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Summary. A fully discrete finite element method for the Cahn-Hilliard equation 
with a logarithmic free energy based on the backward Euler method is analysed. 
Existence and uniqueness of the numerical solution and its convergence to the 
solution of the continuous problem are proved. Two iterative schemes to solve the 
resulting algebraic problem are proposed and some numerical results in one space 
dimension are presented. 
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1 Introduction 

We shall consider the numerical approximation of the Cahn-Hilliard equation 

(1.1a) u t = A w  x e f ~ , t > 0 ,  

(lAb) w =  g J ' ( u ) - ~ A u  x~f2, t > 0 ,  

subject to the initial condition 

(1.1c) u(x, O) = Uo(X) 

and boundary conditions 

(1.1d) Vu.n  = Vw.n = 0 

with 7': [ -  1, 1] ~ IR given by 

xe f2  

x~O~,  t > 0 

Oc 2 (1.2) ~ ( u ) =  [ ( l + u ) l n ( l + u ) + ( 1 - u ) l n ( 1 - u ) ] - ~ - u  . 

* CAPES fellow 
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Here y, 0 and 0~ are positive constants with 0 < 0~ and t2 is a bounded domain in 
IR a, d < 3, with smooth or convex Lipschitz boundary Og2. It follows that T has 
a double-well form with minima at/~ and - f l  where fl is the positive root of 

1, [1 + fl'~ 20c 
~ 'n  ~ 1 _ - - ~ )  = --~- �9 

The points fl and - f l  are called binodal points and the region where T"  < 0, 
( -us ,  us), is called the spinodal interval. Since, for l ul < 1, 

we find that 

0 
~r/"(u) ~- 1 - u 2 0e ' 

Equation 1.1 was proposed by Cahn and Hilliard [3] to model phase separ- 
ation in a binary mixture composed of species A and B which is quenched into an 
unstable state. Here u represents the local concentration of the species, that is, 
u = X n  - X a ,  [u[ __< 1, where XA and XB, 0 __< XA, XB _-< 1, XA + XB = 1, are the 
mass fractions of the components in the mixture, and the mean concentration Um of 
the mixture is a conserved quantity. 

1 
When the quench is shallow, that is 0 is close to 0c, near u = 0, ~ ~ 1 + u 2 

and this leads to the usual approximation of the free energy as a quartic polynomial 
in the concentration. We remark that in contrast with the quartic approximation 
the derivatives of the free energy defined by (1.2) become unbounded at -1  and 1. 

The mathematics literature has concentrated on the quartic free energy. For 
a review we refer to Elliott [9] and Temam [20]. Numerical simulations are 
reported on in (for example) [5], [7], [10] and [19]. See also [8], [11] and [12] for 
the numerical analysis. 

However when the quench is deep i.e. 0 ~ 0c the form of the free energy is not at 
all like a polynomial. The spinodal points _+us are close to the singular points _+ 1. 
Indeed Oono and Puri [17] suggested a well with infinite walls for modelling the 
deep quench limit. See [1, 2] for a mathematical and numerical analysis. It has been 
proved by Elliott and Luckhaus [13] that as 0/0c ~ 0 the weak solution of the 
Cahn-Hilliard equation with the free energy given by (1.2) converges to the free 
boundary limit problem studied by Blowey and Elliott [1, 2]. Furthermore explicit 
schemes used by metallurgists can easily predict concentration values outside the 
interval [ - 1 ,  1]. This causes overflow at the next time step. Thus we are lead to 
study the mathematical and numerical analysis of (1.1) with the free energy (1.2). It 
should also be useful in the analysis of multicomponent diffusion with capillarity 
where models of the free energy based on formula (1.2) are used to determine the 
complex phase diagrams (see [16] for example). 

We write 
0r 2 

T(u) = ~o(U) -- ~-u lu[ _-< 1 

and set 
Oln(l+u3 c~(u) = ~k'o(U) = ~ \ - ( ~ -  u J lul < 1 . 

0 "~1/2 
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The following result concerning existence of a unique solution was proved by 
Elliott and Luckhaus [13]. 

1 
Theorem 1.1. GivenuoeHl(O)and6e(O, 1)suchthat Ituoll~ ~ 1 a n d ~ l ~ , u o l  < 1 - 5  

then there exists a unique solution {u, w} such that u(., O) = Uo(') and 

ueL~(O, T;HI(Y2)) n Lz(0, T; H2(y2)) c~ C([0, T]; L2(Y2)), 

u,~ LZ(O, T; HI(O))'), 

x// tu ,  ~ L2(O, T; H I ( ~ ) )  , 

x~ttw~ L~ T; Hi(Q)) 

satisfying, for all ~ ~C[O, T], ~ H I ( Q ) ,  

(1.3a) ! ~(t) (u, tl) + (Vw, Vt/) dt = 0 ,  

T 
~(t)((w -- (b(u) + O~u, rl) - y(Vu, Vr/))dt = 0 

0 
(1.3b) 

with l ul ~ 1 a.e.. 

We remark that the assumptions on Uo allow initial data with values 1 and - 1 

in regions of non-zero measure and that Eqs. (1.3) make sense because x/~w 
L ~ (0, T; H 1 (f2)) and x//t~b (u) s L 00 (0, T; L z (12)). This latter estimate for q~ (u) means 
that l u[ cannot take the value 1 on sets of non-zero measure. 

In the one dimensional case, it results from the Sobolev imbedding theorem 
that, for all t > 0, w(. ,  t) is continuous and l] w(.,  t) [I o~ =< C. Letting s denote the 
point of maximum of u at time t > 0 it follows that 7u"(2) __< 0 and 

~ ' ( u ( ~ ) )  - w(~)  __< o .  
Thus 

q~(u(,Z)) < c~ 
and 

u(~) < 1. 

A similar argument using the point of minimum 
-qS(u) = qS(- u) yields 

[[u[]oo<l V t > 0 .  

of u and the fact that 

Let f2 be a convex polygonal domain and j -h  a quasi-uniform family of 
triangulations of f2, ~2 = U~-~z ,  with mesh size h. Let S h c Hi(f2) be the finite 
element space of continuous functions on f2 which are linear on each ~ - - h .  

N h Denote by {xi}~=l the set of nodes o f J  -h and let {Z~ Nh S h }i = 1 be the basis for defined 
by Zi(xj) = 6ij. 

We indicate by ( . ,  .)h the discrete inner product: VZ, t/~ C(O) 
Nh 

(X, it) h = ~ Ih(ztl)dx = ~ m,x(x,)tl(x,) , 
~2 i=1 
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where lh: C(O) ~ S h is the interpolant defined by Ihx(xl) = Z(x~) for i = 1 . . . . .  N h 
and rni = (Zi, Xl) h" l" qh = ( ( ' ,  .)h)1/2 is a norm on S h which satisfies (see [6]) VX, 
q~S  h 

(1.4) Co Ilzll _-< IZlh ~ Ca Ilzll, 

(1.5) I (z ,~) - (z ,~)~ l  < ChX+'llzll,ll~llx r = 0, 1,  

where the constants are independent of h. The Poincar6 inequality 

Ilzll _-< CP(lzlx + I(Z, 1)1) Vz~HX(f2) 

together with (1.4) and (1.5) yields the discrete Poincar~ inequality, for h sufficiently 
small, 

(1.6) I[Zllh ~ CP(IXI1 + I(Z, 1)lh) ~/Z E'Sh 

with Cp a constant independent of h. 
If we assume that j -h  is acute, that is the angles of the triangles, in the case 

d = 2, are less than or equal to n/2 and, in the case d -- 3, the angle made by any 
two faces of any tetrahedron is bounded by re/2, then, if ~ WL~ satisfies 
~(0) = 0 and 0 < ~'(s) < L~ < ~ for a.e. s~IR, we have (see [6], [18]) 

(1.7) IIVP~(z) II z _-< L,(Vz, Vlh~(z)) V z 6 S  h , 

Let Gh: Sg ~ S~ be the discrete Green's operator defined by 

(1.8) (VG*v, Vz) = (v, Z) h VzeS  h , 

where S h = {Z ~ Sh:(z, 1) h = 0}. The existence and uniqueness of Ghv follows from 
the Lax-Milgram theorem and the Poincar6 inequality (1.6). 

Writing 

izlZ_h --~def IGhzI~ 

it follows from (1.8) that 

IZl2-h = ( G h z ,  Z) h = (Z, C ? Z )  ~ �9 

Finally, let us introduce the Ht-projection, Rh: H i ( f 2 ) ~  S n, defined by 

(VRhv, VZ) = (V ~, Vz) Vx~S h, 

(Rhv, 1) = (v, 1) . 

It holds that Rhv --+ V in Ht( f l )  strongly and IR%11 < Ivla. 
An outline of the contents of this paper is as follows. In Sect. 2 we introduce the 

discrete finite element method for the problem and prove existence, uniqueness and 
stability estimates for its solution. Convergence to the solution of the continuous 
problem is proved in Sect. 3. In Sect. 4 we present two iterative methods that can be 
used to solve the algebraic problem resulting from the numerical approximation. 
The results of numerical experiments are presented in Sect. 5. 



Numerical analysis of the Cahn-Hilliard equation 43 

2 Numerical approximation 

Let k = T I N  denote the time step where N is a given positive integer. The finite 
element approx ima t ion  to (1.1) is to find U", W " e S  h, n = 1, 2 . . . .  , N,  such that  

(2.1a) (c?U", Z) h + (VW", V)0 = 0 ,  

(2.1b) (W", Z) h = (~P'(U"), X) + 7(VU", VZ), 

with U ~ = u~, where u~ is some approx imat ion  of Uo in S n, and 

Z "  - -  Z n -  1 
8Z"  = 

k 

for a given sequence f Z  "*N "( y n = O .  

We observe that  for (~g'(U"),;~)h to have a meaning it is necessary that  
IU"(x~)l < 1 for each node xl and this is equivalent to tl U"II~ < 1. 

Remark.  Our  analysis requires the condit ion k < 4~/0~ z. This is a consequence of 
the non-convexi ty  of the free energy. Even though it is independent  of the spatial 
mesh this condi t ion is restrictive because ~ < 1. One might  hope to develop stable 
implicit schemes which allow large time steps when appropriate .  However  for these 
non-convex nonlinear  part ial  differential equat ions this is as yet unrealised. 

47 
Theorem 2.1. Suppose that k < ~  and u h 6 s  h satisfies 1/If2[Sau~] < 1 - - 6 ,  

Ibugll~ 5 1. Then there exists a unique solution {U", W"} to (2.1) satisfying 
[IU " l l ~ <  l f o r e a c h n >  1. 

Proo f  Uniqueness. Let {U'I, W]} and {U~, W~} be two solutions of  (2.1) and set 
z" = U] - U~ and z w = W] - W~. It  follows that  z" and z w satisfy 

(2.2a) (z", z)n + k(Vz  w, VZ) = 0 ,  

(2.2b) (z ~, Z) h = (TJ'(U"~) - ~P'(U"2), Z) h + 7(Vz", VZ). 

Tak ing  X = z w in (2.2a) and )~ = z" in (2.2b) and subtract ing the resulting 
equations yields 

klzWl~ + 71z"l~ = (q" (u~)  + ~ ' ( u ~ ) ,  z") h . 
Since 

(~U'(r2) - 7J'(rl))(rl - r2) = - 7J"(~)(r2 - r l )  2 < Oc(r2 - r l )  z 

it follows that  

( ~ ' ( u ~ ) -  ~ ' ( u i ) ,  z "P  < Oolz"l~. 

Using equat ion (2.2a) with Z = z" we obtain 

kJz"l~ + 71z"J~ < Oo(z", z"p <= k tz"l~ + klz~'l~. 
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Thus  

r u 2 7 -  - -  z l~  =<0 

and, since (z", 1) k = 0, the Poincar6 inequality (1.6) implies that  Iz~lh = 0. This 
concludes the p roof  of uniqueness. 

Existence. Following the work of Elliott and Luckhaus  [13] existence of a solution 
will be obtained by considering a regularized problem.  

Fo r  e > 0, e small, we define 

~(u)  = ~';(u) + Oou, 

~b~(u) = m a x { -  q~(1 - e), min{~b(u), q~(1 - ~)}} , 

fl~(u) = m a x { -  1 + e, min{u, 1 - e}}, 

where ~ ~ C 1 (IR), 
Oe 2 

~ ( u )  = ~ t / ' (u) 0 lul  < 1 - 
(q,o(-l+~)-2(-l+~)~+~-~(u+l) u<- l+~ ,  

and 

Oln(2- ~" ] ~ = 4 ( 1 - ~ ) - 0 ~ ( 1 - ~ ) =  2 \ ~ j - O r ( l - e ) .  

and 

r > 0 lul < 1 ,  

'e(u) > Oo luE < l 
2 

Or 
~ ( u )  >= Vu , 

2 

~'/(u) >= - 0 o  Vu 

f Te + Oeu 
= I 

( - ~ + Ocu 

u > l - ~  

[u[ < 1 - 

u < - l + ~  . 

Tha t  0o(U) > 0 for lu[ < 1 follows f rom the fact t h a t 0 o ( 0 )  = 0 and the form of 
~ )  = 4. Figure 1 shows the graphs  of ~ ,  7t,, q~ and ~b~. 

n n h We shall consider the regularized problem: find Us, W~ ~ S , n = 1, 2 . . . . .  N, 
such that  VZ e S h 

(2.3a) (0U~", X) h + (V WT, VX) = 0 ,  

(2.3b) (W~, Z) h = (~u'~(U~"), Z) h + 7(VUT, VZ), 

(2.3c) U ~ = Uho. 

Note  that  r, > 0 for ~ sufficiently small, q~ is mono tone  increasing since ~b' > 0, 
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Following Elliott [9] the existence of a solution to (2.3) can be shown by 
considering the minimization problem: find U ~ K h such that 

(2.4) o ~ h ( u )  = min ~ h ( x  ) 
z ~ K  h 

where 

~h(z)  = (~(Z), 1) h + ~lzl~ + Iz - 12-h, 

K ~ = { z e S  ~, (Z, 1) ~ = (u~, 1)~}. 

It follows from the definition of o~h that ~ h  is bounded below in K h, 

5 h ( z )  >_- - ~ 1 ~ 1  +-~[zl~ _-> - ~ l f 2 l .  

Let d = infK, o~h00 and {Z,} be a minimizing sequence of ~ h  in K h, that is 
l im, .~  J~h(Z,) = d. It results from the above estimate and the discrete Poincar6 
inequality (1.6) that {Z. } is bounded in H 1 (f2). As a consequence, recalling that g h 
is finite dimensional, there exists U ~ S h and a subsequence {Z, } such that 

Z , - - 'U inS h.  

Since K h is closed, U ~ K h, and the continuity of o ~h  yields o~h(Z,  ) ~ o ~ h ( u )  = d. 
Therefore, there exists a solution U to (2.4). By the calculus of variations, the 
minimizer U satisfies VZ e S h 

k ,Z - 2 ( 1 ,  Z) h = 0  

(~'~(u),  1) h . 
where 2 - is a Lagrange multiplier. Defining 

IOl 

u ~  = u ,  w ~  = ,~ - G h ( ~ U ~ )  

it follows that {U~, W~} is a solution to (2.3). 
We shall now proceed to obtain estimates on U~ and W~, independent of e, in 

order to pass to the limit. 

Lemma 2.1. The  f o l l ow ing  s tab i l i t y  e s t imates  hold 

(2.5) (~ , (U2) ,  1) h + ~,.= I Ws + ~-  ~ - - -  ,=1 = " 

P r o o f  Choosing )~ = W~ in (2.3a) and Z = c~U~ in (2.3b) and subtracting the 
resulting equations we obtain 

kl " 2 =  ' " - -T(VUT, V U ~ - V ~  W~ll - ( ~ ( v ~ ) ,  v~ u~-l)  h ,-1) 

0e 2 Defining ~ ( u )  = !lUg(u) + ~-u and noting that ~ is convex we find that 

--  IP'~(r)(r -- s) = ~'~(r)(s -- r) -- Ocr(s -- r) 

<= ~ ( s )  -- ~ ( r )  --  Oer(s -- r) 

Oc 
<= 'e~(s) - ~e~(r) + - f ( r  - s) 2 
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which implies 

- (~'~(U"),  U~" - U ~ - ~ )  ~ ___ (q'~(U~ -~ )  - % ( U " ) ,  1p  + ~IU~" - U~-~I~  

which yields 

klW~l~ + kZ21OO'~12 + k2O(I U~I2 < (TJ~(O~ "-1) - 7J~(U~), 1)h+ kE~[c3U~l 2 �9 

Taking ;~ = dU~" in (2.3a) gives 

IOU~l~ -- - ( v w L  v ~ u ~ )  

1 kO~ 
< - - I W ~ l ~  + 18U~l~ = kOr 4 -  " 

Hence 

W.l~ + 5 -  7 = �9 7" , (U,  ) , l ) h + ~ l  , 2  _ _ _  laUTi2+k 0 ( I U . I Z ) < 0  

Summing over n and observing that II u~ II ~ _-< 1 it results that, for e sufficiently 
small, 

k " k2(  
~1 w~l l  + 5 -  ~ ( % ( v " ) ,  1) ~ + ~ , =  I ' ~ - - 

]; h2  < (~P~(uh)' 1)h + 5 Uo 

,=a 10U'~l~ + ~1U~l 2 

=< IK2[(~9o(1 --  e) + e%) + 21Uotln z 

( <If21 0In(2)+ 2 \ ~ JJ + 2 u ~  1 

< C(u~). 

which is the desired estimate. [] 

47 Remark. Recalling that ~ ( r )  => - 0o2 Vr and the condition k < ~ we obtain 

(2.6) k Z [W~[ 2 + ~ l U g -  U~-I]~ + IU~"[~ < C .  
i = 1  i = 1  

From (2.5), (2.6) and the Poincar6 inequality (1.6) we deduce that 
n Iu~lh < c ,  

( % ( u " ) ,  1) h __< c ,  

and the definition of ~ together with the fact that qJo is positive yields, for 
e sufficiently small, 

1 C 
- - ( [ c "  - 1]+ + [ - 1  - u " ] + ,  1) h < - 
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where Iv] + = max {v, 0}. Because 

~ h n n 1 J'([U~ 1]+ + [ - 1  U : ] + ) d x < - ( - ~ l ! I ( [ U , - l ] + + t - l - U ~ ] + ) d x  

1 
= - -  U" 1-] + [ - 1  V~"]+,l) h 

if~]([ ~ -  + - 
it follows that 

(2.7) 
1 . C 

~ f ( [ v ,  -13+ + I - l -  v"]+)d~ < - .  
l~Li& 

Lemma 2.2. For t, > O, where t, - nk, we have 

t, lW~ll + k ~ til~U~l 2 < C. (2.8) . 2  
i = 1  

Proof. From Eq. (2.3b) we have 

(aw~, z) ~ = (a~u;(u~"), z) ~ + ~(vau", Vz) 

= (ac~(u"), z) ~ - oc(au"~, z P  + 7(vau'L v z ) .  

Taking • = OU~ in the above equation and Z = ~W~ in (2.3a) it results 

n n h (vw~,vawD+(a4~AuA,  au~) + ~ l au ~ l~  = 0olau~l~." 2 

Using the fact that r is monotone and Eqn. (2.3a) we obtain 

2~' W~"[~z - ~k' W~"-I [~+ ~--k' W ~ -  W~ -1 ,~+TIc~U~lZ<-O~(VW~, V~U~) 

2 

Therefore 

Iw~"l~ Iw~"-l l~ + k~laU"l~ <-ko~l " 2 - _ W ~ l l .  

7 

Multiplying by t. yields 

kTO2;[W~ 1[ tn[W,~lz tn_l[W~-112 4_ktny[~gU,~[2<= _& n[~ +k[W,  ~- 2. 

Summing over n we obtain from (2.6) 

W~ll + k? ti C + tllW, l~ 
i = 2  

Inequality (2.6) with n = 1 yields the result. [] 

Lemma 2.3. For t n > 0 

(2.9) t. lhc~(U~) ~-~Q~ ! Ih(o~(U~)dx I - < c .  
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Proof. Observing that 

(~ ; (uD,  z) ~ = qh 4)~(UD - Oo*h ~(V~),  Z) h 

I ~ h n and taking Z = lhcb~(U~) -- ~ 1 ~ I  4)~(U,)dx in (2.3b) gives 

( l 
w ~ " , / ~ ( v " )  - ~ I ~ ( v " ) d x  

r 

1 i / ~ ( v . ) a  x = i h ~ ( v ~ ) , i ~ 4 ~ ( v .  ) - -~[~ 

The inequality (1.7) implies that 7(VUT, Vlhga~(U~))> 0 and the fact that 
(Z, 1) h = (Z, 1)VZ ~ Sh yields 

1 iih~b,(U,~)d x < Or Ih(a~(U'i) -- 1 ih4)~(U~)d x - - ~ l a  

( 1 ! 1 ~ih4)~(U~)dxdx) h + wn--~-~ W'~dx, Ihq6~(U'~)dx-'~ a 

< C W ' I -  W"~dx + Ilhfl,(U~)l~ . 

Using the Poincar6 inequality (1.6) and recalling the definition of/3~ and the 
boundedness of I U7 Ih we deduce that 

ihc~(un ) 1 ! i  h " dx 2 - W~I~ + C 

and the result follows from (2.8). [] 

In order to prove the theorem we will need the following lemma which has been 
proved by Elliott and Luckhaus [13]. 

Lemma 2.4. Let v ~ L x (g2) such that there exist positive constants 6 and 6' satisfying 

1 
/ a [  a--7{'([v- 1]+ + [ - 1  - v]+)dx < 6' .  

~2 
I f  6' < -~ then 

o,+= {x:v x, 1 ol 



In the same way we have 

Numerical analysis of the Cahn-Hilliard equation 49 

and 

Letting )C = 1 in (2.3a) it results that 

(u" ,  1) h = (u~, 1)" 

and noting that (Z, 1) h = ()~, 1)V)(, ~Sh we obtain 

Thus, recalling (2.7), for ~ sufficiently small, Lemma 2.4 can be applied for Up in 
order to obtain a measure for the sets 

x: Up(x) < - l + ~ . 

Lemma 2.5. For t, > 0 the a priori estimate is satisfied 

t ,  lllhch,(U~)ll 2 <= C .  

Proof Using that Ih4)~(U~) < maxqS~(U~") and the monotonicity of qS~ we obtain 
from Lemma 2.4 

1 1 1 1 ihc~(U,~)dx + ih~)~(U,~)dx ~ (  ' I~ ~(v~)  )h = I ~  ~: <__I _ ~ ~ ~: >~ _ 

IQI~/2 tllh~b~(U")ll . 

1 1 = - -  

Therefore, u s i n g t h a t ( a + b ) 2 < a 2 ( l + ~ ) + b 2 ( l + ~ ) ,  

(2.1o) 

( 1 -  ~)~/2 LI/hq~(UT)ll �9 
IQI~/2 

I ck~(U~)dx < 1 +  ~ 1 -  

+ 1 8 ~ /-~ IIIhg'~(UDII2 " 
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Observing that 

1 ih~(un) l t lh~)e(Un)dx  2 1 ([_~] )~ 

it results, from (2.10), that 

62` 1 W~I 1 " h " dx z 

su cie.tly small (, _:)= gives 

t.]llnck~(UDll 2 < C.  [] 

Lemma 2.5 yields, for h fixed, 

IIInr < C(h, t,) independently ofe 
and 

rq~(U~(xl))[ < C(h, t,) independently of e. 

Furthermore, from (2.8) and the discrete Poincar6 inequality, we find that I W~" In is 
bounded independently of e. The uniform bounds on U~ and W~' imply the 
existence of subsequences { U," }, { W~"} such that 

U ~ ( x , )  --, U " ( x , )  , 

w~"(x,) ~ W"(xl), 
for U", W" ~ S*. 

Let us fix/3 so that ~b(1 - /3)  > C(h, t,). Since 

~b~(r)=~b(r) f o r i r [ <  1 - ~ ,  
it follows that for e < fl 

]~b~(U~"(x,))] =< C(h, t.) < ~b(1 - /3)  = ~b~(1 - fl). 

The monotonicity of ~b~(.) implies that 

I U~(xl)] < 1 - / 3  for a l l e < f l .  

Thus I U"(x,)l N I --/3 and 4)~(U~(xl)) ~ 4)(U"(xi)) as e -* 0. 
The existence of a solution to (2.1) is established by passing to the limit as e goes 

to zero in (2.3). [] 

Theorem 2.2. The sequences {U", W ~} 9enerated by (2.1) satisfy the stability 
estimates 

k Z Iw'l~ + Z Iv'-  v'-lp~ + rv"l~ __< c ,  
i = 1  i = 1  

t. IIIhr 2 + t,I W"[~ + k ~ tilOU'[2~ < C.  
i = l  

Proof This result is a consequence of the stability estimates for { U~", W~" }. [] 
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3 Convergence 

1 
Given Uo ~ H1(~2), t[ uo LI + < 1, ~ ~ Uo < 1 - 6, let us take u~ = phuo where phuo 

$g 
is the unique solution of 

(3.1) (phuo, Z) h = (UO, Z) VZ ~Sh �9 

Since (u~, 1) h = (Uo, 1) it follows that 

1 h 
SUo < 1 -  6.  [al 12 

Also, because 

u~(x,)  = (Uo, z~) 
(1, zi) h 

and ]1Uo li + < 1 it results that [I uho tl o~ < 1. Therefore u~ satisfies the assumptions of 
Theorem 2.1. 

For t ~ (t,_ 1, t.), 1 < n < N, we define 

u~(t) = v " ,  

w~(t) = w " ,  

c~,(t) = Ih 4~+(U") , 

~k(t) = ~ ( t . - 1 )  - U -1,  ~ e c ~ ( o ,  T ) ,  

and denote by fi~, ~k the piecewise linear continuous functions on [0, T] defined by 

fi~(t,)= U" n = 0  . . . . .  N ,  

~k(t,) = ~" n = 0  . . . .  , N - - l ,  

~ k ( T  ) = ~ N - 1  �9 

The stability estimates given by Theorem 2.2 imply that 

u~ is bounded in L+(0, T; HI(~) ) ,  

t~ is bounded in L~~ T; Hi (Q)) ,  

x/Tda~ is bounded in L2(0, T; H~(~)) ,  

x/tw~ is bounded in L~(0, T; H~(Q)), 

w/7r is bounded in L+(0, T; L2(~)) .  

Thus there exists {u, R, w, ~} such that, for ~ > 0, 

u e  L+(O, T; H~(Y2)) , 

~eL~(O, T; H~(O)), 
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d 
,fit~ta~ L2(O, T; n~(o))  , 

(~L~176 T; L2(O)) , 

, f~Lo~(O,  7~; L~(a)),  

and for subsequences h *h U k ,  1.gk~ h h 

Also, as k ~ 0, 

u 2 ~ u in L~(0, T; Hi(Q)) weak-star ,  

fik h ~ t~ in L~ T; Hi(f2)) weak-s tar ,  

x//ttd ~hk~X/Fttd ft in L2(O, T ; H l ( O ) ) w e a k l y  , 

x~ t twh--~ t tw in L| T ;H~( t2) )weak-s ta r ,  

v/t~b~ ~ x / t (  in L~ T; L2(f2)) weak-star .  

~k "-'-)' ~ in L2(0, T) strongly, 

d ^  d 
d - t ~ k - ) ' ~  in L2(0, T) strongly. 

Defin ing  ~T = ~t~ X (0, T) and observing that 

N ik 

IL a~ - u~ It 2 L=t~T) = ~ ~ II a~ -- U~ 112 dt 
i = 1  ( i - l ~ k  

N 

__<k~ l l U / -  U/-1112 
/ = 1  

it results from Theorem 2.2 that ~ = u. 
Given t / eHl (O)  we set X = Rh~ and multiply equations (2.1a) and (2.1b) by 

k~"-1. Summing over n the resulting equations it results 

N - 1  N 

- k y~ a~'(U/,Z) h + (UN, Zpr N-1 - (V~ zp~ ~ + k Y, ~'-~(VW', VZ) = 0 ,  
i = 1  i = 1  

N 

k ~, ~ - I ( ( W ~ -  q~(U') + O~U',x) h - ~(VU~, V~)) = 0 ,  
i = 1  

or, equivalently, 

T T 

(3.2a) - ~  ~'k(t)(Uhk, z)hdt + (U N, Z)h~ N-1 - (u o, Z)r ~ + ~ ~k(t)(VWk h, Vz)dt  = O, 
0 0 

T 

(3.2b) f ~k(t)((w~ - (a~ + Or g)n _ y(Vu~, VZ)) dt = O . 
0 
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Rewriting these equations as 

T T 
-- ~ ~'k(t)(u~, x )d t  + (U N, x)h~ ~-  ~ -- (Uo, X)~ ~ + ~ ~k(t)(Vw g, VX) dt 

0 0 

T 
, h d- ~ ~g( t ) ( (Uk ,  Z) - -  (Uk h, X)h) dt = O,  

o 

T 
Ck(t)((w~ -- (o~ + O~uhk, X) -- 7(VUk h, Vx)) dt 

0 

T 

+ ~ ~ k ( t ) ( ( W ~  - -  r  + Ocu~ , X) h - -  (w~ - -  r  + OcU~, Z))  dt = O,  
0 

are recalling the error  (1.5) due to numerical integration we have that 

(t)( (uL z) ~ - (uL z) ) dt < Ch ~ I tJ z H, II u~ JI , dt 
0 

and 

i ~ k ( t ) ( ( W ~ -  C~ + Ocu h, X) h -  (w~ -- c~ + OcUhk, x ) ) d t  
0 

T T 

Ch I tJ X Jlz II O h]t dt + Ch 21 II X II~ (JJ w h II ~ + O~ II Uhk 11 ~ ) dt . 
0 0 

Choosing ~ such that ~(T) = 0, 4(0) * 0, using the bounds on Uk h, ,,~Wk h and X/~r h 
and observing that II X II 1 remains bounded as k, h ~ 0 and i N- 1 ~ ~(T) we can 
pass to the limit as k, h --* 0 to obtain 

T T 

(3.3a) - ~ ~'(t)(u, tl)dt + i ~(t)(Vw, Vtl)dt  - (Uo, t/)~(0) = 0 ,  
0 0 

T 

~(t ) ( (w -- ~ + Ocu, tl) -- 7(Vu, Vr/)) dt -- 0 
0 

(3.3b) 

which implies 
(u , ,  q )  + (Vw, Vt/) = 0 a.e. in (0, T ) ,  

(w - ~ + 0r u, t/)( - 7(Vu, Vt/) = 0 a.e. in (0, T ) .  

An integration by parts of (3.3a) gives 

(u (0 )  - Uo, ~) = 0 VtleH~(~) 
and therefore u(0) = Uo. 

It remains to show that 

(3.4) C = q~(u). 

Given M > 0, let us define 

and 

FM(V) = m a x { - - M ,  rain{M, v}},  

CM(v)  = g ~ ( ~ ( v ) )  

~ =  {~:1r OI > M} .  
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It follows from Theorem 2.2 that for each t 

t j" I~h(x, t)12dx < tllCo~,(x, 0112 _-< C 
a~ k 

which yields 
C 

M 2 "  

Thus ,  Vt/s L~~163 n H i ( O ) ,  "~ > 0, 

t i ~(t)(qS~- Fm(qS~), rl)dt = 1i ~(t) S (4)~-Fu(c/)~,))rldxdt 

T 

< IIr j" (1~1 +M)dxdt  
t a~  k 

5 It~11~ II~lloo l a ~ l l / 2 1 1 C o ~ l l d t + - ~  - 

and the boundedness of 4~ in L~ T; L2(O)) yields 

i rl) dt C(t) r - ru(th~), < ~ -  II r II ~ II ,i II o~. 

For t > 0 t~ is hounded in Ht((t, T)• s and the fact that the injection of 
Hl((t, T)• O) into L2((t, T)• f2) is compact guarantees the existence of some 
subsequence u~ such that 

(3.5) u~ --, u in LE(r, T; LE(O)) strongly. 

Observing that 

i~ ~(t)(Fu(4)~)- r = l i~ ~(t)(dpu(u~)- cku(u),rl)dt 

T r  & 
+ I ~(t)((Fu(ck~,) - c~u(u~), tl) - (Fu(4)~,) - ~bm(u~), 

< C h l l F u ( c ~ ) -  t~u(u~)II Hi/It 1 + i, ~(t)(~bM(u~)- ~m(u), rl)dt] 

it results that, since 4~m is Lipschitz continuous and (3.5) holds true, 
T 

I ~(t)(Fu(c~) - r tl)dt ~ 0 as k, h ~ O. 

Therefore 

((t)(r -- Fm(c)~), ~ r -- (am(u), ~l)dt as k, h--* 0 

and 

(3.6) ! ~m(u), tl)dt C(t) 
~(t) (~  - =< - ~  II ~ II ~ II ~ II | �9 
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Taking r /=  q~M(U) we obtain 

~(t)ll~M(u)ll2dt <= C(~)ll~ll~ + ~(t)(~,6M(u))dt . 

Choosing ~(t) = 1 and recalling that f ieLd(z,  T; L2(O)) it results that u  > 0 

T 

Ilcku(u)ll2 dt < C(~) 
r 

which implies 
T 

.~ II ~(u)llmdt ~ C(T). 
z 

As M ~ ,  
q~M(u) ~ ~b(u) in L2(z, T; L2(f2)) strongly 

and (3.6) gives 
= ~b(u) on (z, T) .  

Since z is arbitrary (3.4) follows. 
Because the limit is independent of the subsequence and Eq. (1.3) has a unique 

solution we conclude that the whole sequence converges. 

4 lterative method 

We shall now discuss two iterative procedures used to solve (2.1) in the one 
dimensional case. 

Method I. Representing the solution in terms of the basis functions as 

Nh N h 
o n =  E cnzi '  m n =  Z dnZ i ,  

i = 1  i = 1  

Eqs. (2.1) lead to the following system, 

M(e"  -- e "-a)  + k K d "  = 0 ,  

M d "  = f i e " )  + 7Kc" ,  
where 

c.={c7), d"={dT}, 
Kij = (VzI , VZj) , 

{ f ( c" )  }i = (Tt'(U"), Z,) h , 

with Mu = mi, M~j = 0 i * j, and the resulting algebraic problem to be solved is 

(4.1) M(c"  - -  e n- l )  + k T K M - I M c "  + k K M - X f ( c  ") = 0 .  

Given c~, an initial guess to c", we solved the linear problem for j > 1 

(4.2) M(c7 - c "-~)  + k ? K M - ~ K c 7  + k K M - ~ f ( c  ". 1) = 0 , I  j -  

Provided that k is sufficiently small it is possible to show that the mapping 
associated with this iterative scheme is a contraction with respect to I'lh. If 
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Iic7 IIo~ < l Vj then the sequence {c~}j%o obtained from (4.2) converges to the 
unique solution of  (4.1). Unfortunately,  we have no guarantee that  II c7_ all | < 1 
implies II cy II o~ < 1. However,  by decreasing the time step if II e7 II o~ _-> 1 and com- 
puting a new c7 until II e7 II ~ < 1, a sequence {c~ } that satisfies II cy II | < 1 was 
always generated when II U ~ IE ~ < 1. Alternatively, if IL c~ II o~ >_- i we can truncate 
cy to the binodal values and continue the iteration. The problem here is that  we 
may  not  have convergence. 

Method II. Let us denote by q the number  of nodes of ~--h, that is q = N h, and 
rewrite (2.1) as 

(Gh(auh),  Z) h + ' ) , ' (vun), V~() "~ (~)(Un), ~()h __ Oc(U n, z)h __ ~n(1 ' z)h = 0 

where ,,1," = (~ ' (U") ,  1) h 
If2l 

Given y e s  = {ys lRq:  1TMy = 0}, the existence of G h defines, implicitly, the 
invertible linear t ransformation T:  S ~ S by 

(4.3) 

where f is the solution of 

(4.4) 

T(y) = f 

ICy=My, 

ITMfi  = 0 

and 1 is the vector with components  1. 
As a consequence, given U n- 1, the algebraic problem to be solved is 

T (  cn-cn-1  ) 
f~ + ~M- tKc  n + q~(c n ) -  Occ n -  2nl = O, 

which can be written as 

(cn :cn-l~ T ( ? M - t K M - t K c  ~ OcM-1Kcn)+,(c n) ~nl O, (4.5) T + -- - = 

where 

1 
and ~." = ~ 1TM~(e"). 

o, (1 + cn'  
{ +(c") }i = ~ in t li--~--~) 

_ q Letting v - ~'.i= 1 Y~Xl we observe that for e > 0 

(4.6) (v, V) h = (VG h, Vv) h 

< IGhvlxlvll 

l e 2 < --IGhvl 2 + ~lVll . 
= 2e 
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Let us define the operators A and B, 

A: ( - 1 ,  1)q ~ IR q 

A ( y )  = q~(y) ,  

B: D ( B )  --. S 

B ( y ) =  T ( y - c n - 1 )  
k + T ( ~ M - I K M - 1 K Y  --  O c M - I K Y )  ' 

where D ( B )  = {yelP, q: l r M y  = (u~, 1)h}, so that c" satisfies 

B ( c  n) + A ( c  n) - -2"1 = O . 

It follows from the monotonicity of ~b that A is monotone and, since 
4~ 

range( /+  #A) = IR q X/p > 0, A is maximal. If k < ~ then B is coercive: given 

z, y ~ D ( B )  and denoting by (., .) the inner product of ~,q defined by (z, y) = y T M z  
it results that 

1 
( e ( z )  -- B ( y ) ,  Z -- y )  = ~ ( z  -- y)X M T(z  --  y )  - O~(z - y)'r M (z - y )  

+ ~(z - y ) r K ( z  - y ) .  

Defining ;( -- ~q= ~ zi;(i, r /= ~q= t YiZi, it follows that 

1 
(B(z)  - B ( y ) ,  z - y )  = ~EGh(;( -- /7)12 -- OclZ -- t112 + ~]Z -- 1112 

and the inequality (4.6) yields 

( B ( z ) - B ( y ) , z - y ) =  I a h ( z - r / ) l ~ - ~ l G h ( z - ~ / ) 1 2 +  w -  I ; ~ - n l ~ .  

O~k 
Taking ,  = --~-, the Poincar6 inequality yields 

(B(z)  B ( y ) ,  z .v)> CIz nl~ > C(z  T - - = - = - y )  M ( z  - y ) )  

and therefore B is coercive. 
A natural iteration to find c" and -2" is 

(4.7a) c7+ ~ + #A(cT+�89 = c 7 - izB(cT) + #-271 , 

(4.7b) cj+ 1 " + i~B(c~+l)  _ #2j+ 1 - n  1 = Cj+�89 -- # A ( c 7 + , )  , 

with / z > 0  and ~. ~o {2i}~=1 a sequence of Lagrange multipliers. Recalling that 
lVMB (c~ .+ l )  = 0 we find that 

1 (1 Mc7 + _ 1 Mc7+ +  l MAicT+ )) " 
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We remark that solving (4.7b) is equivalent to solving 

K ( c T +  1 + / z B ( c ~ +  1) ) = K ( c T +  �89 - I-~A(c~+�89 

because 0 is a simple eigenvalue of K with eigenvector 1. Equation (4.4) yields 

(4.8) kKcT+ ~ + # ( M - k O c K  + k T K M  - ~K)c.~+ 1 = I ~ i c  "-1 + kK(cT+ �89 - I~A(c~+ �89 

47 
For k <~22 the matrix M -  OckK + k 3 , K M - 1 K  is symmetric positive definite, 

since in this case the eigenvalues of I - 0r k M  - ~ K + k TM - 1 K M  - ~ K are positive. 
It follows that (4.8) has a unique solution. 

4~, 
{21, cl } the sequence (c] }~=1 generated by the P r o p o s i t i o n  4.1. Le t  k < $2.  Given ~" " 

0~ 
algorithm (4.7) converges to the unique solution o f  (4.5). 

P r o o f  We have adapted the proof given by Lions and Mercier [15] where the 
algorithm, without Lagrange multipliers, is analysed for more general operators 
A and B (see also [14]). 

Let us drop the dependence on n and set c =- c' ,  cj = cT, 2 =- 2", 2j -= ~7. We 
define 

It results that 

v = c + # B ( c )  - I ~ 1  , 

z = c + # A ( c ) ,  

a = A ( c ) ,  

v~ = c j  + u B ( c j )  - ~7~jl  , 

z j = 2 c ~ - v j ,  

Zj - -  ~j+ I 
a t -  2# 

v + z = 2 c ,  

21~ ' 

and the iteration (4.7) can be written as 

vi+1 = (I - # A ) ( I  + #A)-lzj 

= ( 2 J ]  - I ) z j  

where J ]  = (I +/ tA)-1.  As a consequence we have 

lYj+ 1 -~- 7oj : J~A(Zj) 
2 

and therefore 

2 
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The monotonicity of A yields 

(4.9) O < ( a j - a ,  v j + l q - z j  ) ~ (  : T C ~- Zj - -  Z - -  I)j+ 1 ~- V, I~j+ 1 - -  V -Jr Zj - -  Z) 

1 
= ~ ( I z j  - z l  2 - I v ~ + l  - v 1 2 ) .  

Also, the monotonicity of B together with the fact that (cj - c, 1) = 0 gives 

(4.10) 0 < (B(c j )  --  B(c) ,  cj  - c) 

( v j - c  i v-c ) 
= + ~jl  ~1, c j - -  c 

1 
= ~ (Vj - -  I) - -  Zj -t- Z, Zj - -  Z -~ 1)j - -  V) 

1 
= U ( I v ~  - v [2  - Iz~ - z l  2 )  

Equations (4.9) and (4.10) imply 

]v j+1  - vl 2 < lvj - vl 2 

which shows that {Ivj - vl } is a decreasing sequence bounded below. Adding (4.9) 
and (4.10) we obtain 

< ( B ( c j )  - B(c ) ,  c i - c) + ( a j  - a, 0 

1 
-A-y(Ivj -- vl z -- IVj+l -- rl z)--* 0 '+# 

This yields 
(B(c j )  - B(c), cj - c) ~ 0 

and, since B is coercive, we conclude that 

c j ~ c  a s j ~  . 

Vj+ 1 A~- Zj 

2 c J 
a s j  ~ {3(3 . 

a s  j --~ 0(3 

[] 

To compare the two iterative procedures the simulations described below were 
performed using the two methods. When Ub was not close to 1 the iterative method 
I was faster than method II. However, for Ub close to 1 method I required a very 
small time step and, in this case, the superiority of method II was evident. Also, 
when the initial data took values 1 or - 1, method II  always gave a solution while 
this was not true for method I since sometimes convergence was not obtained due 
to the fact that the iterative process returned a solution which satisfied II c~ II ~ >_- 1. 

5 Numerical simulations 

A one-phase homogeneous binary mixture with average composition Um inside the 
spinodal interval is unstable with respect to infinitesimally small fluctuations in 
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compos i t ion  and separates into regions of higher and lower concentra t ions  of 
A and B. Such a system evolves towards  an equil ibrium state with phases having 
concentra t ions  fl or - f l  where fl is defined in Sect. 1. 

Numer ica l  s imulations in one space dimension were per formed with O = (0, 1). 
Note  that  (4.7a) m a y  be rewrit ten as 

c'j.+�89 + I ~ A ( ~ + i )  = 2ey -- (e 7 + # B ( c T )  - #[71) 

and, due to (4.7b), an explicit expression for T is not  needed. To start  the 
computa t ions ,  as an initial guess to c 1 we took  c o if II U o It ~ < 1. When  II U o II oo = 1 
the initial guess to U 1 was U~ defined by 

v~(x,)= U~ 

U ~ ( x i ) = 0 . 9 9  

U~(x~)=  - 0 . 9 9  

if - 1 < U ( x l )  < 1 , 

if U ( x i )  = 1 , 

if U ( x i )  = - 1  . 

Then  {~,~, c~} was the solution of c~ + # B ( e ~ )  - # ~  1 = c o - k lA(e~ For  n > 2, 
{~'~, c] } was {~"- 1, c" -  1}. 

To  solve (4.7a), for each node, the bisection me thod  was used. The Cholesky 
decomposi t ion  can be employed to find the unique solution of (4.8). If  we mult iply 
Eq. (4.7b) by k M  - 1 K  then, as explained by Blowey and Elliott [2], it is possible to 
use a discrete cosine t ransform to solve the resulting system. On the square 
t2 = (0, L) • (0, L) with a uniform tr iangulat ion it requires I h to be the piecewise 
bilinear interpolant .  

In order  to decide which/~ to take we run one experiment  with different values 
of #:/~ = 0.01, # = 0.1, # = 1, # = 2. The value that  required, on average, fewer 
i terations was # - -  1. However  we cannot  be conclusive about  this value since, 
probably ,  the best choice would depend on the problem. 

In all s imulat ions we let # = 1 and the m a x i m u m  number  of iterations, for most  
of  the experiments,  was smaller than 50. The exceptions were the cases with 0 = 0.2 
and 0 = 0.15 when, for some times, about  250 i terations were needed. However ,  the 
numbe r  of  i terations required to obtain convergence of the algori thm, in all 
experiments,  was usually small. 

Finally, the s imulat ions were s topped when a solution that  did not  change for 
a long t ime and whose associated discrete chemical potent ial  was constant  up to 
4 decimals was obtained. 

5.1 C o m p a r i s o n  w i th  quar t i c  f r e e  energy  

As explained in the introduct ion,  if0r ~ 0 and  u is small, the logar i thmic free energy 
can be app rox ima ted  by a quart ic  polynomial .  In  this exper iment  we choose 
0c = 2.2 and 0 = 2.17 so that  0c ~ 0, and compared  the evolut ion of the system 
f rom an initial condit ion which was a r a n d o m  per turba t ion  of the uniform state 

u = 0 with the evolut ion when ~g'(u) = ~u a - (0r - O)u. N o  significant difference 

was observed and the error  in the m a x i m u m  norm was smaller than 5.7 x 10-  3 for 
1 

the times computed .  We let y = 2 x 10 -4, k = 1 x 10 -4, h = ~ and judged that  
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Fig. 1. The solid lines represent ~' and ~b and the broken lines represent ~, and ~ 

the iterative process converged when tlc7 - c7_ 11t oo < T O L  with T O L  = 1 x I0  -7. The 
results were virtually the same when the initial data was interpolated up to 201 nodes. 

5.2 Initial data satisfying II U ~ II ~ = 1 

We have shown in Sect. 2 that the numerical approximat ion has a solution even 
when II U ~ 11 ~ = 1. We run two simulations with initial data satisfying II U ~ I1 ~ = 1. 
In the first experiment the initial condit ion is a piecewise linear cont inuous function 
which is equal to 1 over an interval I, equal to - 1 over an interval J and a r andom 
perturbat ion of zero on (0, 1)\(I U J). In  the second experiment, the initial condi- 
tion does not assume the value - 1 .  The parameters  were 0c = l, 0 = 0.5, 
7 ----- 5 • 10 -3 ,  k = 7 and T O L  = 1 x 10 -7 with 0.957 < fl < 0.96. 

To compute  U 1, 19 iterations were required to obtain convergence in the first 
case and 23 in the second one. The subsequent number  of iterations was much 
smaller in both experiments. 

The results are shown in Fig. 2 and the final state is a single-interface solution. 

0 
5.3 The limit ~- ~ 0 

oo 

0 
We shall now describe some simulations to investigate the limit - - ~  0. It was 

0o 
remarked in the introduct ion that  Elliott and Luckhaus  [13] have shown that the 
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Fig. 2a, b. The  evolut ion from initial condi t ion  tha t  takes values 1 and  - 1  in regions of non-zero  
measure. The  numbers  indicate the direct ion of increasing time; this applies throughout ,  a t = 0, 
0.005, 0.1, 3; b t = 0, 0.005, 0.1, 0.5, 3 

weak solution of the Cahn-Hilliard equation with the logarithmic free energy 
converges to the weak solution of the free-boundary problem studied by Blowey 

0 
and Elliott [1]. It is our aim to compare the results of our simulations for ~ ~ 0 

with the numerical results obtained by Blowey and Elliott [2]. To this end, we fixed 
7 = 5 x 10 -3 and 0c = 1 which correspond to the parameters used by Blowey and 
Elliott [-2] and performed two experiments with the same initial data they have 
taken. In both experiments, we obtained, for the smallest 0 considered, a solution 
similar to the stationary solution of Blowey and EUiott [2]. We remark that (see 
Introduction), for 7, 0o and Um fixed, fl increases when 0 decreases. 

In the first simulation, the initial condition was a random perturbation of the 
uniform state u = 0 and the values of 0 were 0.8, 0.5, 0.35, 0.2. The other parameters 
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Fig. 3a-d. The evolution from initial condition which is a random perturbation of the uniform 
state u = 0 for different values of 0. a 0 = 0.8, t = 0, 2, 6; b 0 = 0.5, t = 0, 0.5, 1, 40; e 0 = 0.35, 
t =O, O.5,2; d O=O.2, t =O, O.1,2 

1 
were k = 7, h = 1 ~  and T O L  = 1 x 10-7. In the case of 0 = 0.35 the initial 

condi t ion was interpolated up to 201 nodes and  the results were virtually 
the same. 

In  the second s imulat ion we took 0 = 0.5, 0 = 0.3, 0 -- 0.2, 0 = 0.15 and the 
1 

initial condi t ion  was a r andom per turba t ion  of u = - 0.6. We let k = 7, h - 
100 

and T O L  = 1 x 10 .7  for the first three values of 0. When  0 = 0.15, we have 
0.999995 < fl < 0.999999 and for this reason T O L  was decreased to 
T O L =  l x l 0  -8. 

Figures 3 and  4 show the results. In  Fig. 3 the "stable" pat terns shown in (c) and  
(d) could be approximat ions  of steady-state solutions. We run  these two simula- 
tions for long time and a slightly movement  along the interfaces was observed in 
case (d) indicat ing that the pat tern  will eventually change under  longer time scales. 
The "stable" pat tern shown in Fig. 4c should not  remain because it is not  an 
approximat ion  of a solut ion of the steady-state equat ion  as described by 
Carr et al. [4]. 
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Fig. 4a-d. The evolution from initial condition which is a random perturbation of the uniform 
state u = - 0.6 for different values of 0. a 0 = 0.5, t = 0, 2, 4; b 0 = 0.3, t = 0, 0.4, 1; e 0 = 0.2, 
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