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Numerical Analysis of the Exterior Boundary Value
Problem for the Time-Harmonic Maxwell Equations

by a Boundary Finite Element Method
Part 1: The Continuous Problem

By A. Bendali

Abstract. A general finite element method is applied to compute the skin currents flowing on a
perfectly conducting surface when it is illuminated by a time-harmonic incident electromag-
netic wave. In this paper, we introduce and study the framework in which the continuous
problem can be stated in order to make possible the numerical analysis which will follow in a
second part.

0. Introduction. The determination of the diffracted field by a perfectly conducting
obstacle T (which is supposed here to be the smooth boundary of a bounded open
domain ß') is reduced to that of the surface currents j and charges p on T (cf. e.g.
[11], [15], [22]) which satisfy the integral equation

(0.1) II/-- grad v + iupa\ = -Ue1"0   on T.

n is the orthogonal projection on the tangent plane of T; e"10 is the electric part of
the incident electromagnetic wave; e and ju are the characteristic constants of the
medium in which T is embedded. The time variation is supposed to be e~"°' and is
suppressed by linearity; v and a are respectively the scalar and the vector potential of
the electric field diffracted by T, respectively created by the surface charges p and
the surface currents^':

(0.2) v(x)= (G(x,y)p(y)dy(y),
■T

a(x)= ¡G(x,y)f(y)dy(y).

£ik\x-y\
G(x, y) = -—:-:

is the kernel giving the outgoing solutions of the Helmholtz equation;

(0.5) k = wv/ëjû
is the wave number.
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30 A. BENDALI

Finally, the currents j and the charges p induced by the incident field e1"0 on T are
linked by the conservation law

(0.6) divrj = i up,
where divry is the surface divergence of the tangential field y of T.

Rumsey [19] proposed the concept of reaction between two systems of electromag-
netic sources in order to replace Eq. (0.1) by the following variational equation

(0.7) f i-± grad v + iufia, q) dy = -f (?ac, a) dy,

for all tangential fields q. In the sequel, ( •, • ) will denote the Hermitian product of
two vectors with three complex components.

Sankar and Tong [20] used the formulation (0.7) together with the gauge relation

(0.8) diva = iav
to treat the case where T is a metallic plate. An important remark about this
formulation is that it is not difficult to deal with the case of open surfaces. It is
sufficient to impose on the unknown currents y and on the test currents q not to have
any normal component to the boundary curve 31" of T. This is not the case with the
magnetic integral equation also called the Maue equation; cf. e.g. [22]. However, the
method proposed by Sankar and Tong is too restrictive since it cannot take into
account arbitrarily shaped surfaces. Moreover, they do not elucidate the way the
singularity l/\x - y\3, which appears in this formulation, is numerically handled.

Harrington and Mautz, in a series of papers (cf. [9]) proposed to carry out the
integration by parts

(0.9) f (grad v, q) dy = f(gradrv, q) dy = - fv divTqdy,
¿Y ^p ^p

where gradr is the surface gradient of a function defined on T. Equation (0.7)
together with the conservation law (0.6) leads then to the problem

Find a tangential field y on T such that, for all tangential fields q of T,

(0 10)    | hxrG(<X,yÁ~~k2dÍVr"^ diVr<^*) +U(y)»9(x))j dy(x) dy(y)

An important feature of the above problem must be pointed out: in the equation,
there appears only the kernel G and not its derivatives. Thus the integrals remain
weakly singular.

It seems that Harrington and Mautz were faced with the construction of a
conforming finite element space of currents on T (in physical terms a space for
which there do not exist line or vertex charges). This is the reason why, as far as we
know, they only treat bidimensional and axisymmetric problems by the formulation
(0.10).

Recently, Rao et. al [16] proposed the following method. The surface is replaced
by an approximate polyhedral surface Th formed by a juxtaposition of planar
triangles. The currents and the charges are then determined by the mixed finite
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TIME-HARMONIC MAXWELL EQUATIONS. PART 1 31

element method of the lowest order, where the currents flowing across any edge and,
consequently, the charges over any triangle are supposed to be constant. This
method was actually introduced by Raviart and Thomas [17] for solving the mixed
formulation of the Poisson equation in a domain in the plane. It was next used by
Nedelec [13] for the computation of eddy currents on a surface of R3. As shown
in [2], Rao's method can be generalized, in light of the work of Raviart and Thomas,
to a method of arbitrary order, if T is a polyhedral. However, in the case where T is
a curved surface, if the directions of the tangent plane are not correctly approxi-
mated (i.e. if they are only approximated by the directions of the plane triangle), we
have a loss of one convergence order. A similar problem arises in double layer
potential formulations which require the interpolation of the normal (cf. [18]).

However, as far as we know, up to now nobody has treated the numerical analysis
of the problem (i.e. the existence and uniqueness of the solution of the approximate
problem and error estimates.) This will be the subject of this work, divided into two
parts. In this first part, we state the boundary value problem which leads to Eq.
(0.1). We recall the existence and uniqueness results for this problem (cf. [1]) and
give the regularity properties of its solution. This enables us to state the variational
equation (0.10) in a suitable framework. Finally, we give some coerciveness estimates
on which the numerical analysis developed in the second part of this work will be
based.

There exist other methods of discretization of the problem of scattering an
electromagnetic wave by a perfectly conducting obstacle. A comprehensive account
of these methods and relevant references may be found in [15] and [16]. It must be
emphasized that the list of references given above is by no means complete. We only
tried to illustrate some of the important features of the method which will be
discussed.

1. Review of Some Facts About Boundary Value Problems.
1.1. Notation and Spaces, ß' is a bounded open subset of R3. Its boundary T is a

smooth (i.e. C°°) surface of R3. ß' lies locally on one side of T and is such that the
exterior domain ße = R3 \ ß' is connected. We suppose that ß' is also connected (the
case where ß' is not connected differs only by some inessential details in the proofs).
Hence, T is also the boundary of ße and is connected. We shall denote by n the field
formed by the unit normal to T outwardly directed to ß'. One can see (cf. e.g. [4])
that the field n can be extended to R3 to define a C°° field, also called n, and
compactly supported, such that |m| = 1 in a neighborhood of T. In the sequel, ß
represents either ß' or ße for any purpose which does not need the boundedness of
the domain; «is then the unit normal to T outwardly directed to ß.

For s e R, we denote by H*(ß) (resp. H^T)) the space formed by the fields «
with complex components which belong to HS(Q) (resp. HS(T)). H*(ß) (resp.
HJ(T)) is identified, for any fixed orthonormal basis {?,, e2, e3} to {Hs(ü)}3 (resp.
{¿P(r)}3),by
(1.1) Ü = u%;      u1 e HS(Q) (resp. HS(T)).

We shall always take the usual convention of tensorial calculus of summing over
the repeated indices. As a rule, latin indices go from 1 to 3, while greek ones take the
values 1 or 2.
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32 A. BENDALI

Hs(íl) (resp. HS(T)) denotes the usual Sobolev space (cf. [10]). For w in HJ(ß), by
the decomposition (1.1), we can use the norm notation

/    3 \l/2

(1.2) M|,.0-    Il|«'lí.n

and similar notations for ||t<||Jir and for the seminorm \u\m K, if m is a nonnegative
integer and K a measurable subset of ß or T. ||w'||jß is the usual norm of u' in
/7J(ß).

The inner product of two vectors a = a'e¡ and b = b'ei is denoted by
3

(1.3) (a, b) = Y. a'F:

a A b denotes the usual vectorial product.
Using the stability of Sobolev spaces with respect to the multiplication by C00

functions, we can decompose HJ(T) into two subspaces respectively generated by
the tangential fields to T and the normal fields to T. We have

(1.4) p = Up+(p,n)n;
(1.5) NHS(T) = { p e H*(r): p = vn; v e HS(T)} ;
(1.6) TH*(T) = (peff(r): (p,n) = 0};

(1.7) W(T) = THS(T) 0 NHS(T).

This last direct sum is also an orthogonal decomposition if HS(T) is equipped with a
suitable norm.

If A' is a Hubert space, X' denotes the space of all antilinear bounded forms on X.
(l, v)x. x denotes the duality pairing between X and A". Nevertheless, to simplify
the notations, we shall omit X and X' if there is no risk of confusion.

Finally, the usual identifications of duality of Sobolev spaces enable us to take

(1.8) [THS(Y)}' = TH~S(T);        {NHS(T)}'= NH-S(T).
We shall use the following Fréchet spaces (cf. [23]):

Hfoc(ßf)= (íe {S'(ße)}3:c)ie Hs(ße) V<p e ^(R3)),

H|œ(A,0e) = {« e HUße): A« e LU^)}-

Recall that Aü = grad div ü - curl curl u is given by Au = (Au')ei when u is in the
form (1.1). H^A, ß) being defined in a similar way, one can follow [10] to define,
for ü in HJo^A, ß), the traces curl ü A ñ and y0(div u), respectively, in TH'1/2(T)
and H~l/2(T). This definition uses the surjectivity, the trace operator from //^ß)
onto H1/2(T), the density of the space of smooth functions in HJ(A, ß) and the
following Green's formula which holds for sufficiently smooth u and v:

(1.9) / ((Aü, v) + (curl u,curl v) + div ü divv } dx

=  i {(curl ü A n, v) +(«, o)Y0div it] dy.
Jr
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It can easily be seen that this definition of Yo(div «) coincides with the one given by
Lions and Magenes [10], which is based on Green's formula:

(1.10)    -(A(div^«),(jp)w-i(a)//i(a)+ ( div(\LÜ)Aydx = (y0divw, Yi<p),

where 4> is any function of ^(R3), 4> = I near T and v,<p is the second trace 3<jp/3« of
<p 6 7/2(ß) n Hq(Q). In the same way, the definition of curl «An, by (1.9),
coincides with the one given by Duvaut and Lions [5] if curl curl «belongs to L^ß).

1.2. The Boundary Value Problems. Let a tangential field c e TH1/2(T) and
g e H~1/2(T) be given. For a given positive real number k, it has previously been
shown (cf. [1]), that the exterior problem

(1.11)

' Find eeHJjA.ß') such that
Ae + Ä:2e = 0    in ße,
ne = c in 77/1/2(r),
y0dive = g       iaH~1/2(T),

curl e A r/r +(f/r) dive - ike = o(\/r),

has one and only one solution. We have used the following notations: Fis the radius
vector of the generic point x in R3, r its length and o(l/r), as usual, denotes a
function going to zero faster than \/r when r tends to infinity uniformly with
respect to the angular directions r/r.

In [1], it has been proved also that, if k2 is not an eigenvalue of the interior
problem (in the sequel, we shall always assume this hypothesis), the problem

(1.12)

Finde g H^A.Q'')
Ae + Ä;2e = 0   inß',
Ue = c in THl/2(T),

y0dive = g       infr^d1),

has one and only one solution. Moreover, in this case, it is known that k2 is not an
eigenvalue of the interior Dirichlet problem for the Laplace equation.

The regularity properties of the solution of (1.11) and (1.12) are given by

Theorem 1.1. Let Ü in H^A, ß) be such that, for s > 0,

(1.13) AíeHj^O),      r = max(0,s-l),
(1.14) Me THS+1/2(T),

(1.15) Y0divt7e//jl/2(r).

Then,

(1.16) «eH&HS).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



34 A. BENDALI

Proof, n being the compactly supported extension of the normal to T, such that
|n| = 1 in a neighborhood of T, as was previously introduced, it is sufficient to show
that

(1.17) «Aa6H,+1(8),

(1.18) (u, n)e//s+1(ß).

We shall prove this for 0 < s < 1. The rest of the proof is easily obtained in the
same way, starting from this particular case.

As a consequence of (1.13) and (1.14), we remark that

[«A ue H^ß),
(1.19) < A(« A u) = ft A Am +/,

\n Au = n AUiîe Hi+1/2(T),

where / is a function containing only partial derivatives of u of order less than or
equal to 1 multiplied by functions in ^(R3). It then follows that A(n A u) is in
L2(ß). The standard regularity results for elliptic problems (cf. e.g. [10]) then give
(1.17).

In the same way, we have

(1.20) /<*.*)etf<0).

Yi{(u, «)} may then be defined in H~l/2(T) (cf. [10]).
In a previous work (cf. [1]), we have established the relation

(1.21) Yodiv« = divr(n«) + 2H(u,n) + y1{(u,n)},

which holds if ü is in (^(ß)}3 and can be extended by density to those u in
H^A, ß). We have written H(x) for the mean curvature of T at the point x (i.e.
the arithmetic mean of the eigenvalues of the curvature tensor). Thanks to (1.15) and
(1.17), we have

(1.22) Yi{(«,«)}e^-i/2(r)<

The classical results on elliptic problems then again lead to (1.18).   D

2. The Integral Equation. In this section, we introduce the framework in which the
variational equation (0.10) can be studied.

2.1. Some Preliminary Lemmas. We shall always write [i;] = flint — ̂ lext ^or tne
jump across T of the function or of the distribution v which is assumed to admit, in
some sense, interior and exterior traces on T.

Proposition 2.1. Let a field « e L^R3) satisfy w e HX(A, ß') n H^A, ße) and
Aw + k2u = 0 in ß' U ße. Then we have: [yx div Ü] is well defined in H'3/2(T) and

(2.1) [Yidivw] = divr([curlí7A ñ*]) -k2[(S,ñ)].
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Proof, div u belongs to H°(A, ß') n H^A, ÏÏe). Thus, its second trace may be
defined in H-3/2(T) (cf. [10]). For <p e ^(R3), (1.9) yields

(2.2) f       {(A«,grad <p) + div üA<p } dx
■'O'uO«

= ([curl« A n],gradr<p)_1/21/2 + ([y0div i#], YiÇ»>_i/2,i/2-

Now, A div « + k2 div ü = 0 in ß' U ß* also. Then Green's formula

(2.3) (       {(Au.gradtp) + ^A(divw*)} dx = -k2[[(u, n)]ydy

holds in H(div, 0') n Hloc(div, ße).
Combining (2.2) and (2.3) and using again Green's formula, we obtain

(2.4) ([y1divi?],<p>_3/23/2 = -([curl u A «],gradr<p)_1/21/2

-k2([(u,n)]<pdy,
•T

which is (2.1) written in the sense of distributions.   D
Remark 2.2. We have thus obtained that the "conservation law"

(2.5) divr([curlM A n]) = k2[(u, «)]

is equivalent to [yx div u] = 0.
In the sequel, e will denote the field in L^R3) defined almost everywhere by

Aü" = solution of the exterior problem (1.11) and e\a¡ = solution of the interior
problem (1.12), assuming that g = 0 in the following. We write

(2.6) p = [curie A n] 6 THl/2(T),

(2.7) X = -[(e,n)]e//1/2(r).

Remark 2.3. If c = -üe1110, where Pnc is the incident electric field, p and X are
respectively related to the currents j and charges p considered in the introduction, by
p = iufij and X = p/e.   D

As a corollary of Proposition 2.1 and of the fact that dive = 0 (cf. [1]) in ß' U ße,
p and X are linked by the conservation law

(2.8) divr/+ k2X = 0.

If c is a smooth field (i.e. C°°), Theorem 1.1 yields

ee {C°°(n')}3n{C"(ß')}3.

The representation of solutions of the Helmholtz equation satisfying the Sommerfeld
radiation condition (cf. e.g. [15], [22]) gives

(2.9) e(x) = -grad v(x) + a(x),   for all x not on T,

(2.10) <;(*) =/(?(*, jOMjO'Mj'),
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36 A. BENDALI

(2.11) ä(x)= ¡G(x,y)p(y)dy(y),

where G(x, y) is Green's kernel given in (0.4).
The classical potential relations (cf. e.g. [11]) enable us to write

(2.12) c = -gradri; + Ha.

Thus, if q is a smooth tangential field on T, Stokes formula

(2.13) / (gmdrv,q) dy +  (vdivrqdy = 0
•T •'r

and the continuity equation (2.8) show that p is a solution of the following
variational equation:

'Find a smooth tangential field p on T such that,
for all q of the same type,

(2.14) If     G(x, y){--¡¿ àiwTp(y) dwrq(x) +(p(y), ?(*))} dy(y) dy(x)

= f(c(x),q(x))dy(x).

Our aim is now to formulate (2.14) in a framework adapted to the analysis
developed subsequently. We set
(2.15) H=TH-1/2(T),

(2.16) X= {p^H:d\vTp^H-l/2(T)},

(2.17) M={tx^H-^2(T);(li,l)=Q}.
All these spaces, equipped with their natural norms, are complex Hilbert spaces. It is
easily seen, by standard techniques, that the infinitely differentiable elements
constitute dense subspaces and that, for any/ e X, divrp e M.

If X and Y are two Banach spaces, áC(X,Y) denotes the Banach space of all
bounded linear operators from X into Y.

Lemma 2.4. The operator Ä defined for infinitely differentiable p e H by

(2.18) Ap(x) = UÍG(x,y)p(y)dy(y)
•T

may be extended by continuity to an operator belonging to áC( H, H'). The problem

( Find a <E H}^ (R3 ) such that

(2.19) l-(Aa + k2a)= {p)    in®'(Q),
l^curl a A r/r +(r/r) diva - ika = o(\/r),

has one and only one solution. We have denoted by {p} the distribution defined by

(2.20) {{p},v)$.,®=(p,n<p)HJV   forany<p<={®(R?)}\

This solution leads to
(2.21) [curl a A n] = p,
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(2.22) Äp = Ua   in H'.
Moreover, A can be split into the sum

(2.23) Äp = Ap + Rp,
where Ap is defined for smooth p by

(2-24) Ap = UÍGo(x,y)p(y)dy(y),•T

(2-25) GQ(x,y)=-r—^-r,
' uv    J '      4tt\x - y\

and satisfies the Nedelec-Planchard coerciveness inequality [14]

(2.26) 3a > 0: (Ap, p) > a\\pfH,   for all pin H,
and R is a bounded linear operator acting from THS(T) into THS+3(T) for all real s
(cf. [7]).

Proof. The standard results on pseudo-differential operators (cf. [7]) allow us to
define Ä as a bounded operator from THS(T) into THs+l(T) for all real s.

The existence and uniqueness of the solution of (2.19) are obtained in the same
way as in the scalar case (cf. [7]) by considering the intermediate problem

(Find we (^»Ivie {W0\R3)}3
(2.27) / ^_

/ (curl u, curl v) + div Ü div v dx = (p,Uv),

where ^(R3) is the space (cf. [12])

(2.28) W¿(R3) =(»e L2]oc(R3): (1 + r)~xv e L2(R3), grad o e L2(R3)).

Moreover, its solution satisfies the variational relation

(2.29) f       {( Aa, v) + (curl a, curl v) + div a div? ) dx = ( p, Uv)

for all ¿Tin (^(R3)}3.
Green's formula (1.9) yields

(2.30) ([curia A n],Uv) + ([y0di\a],(v, n)) = (p,Uo).

Then we obtain (2.21) and
(2.31) [Yodiva] = 0.

The property (2.22) is obtained from the fact that Ä and the operator associating
ITa to p are both bounded from H to H' and coincide on the dense subspace formed
by smooth fields. The properties (2.23), (2.24) and (2.26) follow immediately from
the results known in the scalar case (cf. [7], [12]).   D

Lemma 2.5. Let C be the bounded operator from HS(T) into HS+1(T) defined for
smooth u by

(2.32) Cu(x)= ¡G(x,y)u(y)dy(y).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Let p e X and a be the vector potential related top by the above lemma (i.e. by (2.19)).
Then, in view of (2.31), we have

(2.33) Yo^iva = Cdivr/.
Proof. If we set w = div a, the proof of the previous lemma yields

(w e LUR3),
(2-34) \Aw + k2w = 0   in ß' u ßc,

UyoH-o.
Due to the fact that a e H^R3), Proposition 2.1 gives

(2.35) [yH = divr/>.
Since a satisfies the radiation condition, we can see (cf. [1]) that w is such that

<««> £-*•-(7)-
Relhch's lemma (cf. [18]) and the results of [7] then give w e ^„.(R3) and (2.33).   D

Lemma 2.6. 77ie single layer potential

(2.37) u(x) = fG(x,y)p(y)dy(y)•T

created by a distribution of charges p in Hl/2(T) defines an operator acting from
Hx/2(Y)intoTH^2(T)by

I g(x) = grad u(x),    x not lying on T,

\lIg = gradr(Yo")     on T.

Proof. Standard results in potential theory (cf. e.g. [7]) give u e H2(Q') n H^'U*).
Thus, g is in H^ß') n Hj^ß*). The property (2.38) follows since the tangential
components of g on T are related only to tangential derivatives of u.   D

Lemma 2.7. Let a continuous sesquilinear form on H'l/2(T) X X be defined by

(2.39) b(p, q) =(Cp, divTq).

Then, p belongs to Hl/2(T) if and only if there exists/e TH1/2(T) such that

(2.40) ~b(p,q) + (f,q)=0   forallq^X.

Moreover, in this case, we have

(2.41) /= gradr(Yo«),

where u is defined by (2.37).

Proof. If p e W1/2(r),then Yo" ̂  H3/2(T). Thus, (2.40) is only the definition of
gradr(Y0w) in the sense of distributions. Conversely, suppose that (2.40) is satisfied.
It follows that gradr(Yn") e TH1/2(T) with y0" e Hl/2(T). Hence, the properties
of the Sobolev spaces (cf. [10]) yield Yo" e //3/2(r). Standard regularity results on
elliptic problems then give p e Hl/2(T).   D
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Remark 2.8. All the results given in the previous lemmas (2.5, 2.6, 2.7), can be
transposed to the case where k = 0 (i.e. for the kernel G0(x, y) defined in (2.25)). In
the sequel, we shall use these transpositions and give only essential features which
differ from the case where k > 0.

2.2. The Variational Equation. We can now give a precise formulation of the
variational equation (2.14). Although this formulation is used to solve the problem
numerically, the numerical analysis of the method cannot be based on it because,
roughly speaking, X is not compactly embedded in H. That is the reason why we
choose the following strategy. We use the fact that the operator C, defined for
ue C°°(r)by

(2-42) Cu(x) = fG0(x, y)u(y) dy(y),

may be extended by continuity to an isomorphism from H'l/2(T) on Hl/2(Y).
Moreover, it satisfies the coerciveness estimate

t
(2.43) (Cu, u) > a||«||?i/2,r,   for all u <= H-^2(T).

It follows that C is M-elliptic and that the "conservation law" (2.8) may be
equivalently written in the form

(2.44) (Cv,divrp + k2X) = 0;   Vk e M.

We introduce the following bounded sesquilinear forms:

(2.45) a(p,q) = (Ap,q);       p,q&H;

(2.46) r(p,q)={Rp,q);       p,q^H;
(2.47) b(v,q) = (Cv,di\Tq);       v^M,q^X;

(2.48) s(v,q) = (Sv,dïvrq);       v e M,q e X; S = C - C;

(2.49) c(p,v)-k2(Cn,r);       (leM^eM.

As for R (cf. [7]), 5 operates from HS(T) into HS+3(T) for all real s. This
improved regularity result (s + 3 instead of s + 2) has not played a great role in the
scalar case (see [7]). It will be essential here.

Theorem 2.9. Let c be given in H' = THl/2(T); then (p, X) defined by (2.6) and
(2.7), is a solution of the variational equation

ÍFind(p,X) e X X M such that
ä(p,q) + b(X,q)= (c,q)   forallq&X,
b(v,q) + c(X,v) = 0   forallv&M.

Conversely, if(p,X) is a solution of the variational equation (2.50), then X e Hl/2(T)
and the field e defined in ß' U ß* by
(2.51) e = -grad v + a,

where a and v are respectively the scalar and the vector potentials, related to X and p by
(2.32) and (2.18), is a solution of the exterior problem (1.11) and the interior problem
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(1.12) (with g = 0). In particular, since k2 is not an eigenvalue of the interior problem,
problem (2.50) has at most one solution.

Proof. Let (p, X) be defined by (2.6) and (2.7). From (2.8), ÀeMand/el
Consider now a sequence of smooth tangential fields c„ of T converging to c in H. By
the regularity results of Theorem 1.1, the related (pn,Xn) are smooth and satisfy
(2.50) which is another way of writing (2.14). By a continuity argument, (p, X) is
then a solution of (2.50).

Conversely, if (p, X) is a solution of (2.50), Lemma 2.7 gives X e H1/2(T). Let e
be defined by (2.51). It is an easy consequence of Lemmas 2.4, 2.5, 2.6, 2.7, that e is
a solution of the exterior problem (1.11) and of the interior problem (1.12). If c = 0,
then e\a, = 0 and e|a, is a solution of the homogeneous interior problem. The
hypothesis assuming that k2 is not an eigenvalue of the interior problem yieldsp = 0
and A = 0.   D

3. Fredholm Alternative for a Mixed Formulation. In the previous paragraph, we
obtained the existence and uniqueness of the solution of the variational problem
(2.50). But this will not be sufficient for the analysis we have in mind. In particular,
we need some coercivity estimates which will be established now. The method
proposed here will be easily adaptable for other problems of the same kind. In
particular, our results can be applied to the mixed formulation of the Helmholtz
equation in a bounded open set of R2 with Dirichlet conditions (see [6]).

3.1. 77ie Saddle Point Problem and Brezzi 's Conditions. Let us define

L= {Àe^2(r):ÀeM}.

Endowed with the Hl/2 norm, L is a closed subspace of Hl/2(T). We then have

Theorem 3.1. Let (c, x) be given in H' X M'. The variational problem

¡Find ( p, X) e X X M such that
a(p,q) + b(X,q)= (c,q)   forallq&X,
b(v,p) = (x, v)   forallv^M,

has one and only one solution. Moreover, this solution is such that ÀeL, and if we set
A(p,X) = (c,x)we define an (algebraic and topological) isomorphism from X X L
onto H' X M'.

The proof will be a consequence of the following lemma:

Lemma 3.2 ("inf-sup condition"): There exists a constant ß > 0 such that

(3.2) sup(|¡^j-|6(\,í)|}>i8||X||M   forallX^M.

(In the sequel, it will be understood that a vector is not the zero vector whenever
we divide by its norm.)
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Proof. Let X be fixed in M. We define w in H1/2'Y) via the solution of the
problem (cf. [12]):

ÍFind w e W0l(R3) such that

j /" (grad w, grad v)dx= (X, y0v)    for all v e W¿(R3),

(3.4) w = y0w.

ße being connected, from a previous result (cf. [1])  we know that the interior
problem

Find Ü e V(Q') such that
(3.5)       /     f ^_ r

I {(curl Ü, curl v) + div u div v } dx =  I w(n, v) dy   for all ¿? e F(ß'),

has one and only one solution. We set

(3.6) V(Ü')= {we Hl(ti');n A i7=0onr}.

Our aim is now to define it in the exterior of ß' by solving a problem similar to
(3.5). But this needs some preparation. Let us write

3    _(3.7) V(Qe) =   «e {rV0l(Qe)} ; n A v = OonTj

From [1], we can also deduce that there exists a constant C such that

(3.8) HktsrX C(||curl^|o,^ + ||divii1|o.i2-+|H|o,r},
for all i7in F(ße), and if v € K(ß') satisfies
(3.9) curl û = 0   in Ö',
(3.10) div u = 0    in ßf,

then there exists <p e ^(R3) satisfying tp s constant in ß' (here, for simplicity, we
have made the nonessential assumption that ß' is connected ) such that

(3.11) w = grad<p   inße.

It follows that (¡p is proportional to the solution x of the exterior problem

/Find x e W^R3) such that

(3-12) \Ax = 0   inß'-Uß',
(x = l      onT.

By (3.8)—(3.12) and since the trace operator defines a compact operator from
W¿(Qe) into L2(T), the Peetre lemma (see [1] or a close version in [10]) implies that
there exists a constant C such that

(3.13) Nk¿(a')< C{||curlö1|0.ß< +||div4xsr},

for all ¿Fin V(Qe), where

(3.14) V(W)= (oe F(ßf); f(n, v) dy = 0
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We have used the fact that the only element in V(Sie) satisfying (3.9) and (3.10) is
the zero vector.

Thus, the Lax-Milgram theorem insures that the problem

rFind u in V(Qe) such that

f {(curl w,curl v) + div it diviT} dx = / w(n, v) dy   for all v e V(Qe),

has one and only one solution.
Since

fW~dkdy^ -/3(gradH''gradx)^ = -<A,X>.       YoX= l.XeM,

it follows that we can take v e P(ße) in (3.15). Thus we can define Ü <e L^R3) by:
m|s/ is the solution of (3.5) and u\u< is the solution of (3.15). As Adivw = 0 in
ße u Q', [Y0div Ü] and [yx div Ü] can be defined in #-1/2(r) and H~3/2(T), respec-
tively (cf. [10]). From the definition of Ü and Green's formula (1.9), we deduce
[Yfjdiv m] = 0 and Yodiv« = M'. Proposition 2.1 gives [yi div u] = divrq with q
defined by

(3.16) q = [curl « A n] e r^"1/2(r).

From the uniqueness of a single layer potential, it follows that q e X and

(3.17) divr£=A.
The Nedelec-Planchard coerciveness result (2.43) shows again that there exists a > 0
such that

(3.18) (CA,divra) >a\\X\\2M.
It is clear that q depends continuously on X. It follows that there exists a constant

ß > 0, independent of X, and such that

(3.19) b(X,q)>ß\\X\\M\\q\\x.
This completes the proof of the lemma.   D

Remark 3.3. As a consequence of the above proof, we obtain that ü satisfies

(A« = 0        inß'Uß',
(3.20) />ÍA« = 0   onT,

\y0diviï= weH1/2(T).

The regularity result given in Theorem 1.1 insures that u e H2(ß') n H^ffî)
and, then, that q e TH1/2(T). Thus, the previous proof indicates a way to associate
q e TH1/2(T) with/ e A"such that divr£ = divr/, a depending continuously on/.
This property will be fundamental for the numerical analysis which follows.

M' is the quotient space H1/2(Y)/C. Clearly, for w 6 A/', there is no trouble to
say that weHl/2(T),t> i

Proof of Theorem 3.1. First, it is clear that A <e ¿('(X X L, H' X M') is given by

(3.21) A(p, X) = (Ap- gradrCA,Cdivr/).
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Since A is continuous, the Banach theorem insures that it will be a topological
isomorphism if it is only an algebraic one.

We set
(3.22) V= {/e X:b(v, /) = 0 Vx<=M}.

From the coerciveness inequality (2.43), it is clear that V may be equivalently
defined by
(3.23) V= {/e A-;divr/=0}.
It follows that F is a closed subspace of X and

(3.24) MU-MU   for all/eF.

This property together with the coerciveness estimate (2.26) for the sesquilinear form
a and the "inf-sup condition" (3.2) are the two conditions of Brezzi (cf. [3]) which
insure the existence and uniqueness of a solution (/, X) to the "saddle-point"
problem (3.1). As c e H', it follows from Lemma 2.1 that X e L.

We have thus proved that A is surjective. From the uniqueness of the solution of
problem (3.1), it immediately follows that A is also one-one.

3.2. The Fredholm Alternative.

Corollary 3.4. Let 6 e ¿?(X X L, H' x M') be defined by

(3.25) e(/,X) = (/?/-gradr5X,A:2CX).

77ie«

A + 6 is an (algebraic and topological) isomorphism
'  '    ' {from XX L onto H' X M'.

Proof. Since 0 is bounded as an operator from Xx L into TH5/2(T) X H3/2(T),
it is a compact perturbation of the isomorphism A. The operator A + 6 is then a
Fredholm operator of null index. We obtain (3.26) if we can prove that the first part
of the Fredholm alternative holds. This clearly results from the uniqueness of the
solution of the variational equation (2.50) (we recall that this is given by the
assumption that A:2 is not an eigenvalue of the interior problem).

Let us give now a coerciveness estimate which will be essential in the numerical
analysis we have in mind. Since 0 may be considered as an operator acting from
H X M into TH3/2(T) X M' (here, the improved order of regularization of S is
fundamental), we can introduce a bounded linear operator T e áf(H X M, H x M),
defined by
(3.27) T=I+Al®

where / is the identity operator.

Theorem 3.5. The operator T is an (algebraic and topological) isomorphism from
H X M onto itself. We thus obtain the existence of a constant y > 0 such that

(3.28) \\T(u,r)\\HxM>y\\(u,p)\\HxM   forall(u,p.) e H X M.

(The product of two Hilbert spaces is endowed with the Hilbertian norm.)
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Proof. Let us first show that A l® is a compact operator. To this end, let a
sequence ((c„, x„)}„en m H' x M' be such that
(3.29) limc„ = c   strongly in if',

(3.30) lim x„ = X   weakly in M'.
For any n e N, we define (/„, X„) e X X L by

(3.31) A(/n,XJ = (cn,Xn).
Theorem (3.1) then insures that

(3.32) lim/„ = /   weakly in X,
(3.33) lim X„ = X   weakly in L,
where ( /, X ) is defined by

(3.34) A(/,X) = (e,x).
Since L is compactly embedded in M, it follows that

(3.35) lim X„ = X   strongly in M.
From the definition (3.1) of the operator A and the coerciveness estimate (2.26), we
have

(3-36) a\\pn - p\\H < (c„ - c, pn-p)~ b(Xn -X,pn- p).

The strong convergences (3.29) and (3.35) yield

(3.37) lim/„ = /   strongly in H.

Since TH3/2(T) is compactly embedded in H', we can then deduce that A~'0 is
compact.

ris thus a Fredholm operator of null index. If (/, X) e H X M is such that

(3.38) (/,X) = -A"10(/,X),
it must be in X X L and satisfies

(3.39) (A + 0)(/,X) = O.
The proof is achieved by Corollary 3.4, the first part of the Fredholm alternative

and the bounded inverse theorem.   D
Let us give now some regularity properties of the solution of problem (3.1). Those

of problem (2.50) are identical and will not be repeated.

Theorem 3.6. Let ( /, X) e X x L satisfy

(3.40) A(/,X) = (c,x),
where, s being a nonnegative real number,

(3.41) ?e TH'/2+s(Y),

(3.42) xetf'(r),       r = max(i-i+i).
Then,
(3.43) /e TH~i/2+s(T),

(3.44) \<zH1/2+s(T).
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Proof. Let a and v be respectively the vector and the scalar potential related to /
and X by the kernel G0 given in (2.25). We define the field e in ß' U ße by

(3.45) e = a - grad v.

From Proposition 2.1 and Lemmas 2.4, 2.5, 2.6, 2.7, e satisfies

(Ae = 0 inßeUß',
(3.46) ne = c onI\

|Y0dive = x    onT.

The regularity properties (3.43) and (3.44) are then the consequences of Theorem 1.1
in the case s > 1. In the case s = 0, they follow from the definition of the operator
A. The intermediate case 0 < s < 1 is given by interpolation theory (cf. [10]).

Final Remark 3.6. We have thus established the groundwork for the forthcoming
numerical analysis. In order to avoid hypotheses which need to be introduced a
priori, we chose not to give an "abstract" framework for our study. Nevertheless, we
think the study can be adapted to other problems. In particular, the case of a mixed
formulation of the Helmholtz equation in a bounded plane domain ß (cf. [6]) is
given by the choice M = L2(ß), H = M2, X = H(div ß), L = H0\iï), and besides
the usual choice of sesquilinear forms a and b, c is k2 times the scalar product of M,
r and 5 being zero forms.
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