Avakian method was not used with the larger 

increments because the values of X for seven equidistant . 

values of Y varied greatly in magnitude, and the resulting 

relationship, though i t was the best fourth degree polynomial 

for the seven points, was not accurate enough in the region 

of the maximum power reduction factor. The Douglass -. 

Avakian method, followed by differentiation, was, however, 



a p p l i e d to the s m a l l e r increments to o b t a i n the value and 

l o c a t i o n of the maximum power r e d u c t i o n f a c t o r s . 

b. Sample C a l c u l a t i o n s 

Sample c a l c u l a t i o n s f o r power r e d u c t i o n f a c t o r are 

based on the case of ^u' = 10 and the i n t e r f a c e at y\ = ^. 

= 1.27 
Q A f u l l 

S u ' A ( A y ' ) ( A z ' ) * 4.00 

S u ,

B ( A y , ) ( A z l ) = 1.44 

and W f u n 

= (1.27) V T T T T = 0.933 W ' , , 1.44 
x + 4.00 

A sample d e t e r m i n a t i o n of the maximum power r e d u c t i o n f a c t o r 

i s based on val u e s f o r a v i s c o s i t y r a t i o of 10. C a l c u l a t i o n s 

are shown f o r o b t a i n i n g v a l u e s at the in t e r m e d i a t e p o i n t of 

y = 1§ " ° * 1 8 7 5 R « Considering' f i r s t the l i q u i d A, and l e t t i n g 

X = ^ and Y = i n t e r f a c e p o s i t i o n such th a t Y = 
4 A f u l l ° 

corresponds to Z = 0, the Douglass - Avakian method gave 

the f o l l o w i n g polynomial 

X = 1.27 + 0.214Z - 2.06Z 2 - 0.998Z 3 + 2.59Z 4 

At an i n t e r f a c e p o s i t i o n of Y = ^ or Z = -0.1875 

X = 1 .27+0.214(-0.1875)-2.06(-0.1875) 2-0 .998(-0.1875) 3 

+ 2 .59(-0 .1875)Z\ 
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that i s = 1.17 
^Afull 

and therefore 2 u ' A ( A y ' ) ( A z l ) = TT (1 .17) = 3.68 

For liquid B, the following results were obtained: 

Y 2 u ' B ( A y ' ) ( A Z ' ) 

0 0 

R/8 0.0614 

R/4 0.282 

3R/8 0.724 

If X = S u ' B ( A y • ) ( A . z 1 ) and Y = interface position, their 

2 -5 

relationship can be given by the polynomial, X = a+bY+cY +dY . 

Substitution of the above values and solution for the constants 

resulted in the polynomial 

X = 0.012Y + 3.19Y2 + 5.10Y5. 

At Y = 

X = 0.012(0.1875)+3.19(0.1875)2+5.10(0.1875)5=0.148 
w f 1 , n 1 

and therefore ^ = (1 .17) S~l48 = 1 , 1 2 

1 + T^T 

Other intermediate values were obtained for interface 

positions of a n d The seven equidistant points 

between Y = 0 and Y = were then used to obtain the value 

and location of the maximum power reduction factor by the 

Douglass - Avakian method, followed by differentiation, in a 

manner identical to that used for determining the maximum 



4 7 

v o l u m e t r i c f l o w r a t e f a c t o r , 

c. R e s u l t s 

R e s u l t s f o r power r e d u c t i o n f a c t o r s are presented 

i n Table V I I f o r v i s c o s i t y r a t i o s of 10, 100 and 1000. 

In f i g u r e 16, the power r e d u c t i o n f a c t o r s are 

p l o t t e d a g a i n s t the i n t e r f a c e p o s i t i o n f o r the three 

v i s c o s i t y r a t i o s . These f a c t o r s are then r e p l o t t e d a g a i n s t 

the f r a c t i o n a l flow area i n f i g u r e 1 7 . A graph of the 

maximum power requirement f a c t o r a g a i n s t the v i s c o s i t y 

r a t i o i s shown i n f i g u r e 18, based on r e s u l t s recorded i n 

t a b l e V I I I . 
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Table V I I 

Power Reduction F a c t o r s 

W 

0 , 
R/16 
R/8 

3R/16 
R/4 , 

5R/16 
3R/8 
R/2 
5R/8 
3 R A 
R 
3R/2 
2R 

/J£ = 10 

1.00 
1.05 
1.10 
1.12 
1.11 
1.12 
1.08 

0.933 
0,710 
0.495 
0.184 
0.00536 
0 

f u l l 
W 

' = 100 

1.00 
1.10 
1.19 
1.20 
1.12 
0.995 
0.828 
0.5H 
0.268 
0.133 
0.0325 
0.000639 
0 

• = 1000 

1.00 

1.05 
1.10 
0.897 
0.597 
0.366 
0.220 
0.0897 
0.0570 
0.0164 
0.00435 
0.0000656 
0 

( - i n t e r p o l a t e d p o s i t i o n ; 

Table V I I I 

Maximum Power Reduction F a c t o r s 

V i s c o s i t y R a t i o , 

Maximum 
' f u l l 
W 

I n t e r f a c e P o s i t i o n , y.̂  

10 

1.12 

0.267R 
(0 . 2 7 R ) 

100 1000 

1.22 

0.170R 
(0.17R) 

1.09 
(1.1) 
0.09R i 
(0.1R) 



0 ^ R j>R f R R 5R I" ? R 2 R 

INTERFACE POSITION ( Distance f r o m B o t t o m of P ipe , R= r a d i u s ) 

Figure 16. Variation of Power Reduction Factor with Interface Position 

-p-
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Figure 17. V a r i a t i o n of Power Reduction F a c t o r w i t h Flow 

Area F r a c t i o n 
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Figure 18. Maximum Power Seduction Enactors and 

Corresponding Input Volume Fractions 

for Various Viscosity fiatios 
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D. Hold-up Ratios 

a. Theory 

The hold-up ratio i s defined as the input volume 

ratio divided by the in s i t u volume ratio. The input volume 

ratio i s the volumetric flow rate of liquid A divided by the 

volumetric flow rate of liquid B, and in this study i t i s 

evaluated as 

Su' ( A y ' ) ( A z ' ) 
input volume ratio = (37) 

2 u ' B ( A y ' ) ( A z ' ) 

The in situ volume ratio i s the ratio of the volumes of A 

and B inside the pipe, and for steady s t r a t i f i e d flow of 

incompressible liquids may be expressed as 

in s i t u volume ratio - °* * ( 58) 

Therefore 
•o,, i c A , r n c A „ n /flow area of 

h o l H „n ~ , i H n A^ ^ ) ( ^ Z } / liquid A ,, Q. hold-up ratio = / -rr* i „ (39) 
Su' f A Y M f A z ' V flow area of ^ u „iAy ; I A Z y i i q u i d B 

A plot of hold-up ratio versus input volume ratio 

can be made for different viscosity ratios, to i l l u s t r a t e 

the point that the hold-up ratio i s independent of liquid 

velocities for laminar flow, as realized by Russell, Hodgson 

and Govier ( 6 ) . 
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b. Sample Calculations 

Calculations are based on the case of ̂  = 10 and 

* i - 1 -

As shown previously, 2 u ' A ( A y * ) ( A z
1 ) = 4.00 

and S u " B ( A y ' ) ( A z
1 ) = 1.44 

Therefore input volume ratio = = 2 .78 

Flow area of liquid A = 2 .53 R 2 

Flow area of liquid B = 0.614 R 2 

Hence in s i t u volume ratio = = 4 .12 

0.614 

and therefore 

hold-up ratio = |-^| = 0 .675 

c. Results 

Table IX contains the results for input volume 

ratio, in situ volume ratio and hold-up ratio for viscosity 

ratios of 1, 10, 100 and 1000. In figure 19 hold-up ratio 

i s plotted against input volume ratio for four viscosity 

ratios. 

Graphs of volumetric flow rate factor and power 

reduction factor versus input volume fraction could now be 

made and are shown in figure 20 and 2 1 , respectively. Also, 

input volume fractions for the maximum volumetric flow rate 

factors and for the maximum power reduction factors could be 

calculated, and these values are plotted in figures 15 and 18, 

respectively, for various viscosity ratios. 



,Input Volume Ratio 

Table IX 

Calculated Hold-up Data 

In Situ 
Volume Ratio Hold-up Ratio 

1.0 10 100 1000 1.0 10 100 1000 

0 O O © o oO oO 0 0 0 0 

• R/8 157"""" 57.5 30.3 7 . 0 3 38.3 4.10 1 . 5 0 . . 0.791 0.184 

R/4 . 34.1 13.3 5.21 0.781 12.8 2.66 1 . 0 4 ; 0.407 0.0610 

5R/8. 13.4 5-51 -1.49 0.184 6.69 2.00 0.834 0 . 2 2 3 0.0275 

R/2 6 . 71 2.78 0.595 0.0685 4.12 1.63 0.675 0.144 0.0166 

5R/8 3.86 .1 . 5 2 0.271 0.0298 2 . 7 4 1.41 • . 0.555 0.0989 0 . 0 1 0 9 

3R/4 2.36 '.' 0.876 0.137 0.0147 1 .91 1.24 b . 4 5 9 0 . 0 7 1 7 0 . 0 0 7 7 0 

7R/8 1.53 '•' 1.38 1.11 

R 1.00 :•' 0.312 0.0417 0.00436 1.00 1.00 ;0.312 0.0417 0.00436 

9R/8 0.654 0.725 0.902 

5 R A 0.423 0.524 0.807 

11R/8 0 . 2 5 9 0.365 0 . 7 1 0 

3R/2 0.149 0.0294 0.00327 0.000333 0.243 0.613 0.121 0.0135 0 . 0 0 1 3 7 

13R/8 0.0748 0.149 0.502 

7 R A 0.0293 0.0781 0.375 
15R/8 0.00637 0.0261 0.244 

2R 0 0 0 0 0 0 0 0 0 
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Figure 20„ V a r i a t i o n of Volumetric Flow Rate Factor 

with Input Volume F r a c t i o n vn 
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Figure 21. Variation of Power Reduction Factor with Input 

Volume Fraction 



58 

DISCUSSION OP RESULTS 

The numerical flow equations were checked by two 

methods. Comparison of point velocities calculated by 

relaxation methods with those calculated using Poiseuille's 

equation, for single-liquid flow, show an average deviation 

of 1.23% for a numerical solution with unbalanced residuals, 

and 0.4% f o r a numerical solution with balanced residuals. 

Finite difference equations were derived for s t r a t i f i e d 

laminar flow between parall e l plates, in a manner similar to 

those derived in the present study. Velocities determined 

numerically using these equations were compared to velocities 

calculated.analytically (2), for the case of an interface 

located mid-way between the two plates and a viscosity ratio 

of 1000. Corresponding velocities were identical. These 

comparisons show that the numerical method of solution employed 

1B accurate. 

The velocity profiles computed numerically for the 

round pipe were consistent with those calculated analytically 

for parallel plates. As the viscosity ratio increased, the 

point velocities of the less viscous liquid B, as compared to 

the point velocities of the more viscous liquid A, increased 

approximately to the same degree as the viscosity ratio. This 

result can be seen in figure 11. 
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For a solution -with unbalanced residuals, a 

deviation of 0.64% resulted between the volumetric flow rate 

calculated by the numerical method and that calculated by 

Poiseuille's equation, for single-liquid flow. When the 

residuals were balanced, the deviation could not be detected 

within three-figure accuracy. This result again shows good 

agreement between the numerical and analytical solutions. 

The volumetric flow rate factor at any specific 

interface position increased with increasing viscosity ratio. 

This trend was also followed by the maximum volumetric flow 

rate factor, as seen in figure 15. From the point of view of 

volumetric flow rate enhancement,, the viscosity ratio of 1000 

is prac t i c a l l y equivalent to an i n f i n i t e viscosity ratio. 

This arises from the fact that equations (18),(19) and (20) 

produce a constant dimensionless velocity p r o f i l e , within 

three-figure accuracy, in liquid A for viscosity ratios greater 
Q. 

than 1000. It follows that 7? w i l l not increase 
v % f u l l 

significantly with an increase of the viscosity ratio above 

1000; that i s , i t s value at JULX = 1000 w i l l be within 0.1% of 

i t s asymptotic value at i n f i n i t e ju}. Similar asymptotic 

behaviour i s displayed by the concentric flow model, where 

the factor (/^ + i s safely taken as /^^ at viscosity 

ratios equal to or exceeding 1000 (2). 

The interface position of the maximum volumetric 

flow rate factor moved closer to the bottom of the pipe as 
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the viscosity ratio increased in the range of 10 to 1000. 

This i s seen i n Table VI and figure 13. As can be seen in 

figures 15 and 20, the input volume fraction of the less 

viscous liquid increased with increasing viscosity ratio, for 

the conditions of maximum volumetric flow rate enhancement. 

In the case of the viscosity ratio of 1000, the maximum 

enhancement factor i s achieved at an input of 81% of liquid B, 

compared to 8.0% B at a viscosity ratio of 10. 

For specific viscosity ratios, the maximum volumetri 

flow rate factors for s t r a t i f i e d flow in a circular pipe were 

smaller than those for s t r a t i f i e d flow between parall e l plates 

and were very much smaller than those obtained for concentric 

flow in a circular pipe. This i s seen in figure 22 for a 

viscosity ratio of 10. 

The largest of the three computed maximum power 

reduction factors occured for the case of ̂ u' = 100. The 

maximum factor for JUL • = 10 was slightly larger than that for 

juS = 1000. This i s easily seen in figures 16, 17 and 18. 

The case of JUL1 = 1000 resulted in a lowered power reduction 

factor because for this case a large input of liquid B, which 

even occurs at small fractional flow areas, more than 

counteracts the effect of the lowered pressure gradient at a 

given throughput of liquid A. The fact that power reduction 

factors were always lower than corresponding pressure 

reduction factors can be attributed to the mere presence of B, 



Figure 22 Comparison of Volumetric Flow Rate F.actors 

for Concentric Flow, Parallel Plate Flow 

and Stratified Flow in a Circular Pipe 
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which must be incorporated into the calculation of power. 

The position of the interface for the maximum 

power reduction factor moved closer to the bottom of the 

pipe as the viscosity ratio increased in the region of 10 

to 1000. This is seen in Table VIII and figure 16. Over the 

same range, though, the input volume fraction of liquid B 

remained essentially constant, with approximately 6.0 to 8.0% 

of liquid B required to produce the maximum power reduction 

factor, as seen in figure 18. 

In the laminar region, hold-up ratio i s a function 

of input volume ratio and viscosity ratio only. At a 

constant input volume rat i o , the hold-up ratio decreased with 

increasing viscosity ratios. 

An oral presentation on the same topic by Redberger 

and Charles (12) came to the present author's attention after 

completion of his calculations. Though the two studies are 

very similar, a number of differences exist which can be 

noted here. Redberger and Charles solved the flow equations 

on an electronic computer, which necessitated that the pipe 

wall be approximated by horizontal and ve r t i c a l straight lines. 

The present calculations were performed using a true circular 

boundary, negative values being obtained by extrapolation for 

grid points lying outside the pipe wall. They performed 

relaxations at the liquid interface in one-dimension only, 

while the present study incorporated a two-dimensional , . 
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relaxation method, necessitated by the velocity variation 

along the interface. The volumetric flow rate factors 

calculated here are s l i g h t l y larger than those calculated by 

Redberger and Charles, but these authors admit that their 

results may be conservative. Finally, their calculations 

were performed for specific pipe diameters and viscosities 

of the two phases rather than for the general case, as in the 

present investigation. 
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COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS 

A. Experimental Data 

The theoretical results of this study were compared • 

to the experimental results reported by Russell, Hodgson and 

Govier (6). The complete tabular data of their 

investigations are deposited with the American Documentation 

Institute (7). Their tests were conducted at 77°E in a 

horizontal, smooth, transparent pipe, 28.18 feet in length, 

with an inside diameter of 0.8057 inches. The two liquids 

used were a refined mineral o i l with a specific gravity of 

0.834 and a viscosity of 18 c p . , and water with a viscosity 

of 0.894 c p . , giving a viscosity ratio of 20.1. The two-

phase flow was studied at thirteen superficial water 

velocities and input oil-water volume ratios within the range 

0.1-10. These flow rates corresponded to superficial Reynolds 

numbers ranging from 809 to 24,700 for the water flow and 

9.58 to 942 for the o i l flow. 

Russell et a l measured pressure drop in a l l of 

their runs and hold-up in some. Most of the pressure drop 

measurements were made for the whole pipe length, but some 

were performed on a half-section of pipe. 

Lockhart and Martinelli (13) have proposed c r i t e r i a 
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f o r d e f i n i n g the re g i o n s of laminar flow and t u r b u l e n t flow 

of two coc u r r e n t phases. I f the s u p e r f i c i a l Reynolds number 

of a phase i s l e s s than 1000, the l i q u i d f low i s p o s t u l a t e d to 

be lam i n a r , w h i l e f o r s u p e r f i c i a l Reynolds numbers g r e a t e r 

than 2000, the fl o w i s taken as t u r b u l e n t . The exact p o i n t of 

t r a n s i t i o n i s not known-, the c r i t e r i o n of Re = 2000 f o r 

turbulence i s considered a c o n s e r v a t i v e one. Values of 

Reynolds numbers between 1000 and 2000 can be considered to 

be i n the t r a n s i t i o n r e g i o n . Of the t h i r t e e n s u p e r f i c i a l 

water v e l o c i t i e s s t u d i e d , o n l y the lowest v e l o c i t y of 0.116 

f e e t / s e c . corresponds t o a Reynolds number l e s s than 1000, and 

i s thus i n the laminar r e g i o n . The next f o u r higher- water 

v e l o c i t i e s l i e i n the t r a n s i t i o n r e g i o n and the remainder are 

i n the range of t u r b u l e n t f l o w . A l l the o i l f l o w r a t e s 

i n v e s t i g a t e d were i n the laminar r e g i o n , the l a r g e s t o i l 

Reynolds number being 9^2. Therefore, i n comparing the 

t h e o r e t i c a l and experimental data, the flow regime must be 

consi d e r e d , s i n c e a l l the present t h e o r e t i c a l r e s u l t s are based 

on laminar flow of both l i q u i d s . 
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B. Hold-Up 

a. Computational Procedure 

A plot of hold-up ratio versus input volume ratio 

i s shown in figure 19 for viscosity ratios of 1, 10, 100 and 

1000. From this graph, a cross-plot of hold-up ratio versus 

viscosity ratio, with input volume ratio as the parameter was 

drawn. Values for the viscosity ratio of 20.1 were read from 

the cross-plot, and the theoretical curve of hold-up ratio 

versus input volume ratio was drawn for yjt' = 20.1. This curve 

was compared to the experimental results by direc t l y plotting 

on the same graph the corresponding tabular data (7) of 

Russell, Hodgson and Govier. 

b. Results 

The cross-plot of hold-up ratio versus viscosity 

ratio, withiinput volume ratio as the parameter, i s shown in 

figure 23. From this graph, the theoretical curve of hold-up 

ratio versus input volume ratio for a viscosity ratio of 20.1 

was drawn, as illustrated i n figure 24. The experimental 

results were plotted on the same graph for the'eight 

superficial water velocities for which hold-up data were 

reported. 

c. Discussion of Results 

The best agreement between the theoretical and 

experimental results occurs for the superficial water velocity 
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Figure 23. Hold-up Ratio Cross .Plot 
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of 0.116 f t . / s e c , corresponding to a Reynolds number of 8 0 9 . 

This i s . t h e o n l y water f l o w r a t e t h a t l i e s w i t h i n the laminar 

r e g i o n d e f i n e d by Lockhart and M a r t i n e l l i (13). Pour of the 

s i x p o i n t s f o r t h i s v e l o c i t y l i e on or very c l o s e to the 

t h e o r e t i c a l curve. As the water v e l o c i t i e s i n c r e a s e , the 

agreement between the t h e o r e t i c a l and experimental r e s u l t s 

decreases. This i s t r u e even of the data f o r the f o u r 

s u p e r f i c i a l water v e l o c i t i e s which f a l l w i t h i n the t r a n s i t i o n 

r e g i o n of Re = 1000-2000. These p o i n t s l i e i n c r e a s i n g l y 

above the t h e o r e t i c a l curve. The .data f o r the three 

s u p e r f i c i a l water v e l o c i t i e s of 0.558* 0.718 and 1.79 f t . / s e c , 

corresponding to Reynolds numbers of 2500, 5000 and 12500 

r e s p e c t i v e l y , d e v i a t e even more g r e a t l y from the t h e o r e t i c a l 

curve, the l a r g e s t s u p e r f i c i a l water v e l o c i t y having the 

g r e a t e s t d e v i a t i o n from the t h e o r e t i c a l . A l l three v e l o c i t i e s 

are w e l l w i t h i n the r e g i o n of t u r b u l e n t f l o w . 

Prom the comparison, i t i s e a s i l y seen that there i s 

c l o s e agreement between the experimental and t h e o r e t i c a l 

r e s u l t s i n the laminar r e g i o n . As the flow becomes 

i n c r e a s i n g l y t u r b u l e n t , however, the experimental hold-up 

r a t i o develops an i n c r e a s i n g p o s i t i v e d e v i a t i o n from the 

t h e o r e t i c a l laminar curve. The hold-up r a t i o i s then no 

longer a f u n c t i o n of i n p u t volume r a t i o and v i s c o s i t y r a t i o 

alone. 
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C. Pressure Drop 

a. Computational Procedure 

In order to compare t h e o r e t i c a l and experimental 

pressure drop data, the t h e o r e t i c a l values were transformed 

to dimensional quantities and compared with the experimental 

points at s p e c i f i c s u p e r f i c i a l water v e l o c i t i e s . 

A plot of Q^/^Afull versus flow area f r a c t i o n f o r 

yw.' = 20.1 was obtained as the f i r s t step of the c a l c u l a t i o n s . 

Prom fi g u r e 1 3 , a cross-plot was made of Q^^SAfull v e r s u s 

v i s c o s i t y r a t i o , with the int e r f a c e p o s i t i o n as the parameter. 

Prom t h i s c r o s s - p l o t , values of Q^^^Afull f o r / u > = 2 0 , 1 w e r e 

e a s i l y obtained f o r a l l the i n t e r f a c e p o s i t i o n s . The 

in t e r f a c e was expressed i n terms of a flow area f r a c t i o n , 

as i n Appendix I I , and the required plot of Q A ^ A f u l l v e r s u s 

flow area f r a c t i o n was then drawn. 

The second step i n the c a l c u l a t i o n s started with 

the assumption of a s e r i e s of input volume r a t i o s . The 

pressure drop was calcu l a t e d f o r each input volume r a t i o 

separately. Prom figur e 24, which i s a plot of hold-up r a t i o 

versus input volume r a t i o f o r = 20.1, the hold-up r a t i o 

was found f o r each assumed input volume r a t i o . Since the 

i n - s i t u volume r a t i o i s equal to the input volume r a t i o 

divided by the hold-up r a t i o , i t was possible to compute the 

flow area f r a c t i o n by the r e l a t i o n that 
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flow area fraction - i n 7 s i t u volume ratio ( . 
I + m-situ volume ratio v ' 

Knowing the flow area fraction for an assumed input volume 

ratio, the value of %/Q±fuii a* a 20.1 was easily read 

from the graph determined in the f i r s t step of the 

calculations. 

The third step consisted of choosing a superficial 

velocity of liquid B which is,equal to one of the superficial 

water velocities reported in the experimental paper. The 

volumetric flow rate of the less viscous l i q u i d , QB, i s equal 

to the product of i t s superficial velocity and the total 

cross-sectional area of the pipe. The volumetric flow rate 

of the more viscous l i q u i d , QA, i s given as 

QA = QB (input volume ratio) (41) 

^Afu l l 

Prom the Poiseuille equation, 

A l l the values on the right hand side of equation (43) were 

ZS P 

then known. Therefore (- could be calculated for an 

assumed input volume ratio, for a chosen superficial velocity. 

The calculations were repeated for the several input volume 

ratios assumed, and a theoretical curve of pressure drop 

versus input volume ratio was thus drawn for the given 
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s u p e r f i c i a l water v e l o c i t y . This procedure was repeated f o r 

the other twelve water r a t e s . The experimental data were 

converted to the same u n i t s as the t h e o r e t i c a l , and were 

p l o t t e d w i t h the t h e o r e t i c a l curves. 

b. Sample C a l c u l a t i o n s and Re s u l t s 

The c r o s s - p l o t s of Q A / Q A f u 2 i
 v e r s u s v i s c o s i t y r a t i o , 

w i t h i n t e r f a c e p o s i t i o n as the parameter, are shown i n f i g u r e 

25. From these p l o t s , v a l u e s of Q A / Q A f u i i £°T = 20.1 were 

obtained f o r v a r i o u s ' i n t e r f a c e p o s i t i o n s . Having expressed 

the i n t e r f a c e p o s i t i o n i n terms of fl o w area f r a c t i o n as i n 

Table "X, Appendix I I , Q A / Q A f u i i w a s p l o t t e d a g a i n s t flow area 

f r a c t i o n f o r j u % = 20.1, as i l l u s t r a t e d i n f i g u r e 26. 

Assume an i n p u t A-B volume r a t i o = 5»00 

From f i g u r e 24, the hold-up r a t i o = 0.655 

Therefore the i n - s i t u volume r a t i o = ̂ '^55 = 7*63 

7 6 3 

and the f l o w area f r a c t i o n of A = g-j-^ = 0.884 

From f i g u r e 26, Q A/Q A f u l l = 1-31 

Choose s u p e r f i c i a l water v e l o c i t y of l i q u i d B = 0.116 f t . / s e c . 

Diameter of pipe = 0.8057 i n . = 0.0671 f e e t . 

Area of pipe = ^ l S P ^ = ° ' 0 0 ^ f t ' 2 

Therefore Q R = (0.116)(0.00354) = 0.000411 f t . 5 / s e c , 

QA = (0.000411)(5.00) = 0.00206 f t . V s e c , 
and Q A f u l l = ° i ? 5 l 0 6 = 0.00157 f t . 5 / s e c . 

Now JU-k = 0.0121 l b s . / f t . s e c . 

and = 32.174 p o u n d a l s / l t . - f o r c e 



Figure 25« Variation of Volumetric Flow Rate Factor 

with Viscosity Ratio 



FLOW AREA FRACTION OF LIQUID B 

Figure 26. Variation of Volumetric Flow Rate Factor with Flow 

Area Fraction for y x * = 20.1 
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m v ^ r ^ ™ ( 128(0.0121)(0.00157) 1 Q 1 v, 0 2/„. 
Therefore (- — ) = T T O 2 . l 7 4 ) ( 0 . 0 f e 7 1 ) 4 = 1 ' 1 9 l b s - / f t -

This c a l c u l a t i o n was repeated f o r s e v e r a l input volume r a t i o s , 

so t h a t the t h e o r e t i c a l curve could be obtained. 

Data f o r a t y p i c a l experimental p o i n t are as 

f o l l o w s : 

S u p e r f i c i a l water v e l o c i t y = 0.116 f t . / s e c . 

Experimental input o i l - w a t e r volume r a t i o = 4.21 

Average pressure droo = 6.90 inches of water 

= (6 . 9 0 X 5 . 2 0 2 ) = 35-9 l b s . / f t . 2 

Length of t e s t s e c t i o n = 28.18 f e e t 

and t h e r e f o r e pressure g r a d i e n t (- -^^) = 28* 18 = 1*27 l b s . / f t . 2 / 
f t o 

This t a b u l a t i o n was repeated f o r a l l the inp u t o i l - w a t e r volume 

r a t i o s r e p o r t e d , and the experimental r e s u l t s were p l o t t e d on 

the same graph as the t h e o r e t i c a l curve. 

The t h e o r e t i c a l curves and experimental data f o r the 

t h i r t e e n water r a t e s were p l o t t e d i n f i g u r e s 27, 28, and 29 as 

pressure g r a d i e n t versus input volume f r a c t i o n . 

c. D i s c u s s i o n of R e s u l t s 

In f i g u r e 27, experimental data are shown f o r the 

s u p e r f i c i a l water v e l o c i t y of 0.116 f t . / s e c , Re =- 809. This 

i s the only water flow r a t e which d e f i n i t e l y l i e s w i t h i n the 

laminar r e g i o n , and the experimental and t h e o r e t i c a l r e s u l t s 

show ve r y c l o s e agreement f o r t h i s case. The d a t a f o r the 
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Figure 27. Theoretical and Experimental Pressure 

Gradients for V = 0.116 - 0.287 f . 8 . 
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Figure 28. Theoretical and Experimental Pressure 

Gradients for V = 0.327 - 0.718 f.s. 
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other f o u r v e l o c i t i e s p l o t t e d i n f i g u r e 27 l i e in the 

t r a n s i t i o n a l r e g i o n , and i t i s seen th a t agreement between 

the experimental and t h e o r e t i c a l r e s u l t s i s not q u i t e as good. 

.Figures 28 and 29 c o n t a i n experimental data f o r fl o w 

r a t e s which a l l l i e i n the t u r b u l e n t r e g i o n , and they show 

i n c r e a s i n g d e v i a t i o n from the t h e o r e t i c a l curve as the 

v e l o c i t y i n c r e a s e s . At the highest s u p e r f i c i a l water v e l o c i t y 

of 3.55 f t . / s e c , the d e v i a t i o n i s very g r e a t . 

Therefore the experimental and t h e o r e t i c a l r e s u l t s 

agree i n the laminar r e g i o n , but as turbulence i n c r e a s e s , the 

agreement decreases. In the t u r b u l e n t r e g i o n , the experimental 

pressure drops are very much g r e a t e r than those p r e d i c t e d 

t h e o r e t i c a l l y f o r laminar flow. This disagreement i s in the 

anticipated direction. 
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D. Enhancement of Volumetric Flow Rate 

a. Computational Procedure 

The comparison of experimental end t h e o r e t i c a l 

volumetric flow rate f a c t o r s was made on a plot of Qft/^Afull 

versus input volume f r a c t i o n of l i q u i d B. The input volume 

f r a c t i o n was chosen because i t gives a better representation 

of the data than input volume r a t i o . 

Figure 24 i s a plot of hold-up r a t i o versus input 

A-B volume r a t i o f o r yxx = 20.1. From t h i s f i g u r e , the i n - s i t u 

A-B volume r a t i o f o r a corresponding input A-B volume r a t i o 

was determined, knowing that the hold-up r a t i o i s equal to 

the input volume r a t i o divided by the i n - s i t u volume r a t i o . 

The flow area f r a c t i o n of l i q u i d B was calculated from the 

i n - s i t u A-B volume r a t i o , and from f i g u r e 26 the corresponding 

value of Q ^ / ^ f u l l W 8 S o l : > ' t : ; a i r i e d ' ^ n t h i s way the e n t i r e 

t h e o r e t i c a l curve of Q A/^ Af u]_]_ versus input volume f r a c t i o n 

of l i q u i d B was pl o t t e d . 

The experimental input oil-water volume r a t i o was 

converted to the input volume f r a c t i o n of water as follows: 

, , „ .. „ , -, input oil-water volume r a t i o 
input volume f r a c t i o n of water = l - 1 + £ n p u t oil-water volume r a t i . 

(44) 



82 

P r e v i o u s l y i t was proved t h a t 

(- ^ Q 
a

x E
 f u l 1 at constant Q, = 7^ at constant (- ( 2 8 ) 

(- -4-^) ^ A f u l l a x 

Therefore i f the experimental pressure r e d u c t i o n f a c t o r could 

be c a l c u l a t e d , i t would be equal to the v o l u m e t r i c flow r a t e 

enhancement f a c t o r . The r a t i o of the pressure g r a d i e n t f o r 

the pipe f l o w i n g f u l l of o i l to the measured experimental 

pressure g r a d i e n t f o r two-phase fl o w was expressed as 

d v ^ o i l V o i l 
6JB ™ 

v d s r f u l l _ D riLt-s 

(- = (-
^ 6 x'exp. v 6 x'exp. 

The s u p e r f i c i a l o i l v e l o c i t y was c a l c u l a t e d as 

V ., = V . ( i n p u t volume r a t i o ) (46) 
o i l water v ' v 

and then a l l the values on the r i g h t hand side of equation 

(45) were known. Thus the experimental pressure g r a d i e n t 

f a c t o r or i t s e q u i v a l e n t , the v o l u m e t r i c flow r a t e f a c t o r , 

were c a l c u l a t e d f o r a l l the experimental d a t a , and these were 

p l o t t e d on the same graph as the t h e o r e t i c a l curve. 

b. Sample C a l c u l a t i o n s and R e s u l t s 

Consider f i r s t the t h e o r e t i c a l c a l c u l a t i o n s . 

Assume an inpu t A-B volume r a t i o = 5.00 

From f i g u r e 24, hold-up r a t i o = 0.65b 

Therefore i n - s i t u A-B volume r a t i o = ^ " = 7«6$ 
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and the f l o w area f r a c t i o n of l i q u i d R = 1 - - g - j ^ = 0.116 

Prom f i g u r e 26, Q A/Q A f u l l =1-31 

Corresponding input volume f r a c t i o n of l i q u i d B = 

1 - - °- 1 67 

This c a l c u l a t i o n was repeated f o r v a r i o u s input volume r a t i o s , 

and a p l o t of QA/QAfun versus i n p u t volume f r a c t i o n of 

l i q u i d B i s shown i n f i g u r e 3 0 . 

Now c o n s i d e r the experimental data. 

S u p e r f i c i a l water v e l o c i t y = 0.116 f t . / s e c . 

Input o i l - w a t e r volume r a t i o = 4.21 

S u p e r f i c i a l o i l v e l o c i t y = (0.116)(4.21) = 0.488 f t . / s e c . 

O i l v i s c o s i t y = 0.0121 l b s . / f t . s e c . 

= 32.174 p o u n d a l s / l b . - f o r c e 

Pipe diameter, D = 0.0671 f e e t 

. ^ ^ ^ ^ / P% 52(0.0121)(Q.488) -. x n /„. 2,-. 
Therefore ( - r r ) f , , n = -— =^ k = 1.30 l b s . / f t . / f t . 

d x i u i i (32.174)(0.067D 

Prom the p r e v i o u s s e c t i o n 

< 4 ! w • x - 2 7 i ^ . / f t . 2 / f t . 

Hence 7 ^ = T^IS = 1 - 0 2 

^ A f u l l 

a. p i 
and the i n p u t volume f r a c t i o n of water = 1 - e^^'i = 0 . 1 9 2 

The experimental data f o r a l l t h i r t e e n s u p e r f i c i a l water 

v e l o c i t i e s are p l o t t e d i n f i g u r e 30. 



LEGEND FOR FIGURE 30 

(On reverse side) 
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LEGEND FOR FIGURE 30 
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© 0.206 1430 
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® 0.287 2000 

� 0 .327 2280 

© 0.358 2500 

O # section 0.358 2500 

� 0 .538 3750 

© 0.718 5000 

3 # section 0.718 5000 
m 1.08 7530 

B # section 1.08 7530 

� 1.44 10000 

0 H section 1.44 10000 
D 1.79 12500 
J 1/? section 1.79 12500 
H 3.55 24700 

B # section 3-55 24700 
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Figure 30- Theoretical and Experimental Volumetric 

Flow Rate Factors for yu' = 20.1 
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c. D i s c u s s i o n of R e s u l t s 

The experimental r e s u l t s i n f i g u r e 30 show a wide 

s c a t t e r of p o i n t s . A t r e n d i s noted, though, t h a t the values 

of the v o l u m e t r i c flow r a t e f a c t o r i n the t u r b u l e n t r e g i o n 

l i e much lower than the t h e o r e t i c a l curve and t h a t values i n 

the laminar and t r a n s i t i o n a l regions are c l o s e r to the 

t h e o r e t i c a l curve. A few experimental p o i n t s even f a l l 

above the t h e o r e t i c a l curve, and i t i s t h e r e f o r e presumed t h a t 

p e r f e c t h o r i z o n t a l s t r a t i f i c a t i o n d i d not n e c e s s a r i l y occur 

but t h a t the i n t e r f a c e may have been s l i g h t l y curved. Such a 

s l i g h t tendency towards c o n c e n t r i c f l o w would r e s u l t i n 

r a i s i n g the v o l u m e t r i c f l o w r a t e f a c t o r (see f i g u r e 22). 

R u s s e l l et a l (2,6) reported a pressure g r a d i e n t 

r e d u c t i o n f a c t o r of 1.2 f o r 10% water i n p u t , and i t i s seen 

t h a t t h i s agrees w i t h the experimental values p l o t t e d i n 

f i g u r e 30. L a t e r they reported t h i s as t h e i r maximum f a c t o r , 

but i t i s seen i n f i g u r e 30 tha t f a c t o r s g r e a t e r than 1.2 

were a c t u a l l y obtained, as was mentioned i n the i n t r o d u c t i o n . 
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CONCLUSIONS 

T h e o r e t i c a l v o l u m e t r i c f l o w r a t e enhancement 

f a c t o r s , power r e d u c t i o n f a c t o r s and hold-up r a t i o s have 

been d e r i v e d n u m e r i c a l l y f o r the s t r a t i f i e d laminar flow of 

two i m m i s c i b l e Newtonian l i q u i d s f l o w i n g i n a c i r c u l a r p i p e , 

f o r v i s c o s i t y r a t i o s of the two l i q u i d s ranging from 1 to 1 0 0 0 , 

and f o r v a r i o u s p o s i t i o n s of the l i q u i d - l i q u i d i n t e r f a c e . 

The v o l u m e t r i c flow r a t e enhancement f a c t o r at any 

s p e c i f i c i n t e r f a c e p o s i t i o n i n c r e a s e s w i t h i n c r e a s i n g v i s c o s i t y 

r a t i o . A s i m i l a r trend i s a l s o f o l l o w e d by the maximum 

vo l u m e t r i c flow r a t e f a c t o r which achieves a maximum 

asymptotic value at i n f i n i t e v i s c o s i t y r a t i o . T h i s 

asymptotic value i s p r a c t i c a l l y reached at a v i s c o s i t y r a t i o 

of 1000. 

For the range of v i s c o s i t y r a t i o from 10 to 1000, 

the p o s i t i o n of the i n t e r f a c e f o r the maximum v o l u m e t r i c flow 

r a t e f a c t o r moves c l o s e r to the bottom of the pipe w i t h 

i n c r e a s i n g v i s c o s i t y r a t i o . However, the input volume 

f r a c t i o n of the l e s s v i s c o u s l i q u i d , f o r the c o n d i t i o n of 

maximum v o l u m e t r i c f l o w r a t e enhancement of the more v i s c o u s 

l i q u i d , i n c r e a s e s w i t h i n c r e a s i n g v i s c o s i t y r a t i o . 

At s p e c i f i c v i s c o s i t y r a t i o s , the maximum 

vo l u m e t r i c f l o w r a t e f a c t o r f o r s t r a t i f i e d f low i n a 
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c i r c u l a r pipe i s s m a l l e r than the corresponding maximum 

f a c t o r f o r p a r a l l e l p l a t e f l o w , and very much s m a l l e r than the 

corresponding maximum f a c t o r f o r c o n c e n t r i c flow i n a 

c i r c u l a r p i p e . 

Power r e d u c t i o n f a c t o r s are always lower than 

corresponding v o l u m e t r i c f l o w r a t e f a c t o r s . 

The p o s i t i o n of the i n t e r f a c e f o r the maximum power 

r e d u c t i o n f a c t o r moves c l o s e r to the bottom o f the pipe as 

the v i s c o s i t y r a t i o i n c r e a s e s i n the range of 10 to 1000. 

In the same range, the in p u t volume f r a c t i o n of the l e s s 

v i s c o u s l i q u i d necessary to produce the maximum f a c t o r 

remains e s s e n t i a l l y constant. 

For laminar f l o w of both l i q u i d s , hold-up r a t i o i s 

a f u n c t i o n of inpu t volume r a t i o and. v i s c o s i t y r a t i o .only. 

The present t h e o r e t i c a l r e s u l t s and the experimental 

r e s u l t s of R u s s e l l , Hodgson and Govier f o r the case of 

laminar flow of both phases, show good agreement w i t h regard 

to hold-up r a t i o s , pressure g r a d i e n t s and v o l u m e t r i c f l o w 

r a t e enhancement f a c t o r s . In the case of experimental 

r e s u l t s i n the t r a n s i t i o n r e g i o n o f flow of the l e s s v i s c o u s 

l i q u i d , there i s d i s t i n c t disagreement between these r e s u l t s 

and the present t h e o r e t i c a l laminar flow r e s u l t s . T h i s 

expected disagreement i n c r e a s e s as the flo w o f the l e s s 

v i s c o u s l i q u i d becomes i n c r e a s i n g l y t u r b u l e n t . 
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The pressure gradient reduction f a c t o r s measured 

experimentally f o r the two crude o i l s reported i n table I 

f a l l between the values determined t h e o r e t i c a l l y f o r ' 

concentric flow and s t r a t i f i e d flow i n a c i r c u l a r pipe. 

These r e s u l t s substantiate the statement by Russell and 

Charles that the flow f o r these experiments was intermediate 

between the s t r a t i f i e d and concentric models. 
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APPENDIX 

I. Relaxation Methods 

Relaxation methods can i n general be used to solve 

various tyoes of d i f f e r e n t i a l equations, but f o r t h i s study 

they were used to solve only l i n e a r second order p a r t i a l 

d i f f e r e n t i a l equations. This section w i l l describe how 

r e l a x a t i o n methods are employed to solve t h i s p a r t i c u l a r type 

of equation. 

The p a r t i a l d i f f e r e n t i a l equation representing the 

flow conditions investigated, i s rewritten as a f i n i t e 

d i fference equation of the form 

u{ + u 2 + u^ + u^ - 4u£ + 8 /c' O y ' ) 2 = 0 (16) 

as shown on page 12a The above equation suggests that the 

v e l o c i t y at the point 0 i s equal to the arithmetric mean of 

the v e l o c i t y at four surrounding points, plus a constant. 

The r e l a t i v e oosition of the f i v e points r e f e r r e d to are 

shown i n figu-re 2. Suppose the values of the f i v e v e l o c i t i e s 

were guessed at and substituted i n equation (19). I f the 

guesses were i n c o r r e c t , a remainder or r e s i d u a l would r e s u l t 

because the equation would not be s a t i s f i e d . The r e s i d u a l 

can be expressed as 

u[ + u 2 + u^ + - + 8 ^ ' ( A y 1 ) 2 = Residual (47) 
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I t i s n o t i c e d that by i n c r e a s i n g the value of u^ by 1, the 

r e s i d u a l i s decreased by 4, whereas i n c r e a s i n g the value of 

any of the surrounding v e l o c i t i e s by 1, i n c r e a s e s the residua 

by lo This 4 to 1 r a t i o l e a ds to convergence towards the 

s o l i r t i o n , which i s a t t a i n e d when the r e s i d u a l i s zero or 

aoproximately zero. For example, a new guess of u^ g r e a t e r 

than the previous value by one-quarter of the r e s i d u a l , w i l l 

e l i m i n a t e the r e s i d u a l and thus achieve a t e n t a t i v e s o l u t i o n . 

This procedure i s then a p p l i e d to a g r i d of p o i n t s 

as i n f i g u r e 5» where a l l the p o i n t v e l o c i t i e s are guessed at 

and the r e s i d u a l s c a l c u l a t e d f o r each point u s i n g equation (1 

The p o i n t w i t h the l a r g e s t r e s i d u a l i s r e l a x e d f i r s t by 

ren d e r i n g the r e s i d u a l equal to zero. This procedure i s 

repeated u n t i l a l l the r e s i d u a l s are approximately equal to 

zero, i n which case the d e s i r e d s o l u t i o n has been a r r i v e d a t . 

There are methods of a i d i n g convergence to the 

s o l u t i o n , such as o v e r - r e l a x a t i o n and b l o c k r e l a x a t i o n , but 

these are refinements of the b a s i c method d e s c r i b e d above. 

K i c k l e y , Sherwood and Reed (10) present a b r i e f d e s c r i p t i o n 

of r e l a x a t i o n methods, i t s refinements and some examples of 

i t s use, but a more complete d e s c r i p t i o n i s found i n A l l e n ' s 

t e x t (11). 
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I I . Plow Area Fraction 

The r e l a t i o n s h i p between the interface p o s i t i o n and 

flow area f r a c t i o n i s developed from the expression f o r the 

area of a segment of a c i r c l e which i s 

Area = ̂  r 2 ( 0 - sin© ) (48) 

where <9 i s the central angle of radian measure and r i s the 

radius. Since cos ® = (r-h)/h, Perry (14) has expressed t h i s 

area i n terms of the height, h, of the segment (which 

corresponds to the in t e r f a c e p o s i t i o n y i ) and the diameter D 

of the c i r c l e , and presents a table r e l a t i n g the area of the 

c i r c u l a r segment to the r a t i o * V D . Thus, knowing the 

interface p o s i t i o n , the area of the segment i s e a s i l y arrived 

at. Dividing t h i s area by the t o t a l cross-sectional area of 

the pipe r e s u l t s i n the flow area f r a c t i o n . The following 

table was determined using t h i s information. 

Table X 

Interface P o s i t i o n Plow Area Fraction of 
Liquid B 

0 0 
R/8 0.02602 
R/4 0.07214 

3R/8 0.1298 
R/2 0.1955 

5R/8 0.2670 
3R/4 0.3425 
R 0.5000 
3R/2 0.8045 
2R 1.0000 
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I I . Flow Area F r a c t i o n 

The r e l a t i o n s h i p between the i n t e r f a c e p o s i t i o n and 

flow area f r a c t i o n i s develooed from the expres s i o n f o r the 

area of a segment of a c i r c l e which i s 

Area = -| R 2( © - sin© ) (48) 

where <9 i s the c e n t r a l angle of r a d i a n measure and R i s the 

r a d i u s . Since cos ® = (R-H)/H, P e r r y (14) has expressed t h i s 

area i n terms of the h e i g h t , H, of the segment (which 

corresponds to the i n t e r f a c e p o s i t i o n y^) and the diameter D 

of the c i r c l e , and presents a t a b l e r e l a t i n g the area of the 

c i r c u l a r segment to the r a t i o /D. Thus, knowing the 

i n t e r f a c e p o s i t i o n , the area of the segment i s e a s i l y a r r i v e d 

a t . D i v i d i n g t h i s area by the t o t a l c r o s s - s e c t i o n a l area of 

the pipe r e s u l t s i n the flo w area f r a c t i o n . The f o l l o w i n g 

t a b l e was determined u s i n g t h i s i n f o r m a t i o n . 

Table X 

I n t e r f a c e P o s i t i o n Flow Area F r a c t i o n of 
yj_ L i q u i d B 

0 0 
R/8 0.02602 
R/4 0.07214 

3R/8 0.1298 
R/2 0.1955 
5R/8 0.2670 
3R/4 0.3425 
R 0.5000 
3R/2 0.8045 
2R 1.0000 
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I I I . Douglass-Avakian Method 

The Douglass-Avakian method, which i s d e s c r i b e d by 

M i c k l e y , Sherwood and Reed (10), employs a f o u r t h degree 

polynomial which i s f i t t e d to seven e q u i d i s t a n t p o i n t s to 

give the best curve through them. The polynomial i s 

The seven p o i n t s must be spaced at equal i n t e r v a l s h of Z, 

and the c o o r d i n a t e s adjusted so t h a t Z = 0, f o r the c e n t r a l 

p o i n t . The seven val u e s of the v a r i a b l e Z are then -3h, -2h, 

-h, o, h, 2h and 3h, and k i s the c o e f f i c i e n t of h i n the 

values of Z. Thus at Z = -3h, k = -3; at Z = -2h, k = -2 e t c . 

The v a l u e s of the constants are given by the f o l l o w i n g 

e x p r e s s i o n s : 

X = a + bZ + cZ + dZ v + eZ 
.4 

(49) 

a 
524HX - 2 4 5 2 k 2 X + 2 l 2 k 4 X 

(50) ^24" 

b 

c 

(5D 

(52) 

d - 7 S k X + Sk^X 
(53) 

e 

216h^ 

72 £X - 67 S k 2 X + 7 S k \ (54) 
3168h 


