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Abstract

We consider a differential system based on the coupling of the Navier-Stokes
and Darcy equations for modeling the interaction between surface and porous-
media flows. We formulate the problem as an interface equation, we analyze
the associated (nonlinear) Steklov-Poincaré operators, and we prove its well-
posedness. We propose and analyze iterative methods to solve a conforming
finite element approximation of the coupled problem.

1 Introduction and problem setting

Let Ω ⊂ R
d (d = 2, 3) be a bounded domain, decomposed into two non inter-

secting subdomains Ωf and Ωp separated by an interface Γ, i.e. Ω̄ = Ω̄f ∪ Ω̄p,
Ωf ∩ Ωp = ∅ and Ω̄f ∩ Ω̄p = Γ. We suppose the boundaries ∂Ωf and ∂Ωp to be
Lipschitz continuous. From the physical point of view, Γ is a surface separating
the domain Ωf filled by a fluid, from a domain Ωp formed by a porous medium.
We assume that the fluid contained in Ωf has a fixed surface (i.e. we do not
consider the free surface fluid case) and can filtrate through the adjacent porous
medium. See for example Fig. 1.
In this paper, we will refer explicitely to the hydraulic situation of Fig. 1
left. However, the mathematical results that we present can apply with minor
changes also to the more general framework introduced above (see Remark 1.1).
In order to describe the motion of the fluid in Ωf , we introduce the Navier-Stokes
equations: ∀t > 0,

∂tuf − ∇ · T(uf , pf ) + (uf · ∇)uf = f in Ωf ,
∇ · uf = 0 in Ωf ,

(1)

where T(uf , pf ) = ν(∇uf + ∇T uf ) − pf I is the Cauchy stress tensor, ν > 0
is the kinematic viscosity of the fluid, while uf and pf are the fluid velocity
and pressure, respectively; ∇ is the gradient operator with respect to the space
coordinates.
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Figure 1: Schematic representation of a 2D section of possible computational domains:
the surface-groundwater setting on the left, and the blood-flow problem on the right.

In the domain Ωp we define the piezometric head ϕ = z + pp/(ρfg), where z is
the elevation from a reference level, pp is the pressure of the fluid in Ωp, ρf its
density and g is the gravity acceleration.
The fluid motion in Ωp is described by the equations:

nup = −K∇ϕ in Ωp ,
∇ · up = 0 in Ωp ,

(2)

where up is the fluid velocity, n is the volumetric porosity and K is the hydraulic
conductivity tensor K = diag(K1, . . . ,Kd) with Ki ∈ L∞(Ωp), i = 1, . . . , d.
The first equation is Darcy’s law. In the following we shall denote K = K/n =
diag(Ki/n) (i = 1, . . . , d). Darcy’s law provides the simplest linear relation
between velocity and pressure in porous media under the physically reasonable
assumption that fluid flows are usually very slow and all the inertial (nonlinear)
terms may be neglected. Extensions of Darcy’s law are given, e.g., by the
Forchheimer’s or Brinkman’s equations when the Reynolds number in Ωp is
not small (see [15, 16, 24, 8]), or by more complicated models like Richards’
equations apt to describe saturated-unsaturated fluid flows (see, e.g., [3] and
references therein).

For the sake of clarity, in our analysis we shall adopt homogeneous boundary
conditions. The treatment of non-homogeneous conditions involves some addi-
tional technicalities, but neither the guidelines of the theory nor the final results
are affected. We refer to [10]. In particular, for the Navier-Stokes problem we
impose the no-slip condition uf = 0 on ∂Ωf \ Γ, while for the Darcy problem,
we set the piezometric head ϕ = 0 on ΓD

p and we require the normal velocity

to be null on ΓN
p , up · np = 0 on ΓN

p , where ∂Ωp = Γ ∪ ΓD
p ∪ ΓN

p (see Fig. 1,
left). np and nf denote the unit outward normal vectors to the surfaces ∂Ωp

and ∂Ωf , respectively, and we have nf = −np on Γ. We suppose nf and np to
be regular enough. In the following we shall indicate n = nf for simplicity of
notation.
We supplement the Navier-Stokes and Darcy problems with the following con-
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ditions on Γ:

up · n = uf · n , (3)

−n · (T(uf , pf ) · n) = gϕ , (4)

−ετ i · (T(uf , pf ) · n) = νuf · τ i , i = 1, . . . , d− 1 , (5)

where τ i (i = 1, . . . , d − 1) are linear independent unit tangential vectors to
the boundary Γ, and ε is the characteristic length of the pores of the porous
medium.
Conditions (3) and (4) impose the continuity of the normal velocity on Γ, as
well as that of the normal component of the normal stress, however they allow
pressure to be discontinuous across the interface. The so-called Beavers-Joseph-
Saffman condition (5) does not yield any coupling. Indeed, it provides a bound-
ary condition for the Navier-Stokes problem since it involves only quantities in
the domain Ωf .
A mathematical justification of these interface conditions can be found in [18,
19, 20]. The same interface conditions have been considered in [11, 12, 13, 22]
for the coupling of Stokes and Darcy equations.

Remark 1.1 Our results could be extended, e.g., to the filtration of blood through
the arterial wall. Indeed, the wall of the blood vessel can be described as a porous
media replacing the piezometric head in (2) by the blood pressure. The coupling
conditions (3)-(4) would apply as well since they require the continuity of nor-
mal fluxes and that of normal stresses, as investigated in [28]. Only condition
(5) could be simplified requiring uf ·τ i = 0 on Γ, but this would not significantly
modify the coupling as this condition is simply a boundary condition for the fluid
problem in Ωf .

From now on, we focus on the steady problem obtained by dropping the time
derivative in the momentum equation (1). This can be motivated by, e.g., the
use of an implicit time-advancing scheme on the time-dependent problem (1).
Moreover, instead of (2), we consider the following equivalent formulation for
Darcy problem:

find ϕ : −∇ · (K∇ϕ) = 0 in Ωp . (6)

We define the following functional spaces:

Hf = {v ∈ (H1(Ωf ))d : v = 0 on ∂Ωf \ Γ}, (7)

H0
f = {v ∈ Hf : v · n = 0 on Γ}, (8)

Vf = {v ∈ Hf : ∇ · v = 0 in Ωf}, V 0
f = {v ∈ H0

f : ∇ · v = 0 in Ωf}, (9)

Hp = {ψ ∈ H1(Ωp) : ψ = 0 on ΓD
p }, H0

p = {ψ ∈ Hp : ψ = 0 on Γ}, (10)

Q = L2(Ωf ), Q0 = {q ∈ Q :
∫

Ωf
q = 0}. (11)

We denote by | · |1 and ‖ · ‖1 the H1–seminorm and norm, respectively, and
by ‖ · ‖0 the L2–norm; it will always be clear form the context whether we are
referring to spaces on Ωf or Ωp.

Finally, we consider the trace space Λ = H
1/2
00 (Γ) (see [23]) and its subspace

Λ0 = {µ ∈ Λ :
∫

Γ
µ = 0}.
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Then, we introduce the bilinear forms

af (v,w) =

∫

Ωf

ν

2
(∇v + ∇T v) · (∇w + ∇T w) ∀v,w ∈ (H1(Ωf ))d , (12)

bf (v, q) = −
∫

Ωf

q∇ · v ∀v ∈ (H1(Ωf ))d, ∀q ∈ Q , (13)

ap(ϕ,ψ) =

∫

Ωp

∇ψ · K∇ϕ ∀ϕ,ψ ∈ H1(Ωp) , (14)

and, for all v,w, z ∈ (H1(Ωf ))d, the trilinear form

cf (w; z,v) =

∫

Ωf

[(w · ∇)z] · v =

d
∑

i,j=1

∫

Ωf

wj
∂zi

∂xj
vi . (15)

The coupling conditions (3)–(4) can be incorporated in the weak form of the
Navier-Stokes/Darcy problem as natural conditions on Γ. In fact, the weak
formulation reads:

find uf ∈ Hf , pf ∈ Q, ϕ ∈ Hp such that

af (uf ,v) + cf (uf ;uf ,v) + bf (v, pf )

+

∫

Γ

g ϕ(v · n) +

∫

Γ

d−1
∑

j=1

ν

ε
(uf · τ j)(v · τ j) =

∫

Ωf

f · v , (16)

bf (uf , q) = 0 , (17)

ap(ϕ,ψ) =

∫

Γ

ψ(uf · n) , (18)

for all v ∈ Hf , q ∈ Q, ψ ∈ Hp.

The rest of the paper is organized as follows. In Sect. 2, we introduce and analyze
some nonlinear extension operator that will be used in Sect. 3 to reformulate
the coupled problem (16)–(18) as a nonlinear interface equation, say S(λ) =
0, whose sole scalar unknown λ is the common value of the normal velocity
uf · n = up · n across Γ. S is a nonlinear Steklov-Poincaré operator. The
well-posedness of this interface problem is proved in Sect. 3. Finally, in Sect. 4,
after briefly discussing a conforming finite element approximation of the Navier-
Stokes/Darcy problem, we propose and analyze three different iterative methods
to compute its solution.

2 Some nonlinear extension operators: defini-

tion and analysis

In this section we apply domain decomposition techniques at the differential
level to study the Navier-Stokes/Darcy problem, as done in an abstract setting
in [25]. We identify the subdomains with Ωf and Ωp, then we introduce and
analyze some nonlinear extension operators that will be used in Sect. 3 to write
the Steklov-Poincaré interface equation associated to the coupled problem.
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We consider two linear continuous extension operators:

R
1 : Λ → Hf s.t. R

1µ · n = µ on Γ , ∀µ ∈ Λ , (19)

R2 : H1/2(Γ) → Hp s.t. R2µ = µ on Γ, ∀µ ∈ H1/2(Γ) . (20)

Since there holds Hf = H0
f + {R1

fµ : µ ∈ Λ}, we can prove the following result
(see also [10]).

Proposition 2.1 The coupled Navier-Stokes/Darcy problem (16)–(18) can be
equivalently reformulated in the multidomain form:

find uf ∈ Hf , pf ∈ Q, ϕ ∈ Hp such that

af (uf ,v) + cf (uf ;uf ,v) + bf (v, pf )

+

∫

Γ

d−1
∑

j=1

ν

ε
(uf · τ j)(v · τ j)=

∫

Ωf

f · v ∀v ∈ H0
f , (21)

bf (uf , q) = 0 ∀q ∈ Q , (22)

ap(ϕ,ψ) = 0 ∀ψ ∈ H0
p , (23)

∫

Γ

(uf · n)µ = ap(ϕ,R
2µ) ∀µ ∈ Λ , (24)

∫

Γ

g ϕµ =

∫

Ωf

f · (R1
fµ) − af (uf ,R

1µ) − cf (uf ;uf ,R
1µ)

−bf (R1µ, pf ) −
∫

Γ

d−1
∑

j=1

ν

ε
(uf · τ j)(R

1µ · τ j) ∀µ ∈ Λ . (25)

We would like to rewrite (21)–(25) as an interface equation in a scalar interface
unknown defined on Γ corresponding to the trace of the fluid normal velocity
uf ·n on Γ. First of all, we need to introduce and analyze some further extension
operators.
Let us consider the (unknown) interface variable λ = (uf · n)|Γ. Due to the
incompressibility constraint in Ωf and to the boundary conditions imposed on
∂Ωf \ Γ, it must be λ ∈ Λ0.

Let us define the linear extension operator:

Rf : Λ0 → Hf ×Q0, η → Rfη = (R1
fη,R

2
fη), (26)

satisfying R
1
fη · n = η on Γ, and, for all v ∈ H0

f , q ∈ Q0,

af (R1
fη,v) + bf (v, R2

fη) +

∫

Γ

d−1
∑

j=1

ν

ε
(R1

fη · τ j)(v · τ j) = 0, (27)

bf (R1
fη, q) = 0. (28)

Moreover, we consider the linear extension operator

Rp : Λ0 → Hp, η → Rpη (29)

such that

ap(Rpη, ψ) =

∫

Γ

ηψ ∀ψ ∈ Hp . (30)
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It is easy to see that problems (27)–(28) and (30) both have a unique solution.
Finally, let us introduce the following nonlinear extension operator:

Rf : Λ0 → Hf ×Q0, η → Rf (η) = (R1
f (η),R2

f (η))

such that R
1
f (η) · n = η on Γ, and, for all v ∈ H0

f , q ∈ Q0,

af (R1
f (η),v) + cf (R1

f (η);R1
f (η),v) + bf (v,R2

f (η))

+

∫

Γ

d−1
∑

j=1

ν

ε
(R1

f (η) · τ j)(v · τ j) =

∫

Ωf

f · v , (31)

bf (R1
f (η), q) = 0. (32)

In order to prove the existence and uniqueness of Rf , we define the auxiliary
nonlinear operator

R0 : Λ0 → H0
f ×Q0, η → R0(η) = (R1

0(η),R2
0(η)),

with Ri
0(η) = Ri

f (η) −Ri
fη, i = 1, 2.

(33)

Clearly, R
1
0(η) · n = 0 on Γ, and it satisfies:

af (R1
0(η),v) + cf (R1

fη + R
1
0(η);R

1
fη + R

1
0(η),v)

+bf (v,R2
0(η)) +

∫

Γ

d−1
∑

j=1

ν

ε
(R1

0(η) · τ j)(v · τ j) =

∫

Ωf

f · v , (34)

bf (R1
0(η), q) = 0 , (35)

for all v ∈ H0
f , q ∈ Q0. Remark that problem (34)–(35) is analogous to (31)–

(32), but here R
1
0(η) ∈ H0

f , while R
1
f (η) ∈ Hf .

Moreover, given η ∈ Λ0, we define the form

a(w; z,v) = af (z,v) + cf (w; z,v) + cf (R1
fη; z,v)

+ cf (z;R1
fη,v) +

∫

Γ

d−1
∑

j=1

ν

ε
(z · τ j)(v · τ j) ∀w, z,v ∈ (H1(Ωf ))d , (36)

and the functional

〈ℓ,v〉 = −cf (R1
fη;R

1
fη,v) +

∫

Ωf

f · v ∀v ∈ (H1(Ωf ))d . (37)

Thus, we can rewrite (34)–(35) as: given η ∈ Λ0,

find R
1
0(η) ∈ V 0

f : a(R1
0(η);R

1
0(η),v) = 〈ℓ,v〉 ∀v ∈ V 0

f . (38)

Finally, let us recall some useful inequalities: the Poincaré inequality (see, e.g.,
[25], p. 11)

∃CΩf
> 0 : ‖v‖0 ≤ CΩf

|v|1 ∀v ∈ Hf , (39)
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the Korn inequality (see, e.g., [26], p. 149)

∃Cκ > 0 :

∫

Ωf

d
∑

i,j=1

(

∂vj

∂xi
+
∂vi

∂xj

)2

≥ Cκ‖v‖2
1 ∀v = (v1, . . . , vd) ∈ Hf , (40)

and the following inequality

∃CN > 0 : |cf (w; z,v)| ≤ CN |w|1 |z|1 |v|1 ∀w, z,v ∈ Hf , (41)

which follows from the Poincaré inequality (39) and the inclusion (H1(Ωf ))d ⊂
(L4(Ωf ))d (for d = 2, 3) due to the Sobolev embedding theorem (see [1]).

We can now state the following result.

Proposition 2.2 Let f ∈ L2(Ωf ) be such that

CNCΩf
||f ||0 <

(

Cκν

2

)2

, (42)

where Cκ and CN are the constants introduced in (40) and (41), respectively. If

η ∈







µ ∈ Λ0 : |R1
fµ|1 <

Cκν −
√

(

Cκν
2

)2
+ 3CNCΩ||f ||0

3CN







, (43)

then there exists a unique nonlinear extension Rf (η) = (R1
f (η),R2

f (η)) ∈ Hf ×
Q0.

Remark 2.1 Notice that (43) imposes a constraint on η. In particular, since
the norms |R1

fη|1 and ‖η‖Λ are equivalent (see [12], Lemma 4.1), this condition
implies that a unique extension Rf (η) exists, provided the norm of η is small
enough. In our specific case, this means that we would be able to consider an ex-
tension Rf (λ) only if the normal velocity λ across the interface Γ is sufficiently
small. Finally, remark that (42) guarantees that the radius of the ball in (43)
is positive.

Proof. The proof is made of several steps and it is based on Theorems 6.1–6.2.

1. Let v,w ∈ V 0
f and η ∈ Λ0. Then, we have

a(w;v,v) = af (v,v) + cf (w;v,v)

+ cf (R1
fη;v,v) + cf (v;R1

fη,v) +

∫

Γ

d−1
∑

j=1

ν

ε
(v · τ j)(v · τ j). (44)

Integrating by parts and recalling that w ∈ V 0
f , then

cf (w;v,v) =
1

2

∫

∂Ωf

w · n|v|2 − 1

2

∫

Ωf

∇ · w|v|2 = 0 ,
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where |v| is the Euclidean norm of the vector v. Since

∫

Γ

d−1
∑

j=1

ν

ε
(v · τ j)(v · τ j) ≥ 0,

from (44) we get

a(w;v,v) ≥ af (v,v) + cf (R1
fη;v,v) + cf (v;R1

fη,v) (45)

and using the inequalities (40) and (41) we obtain

a(w;v,v) ≥ Cκν

2
|v|21 − 2CN |v|21 |R1

fη|1 .

Then, thanks to (43), the bilinear form a(w; ·, ·) is uniformly elliptic on V 0
f with

respect to w, with constant αa (independent of w)

αa =
Cκν

2
− 2CN |R1

fη|1 .

2. Still using (41), we easily obtain:

|a(w1; z,v) − a(w2; z,v)| = |cf (w1 − w2; z,v)| ≤ CN |w1 − w2|1|v|1|z|1.

3. We have

‖Π ℓ‖(V 0
f

)′ = sup
v∈V 0

f
,v 6=0

∣

∣

∣

∣

∣

−cf (R1
fη;R

1
fη,v) +

∫

Ωf

f · v
∣

∣

∣

∣

∣

|v|1

≤ sup
v∈V 0

f
,v 6=0

CN |R1
fη|21 |v|1 + CΩf

||f ||0 |v|1
|v|1

= CN |R1
fη|21 + CΩf

||f ||0.

Conditions αa > 0 and

CN

‖Π ℓ‖(V 0
f

)′

α2
a

< 1

are satisfied if

CN |R1
fη|1 <

1

2

Cκν

2
(46)

and

3
(

CN |R1
fη|1

)2 − 4
Cκν

2
CN |R1

fη|1 +

(

Cκν

2

)2

− CNCΩf
||f ||0 > 0 (47)

respectively. Condition (46) impose
(

Cκν
2

)2
> CNCΩf

||f ||0 in (47). This condi-
tion is (42), and, in this case, conditions (46) and (47) hold if (43) is satisfied.

4. Thanks to (43) and 1–3, a(·; ·, ·) and ℓ satisfy the hypotheses of Theorem 6.1
of Appendix, which allows us to conclude that there exists a unique solution
R

1
0(η) ∈ V 0

f to (38).

5. Since the inf-sup condition is satisfied, Theorem 6.2 guarantees that there
exists a unique solution (R1

0(η),R2
0(η)) to (34)–(35). The thesis follows from

(33) and from the uniqueness of the operator Rf (26). ✷
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3 The interface equation associated to the cou-
pled problem

In this section we reformulate the global coupled problem (21)–(25) as an inter-
face equation depending solely on λ = (uf · n)|Γ.

We formally define the nonlinear pseudo-differential operator S : Λ0 → Λ′
0,

〈S(η), µ〉 = af (R1
f (η),R1µ) + cf (R1

f (η);R1
f (η),R1µ) + bf (R1µ,R2

f (η))

+

∫

Γ

d−1
∑

j=1

ν

ε
(R1

f (η) · τ j)(R
1µ · τ j) −

∫

Ωf

f · (R1µ)

+

∫

Γ

g(Rpη)µ ∀η ∈ Λ0,∀µ ∈ Λ . (48)

The operator S is composed of two parts: a non-linear component associated
to the fluid problem in Ωf (the terms in the first two lines), and a linear part
related to the problem in the porous media (corresponding to the last integral).
The fluid part plays the role of a non-linear Dirichlet-to-Neumann map that
associates at any given normal velocity η on Γ the normal component of the
corresponding Cauchy stress tensor on Γ. On the other hand, the linear porous-
media part is a Neumann-to-Dirichlet map that associates the trace on Γ of the
piezometric head whose conormal derivative on Γ is equal to η.
We have the following equivalence result, whose proof follows the guidelines of
Theorem 4.1 in [12].

Theorem 3.1 The solution of (21)–(25) can be characterized as follows:

uf = R
1
f (λ), pf = R2

f (λ) + p̂f , ϕ = Rpλ , (49)

where p̂f = (meas(Ωf ))−1
∫

Ωf
pf , and λ ∈ Λ0 is the solution of the nonlinear

interface problem:
〈S(λ), µ〉 = 0 ∀µ ∈ Λ0 . (50)

Moreover, p̂f can be obtained from λ by solving the algebraic equation

p̂f = (meas(Γ))−1〈S(λ), ε〉,
where ε ∈ Λ is a fixed function such that

1

meas(Γ)

∫

Γ

ε = 1 . (51)

Notice that a more useful characterization of the operator S can be provided.
Indeed, with the special choice R

1 = R
1
f in (48), thanks to (27), we obtain

bf (R1
fµ,R2

f (η)) = 0 ∀η, µ ∈ Λ0 .

Moreover, owing to (33), for η, µ ∈ Λ0, we have

〈S(η), µ〉 = af (R1
0(η) + R

1
fη,R

1
fµ) + cf (R1

0(η) + R
1
fη;R

1
0(η) + R

1
fη,R

1
fµ)

+

∫

Γ

d−1
∑

j=1

ν

ε
((R1

0(η) + R
1
fη) · τ j)(R

1
fµ · τ j)

−
∫

Ωf

f · (R1
fµ) +

∫

Γ

g(Rpη)µ .
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By taking R
1
0(η) ∈ H0

f as test function in (27), we obtain:

af (R1
fµ,R

1
0(η)) + bf (R1

0(η), R
2
fµ) +

∫

Γ

d−1
∑

j=1

ν

ε
(R1

fµ · τ j)(R
1
0(η) · τ j) = 0 .

Finally, since R2
fµ ∈ Q0, owing to (34)–(35) it follows that

af (R1
fµ,R

1
0(η)) +

∫

Γ

d−1
∑

j=1

ν

ε
(R1

fµ · τ j)(R
1
0(η) · τ j) = 0,

so that, for all η, µ ∈ Λ0, the operator S can be characterized as

〈S(η), µ〉 = af (R1
fη,R

1
fµ) + cf (R1

0(η) + R
1
fη;R

1
0(η) + R

1
fη,R

1
fµ)

+

∫

Γ

d−1
∑

j=1

ν

ε
(R1

fη · τ j)(R
1
fµ · τ j)

−
∫

Ωf

f · (R1
fµ) +

∫

Γ

g(Rpη)µ . (52)

We study now the well-posedness of the nonlinear interface problem (50).
Note that in view of (52), S(λ) is defined in terms of the operator R

1
0(λ), which,

thanks to (34)–(35), satisfies in its turn the following problem:

af (R1
0(λ),v) + cf (R1

0(λ) + R
1
fλ;R1

0(λ) + R
1
fλ,v)

+

∫

Γ

d−1
∑

j=1

ν

ε
(R1

0(λ) · τ j)(v · τ j) =

∫

Ωf

f · v ∀v ∈ V 0
f . (53)

Therefore, in order to prove the existence and uniqueness of the solution of the
interface problem, we have to consider (50), with the characterization of S given
in (52), coupled with (53), i.e., we have to guarantee at once the existence and
uniqueness of λ ∈ Λ0 and R

1
0(λ) ∈ V 0

f . To this aim we apply Theorem 6.1

considering the product space W = Λ0 × V 0
f endowed with the norm:

‖v̄‖W = (|R1
fµ|21 + |v|21)1/2 ∀v̄ = (µ,v) ∈W . (54)

We introduce the trilinear form and the linear functional associated with our
problem in the space W . For any fixed (η,w) ∈ W , we define the following
operator depending on w̄:

Ã(η,w) : W → W ′,

〈(Ã(η,w))(ξ,u), (µ,v)〉 = 〈(Af (η,w))(ξ,u), µ〉 + 〈(A0(η,w))(ξ,u),v〉

where, for every test function µ ∈ Λ0,

〈(Af (η,w))(ξ,u), µ〉 = af (R1
fξ,R

1
fµ) + cf (w + R

1
fη;u + R

1
fξ,R

1
fµ)

+

∫

Γ

d−1
∑

j=1

ν

ε
(R1

fξ · τ j)(R
1
fµ · τ j) +

∫

Γ

g(Rpξ)µ ,

10



whereas for any test function v ∈ V 0
f ,

〈(A0(η,w))(ξ,u),v〉 = af (u,v) + cf (w + R
1
fη;u + R

1
fξ,v)

+

∫

Γ

d−1
∑

j=1

ν

ε
(u · τ j)(v · τ j) .

We indicate by ã the form associated to the operator Ã:

ã(w̄; ū, v̄) = 〈(Ã(η,w))(ξ,u), (µ,v)〉 (55)

for all w̄ = (η,w), ū = (ξ,u), v̄ = (µ,v) ∈W .

Next, we define two functionals ℓf : Λ0 → R and ℓ0 : V 0
f → R as:

〈ℓf , µ〉 =

∫

Ωf

f · (R1
fµ) ∀µ ∈ Λ0 ,

〈ℓ0,v〉 =

∫

Ωf

f · v ∀v ∈ V 0
f ,

and denote
〈ℓ̃, v̄〉 = 〈ℓf , µ〉 + 〈ℓ0,v〉 ∀v̄ = (µ,v) ∈W . (56)

Thus, the problem defined by (50) and (53) can be reformulated as:

find ū = (λ, u) ∈W : ã(ū; ū, v̄) = 〈ℓ̃, v̄〉 ∀v̄ = (µ,v) ∈W . (57)

We shall prove the existence and uniqueness of the solution only in a closed
convex subset of W .

Lemma 3.1 Let f ∈ L2(Ωf ) be such that

2(1 +
√

2)
√

2CNCΩf
‖f‖0 ≤ Cκν , (58)

and consider two constants

rm =
C1 −

√

C2
1 − 4C2

2
and rM = C1 −

√√
2C2 , (59)

where

C1 =
Cκν

4CN
, C2 =

√
2CΩf

‖f‖0

2CN
. (60)

Notice that, thanks to (58), there holds

0 ≤ rm < rM . (61)

If we consider
Br = {w̄ = (η,w) ∈W : |R1

fη|1 ≤ r} , (62)

with
rm < r < rM , (63)

then, there exists a unique solution ū = (λ, u) ∈ Br of (57) with u = R
1
0(λ).
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Remark 3.1 Condition (58) is equivalent to

C2
1 ≥ 3 + 2

√
2√

2
C2. (64)

Proof. The proof is composed of several parts.

1. For each w̄ = (η,w) ∈ Br the bilinear form ã(w̄; ·, ·) is uniformly coercive on
W .

By definition, for all v̄ = (µ,v) ∈W we have

ã(w̄; v̄, v̄) = af (R1
fµ,R

1
fµ) + af (v,v) +

∫

Γ

g(Rpµ)µ

+cf (w + R
1
fη;v + R

1
fµ,v + R

1
fµ)

+

∫

Γ

d−1
∑

j=1

ν

ε
(R1

fµ · τ j)(R
1
fµ · τ j)

+

∫

Γ

d−1
∑

j=1

ν

ε
(v · τ j)(v · τ j) .

Thanks to (30), we have
∫

Γ
g(Rpµ)µ ≥ 0. Using the inequalities (40) and (41)

and the fact that w ∈ V 0
f , we obtain

ã(w̄; v̄, v̄) ≥ Ckν

2
(|R1

fµ|21 + |v|21) − 2CN |R1
fη|1(|R1

fµ|21 + |v|21) .

Thus,
ã(w̄; v̄, v̄) ≥ αã(|R1

fµ|21 + |v|21) , (65)

having set

αã =
Ckν

2
− 2CN |R1

fη|1 . (66)

Condition αã > 0 is equivalent to |R1
fη|1 < C1, which is satisfied in view of

(61), (59) and (63). Thus, the bilinear form ã(w̄; ·, ·) is uniformly coercive with
respect to any w̄ ∈ Br.
Thanks to the Lax-Milgram Lemma (see, e.g., [25] p. 133) the operator Ã(w̄) ∈
L(W ;W ′) is invertible for each w̄ ∈ Br. Moreover, the inverse T (w̄) = (Ã(w̄))−1

belongs to L(W ′;W ) and it satisfies

‖T (w̄)‖L(W ′;W ) ≤
1

αã
.

Now, we prove that there exists a unique ū ∈ Br such that ū = T (ū)ℓ̃, i.e., (57)
has a unique solution in Br.

2. v̄ → T (v̄)ℓ̃ maps Br into Br and is a strict contraction in Br.

For all v̄ = (µ,v) ∈ Br we have

‖T (v̄)ℓ̃‖W ≤ ‖T (v̄)‖L(W ′;W )||ℓ̃||W ′ ≤ ||ℓ̃||W ′

αã
.
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Moreover,

||ℓ̃||W ′ = sup
v̄∈W,v̄ 6=0

∣

∣

∣

∣

∣

∫

Ωf

f · (R1
fµ) +

∫

Ωf

f · v
∣

∣

∣

∣

∣

‖v̄‖W

≤ CΩf
‖f‖0 sup

v̄∈W,v̄ 6=0

|R1
fµ|1 + |v|1
‖v̄‖W

≤
√

2CΩf
‖f‖0 . (67)

From (67) and (66), corresponding to some w̄ = (η,w) ∈ Br, condition

||ℓ̃||W ′

αã
≤ r

is satisfied if
r2 − C1r + C2 ≤ 0 , (68)

that is rmin ≤ r ≤ rmax with

rmin =
C1 −

√

C2
1 − 4C2

2
and rmax =

C1 +
√

C2
1 − 4C2

2
.

Since C2
1 − 4C2 ≥ 0 from (64), for any v̄ ∈ Br with r satisfying (68), T (v̄)ℓ̃

belongs to Br.
Finally, to find r such that that the map v̄ → T (v̄)ℓ̃ is a strict contraction in
Br, we should guarantee (see [17] p. 282) that for any w̄1, w̄2 ∈ Br

‖(T (w̄1) − T (w̄2))ℓ̃‖W ≤ ||ℓ̃||W ′

α2
ã

L(r)‖w̄1 − w̄2‖W < ‖w̄1 − w̄2‖W , (69)

L(r) being the Lipschitz continuity constant associated to Ã. However,

|〈(Ã(w̄1) − Ã(w̄2))(ū), v̄〉| = |ã(w̄1; ū, v̄) − ã(w̄2; ū, v̄)|
= |cf (w1 + R

1
fη1 − (w2 + R

1
fη2);u + R

1
fλ,v + R

1
fµ)|

≤ CN |w1 + R
1
fη1 − w2 − R

1
fη2|1 |u + R

1
fλ|1 |v + R

1
fµ|1

≤ 2
√

2CN ‖w̄1 − w̄2‖W ‖ū‖W ‖v̄‖W ,

so that L(r) = 2
√

2CN . Thus, condition

||ℓ̃||W ′

α2
ã

L(r) < 1

is satisfied if
r2 − 2C1r + C2

1 −
√

2C2 > 0 (70)

i.e.,

r < rMIN = C1 −
√√

2C2 or r > rMAX = C1 +

√√
2C2 .

It is easy to see that rmax < rMAX . Consequently, there exists a r which satisfies
(68) and (70) if and only if rmin ≤ rMIN , which is equivalent to condition (64)

13



or to condition (58). Under this condition, any r in the interval (63) with
rm = rmin and rM = rMIN , will satisfy both (68) and (70).
3. The existence and uniqueness of the solution ū = (λ,R1

0(λ)) ∈ Br to (57) is
now a simple consequence of the Banach contraction theorem (see, e.g., [27]).
✷

The following theorem is a direct consequence of the previous lemma.

Theorem 3.2 If (58) holds, then problem (57) has a unique solution ū =
(λ,R1

0(λ)) in the set

BrM
= {w̄ = (η,w) ∈W : |R1

fη|1 < rM} ,

and it satisfies |R1
fλ|1 ≤ rm, where rm and rM are defined in (59). In particular,

it follows that (50) has a unique solution λ in the set SrM
= {η ∈ Λ0 : |R1

fη|1 <
rM} ⊂ Λ0 which indeed belongs to Srm

= {η ∈ Λ0 : |R1
fη|1 ≤ rm}.

Proof. Since problem (50) has a solution λ if and only if ū = (λ,R1
0(λ)) is a

solution of problem (57), we prove only the first part of theorem.
From the previous Lemma 3.1, if (58) holds, (57) has at least a solution in
BrM

as it has a solution in Br ⊂ BrM
, for any rm < r < rM . To prove the

uniqueness, let us assume that (57) has two solutions ū1 = (λ1, (R
1
0(λ))1) 6=

ū2 = (λ2, (R
1
0(λ))2) in BrM

. Then, r1 = |R1
fλ1|1 < rM and r2 = |R1

fλ2|1 <

rM . Therefore, any set Br with max{rm, r1, r2} < r < rM contains two different
solutions of problem (57). This contradicts the result of Lemma 3.1. Now, let
ū = (λ,R1

0(λ)) be the unique solution of problem (57) in BrM
. According to

Lemma 3.1, it belongs to each Br ⊂ BrM
with rm < r < rM , and consequently

|R1
fλ|1 ≤ rm. ✷

Remark 3.2 Notice that condition (58) is analogous to that usually required to
prove existence and uniqueness of the solution of the Navier-Stokes equations.
Moreover, we have proved that the solution is unique in SrM

. Thus, in view of
Remark 2.1, Theorem 3.2 states that the solution is unique only for sufficiently
small normal velocities λ across the interface Γ. Finally, notice that (58) im-
plies (42) and that Srm

is included in the set (43), so that the existence and
uniqueness of the nonlinear extension R

1
0(λ) is ensured as well.

4 Iterative finite element solution of the coupled
problem

In this section, we introduce and analyze some iterative methods to compute
the solution of a conforming finite element approximation of (16)–(18). For
the easiness of notation, we will write the algorithms in continuous form. How-
ever, they can be straightforwardly translated into a discrete setting considering
conforming internal Galerkin approximations of the spaces (7)–(11).
Moreover, the convergence results that we will present hold in the discrete case
without any dependence of the convergence rate on the grid parameter h, since
they are established by using the properties of the operators in the continuous
case.
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As concerns the finite element approximation, let us just indicate our basic
assumptions, referring to [13, 10, 14] for a more detailed description.
We consider a regular triangulation of the domain Ωf ∪ Ωp, depending on a
positive parameter h > 0, made up of triangles if d = 2, or tetrahedra in the 3–
dimensional case. We assume that the triangulations induced on the subdomains
Ωf and Ωp are compatible on Γ, that is they share the same edges (if d = 2) or
faces (if d = 3) therein. Finally we suppose the triangulation induced on Γ to
be quasi-uniform (see, e.g., [25]).
Several choices of finite element spaces can be made. However, in order to
guarantee the stability of the approximation of the coupled problem, we must
only ensure that the finite element spaces which approximate the velocity and
pressure fields in the fluid domain, say Hfh and Qh, respectively, satisfy an inf-
sup condition. Indeed, there must exist a positive constant β∗ > 0, independent
of h, such that ∀qh ∈ Qh, ∃vh ∈ Hfh, vh 6= 0 such that

∫

Ωf

qh ∇ · vh ≥ β∗‖vh‖1‖qh‖0 . (71)

No additional condition is required on the discrete space used to approximate
the piezometric head in Ωp.
Several families of finite element spaces satisfying the inf-sup condition (71) are
provided in [4]. The classical error estimates hold for the Navier-Stokes equa-
tions (see, e.g., [17, Chapter II]) and for the Darcy problem (6) (see, e.g., [25]).
In our numerical results we will make the special choice of piecewise quadratic
elements for the velocity components and piecewise linear for the pressure (the
so-called Taylor-Hood elements), while we will use piecewise quadratic elements
for approximating the piezometric head ϕ in Ωp. For such choices, it is well-
known that the following error estimates hold: there exist two positive constants
C1 and C2 such that:

Eh
NS ≤ C1h

r(‖uf‖r+1 + ‖pf‖r), r = 1, 2, (72)

if uf ∈ Hr+1(Ωf ) and pf ∈ Hr(Ωf ), where

Eh
NS = ‖∇uf −∇ufh‖0 + ‖pf − pfh‖0,

while
Eh

D ≤ C2h
l‖ϕ‖l+1, l = min(2, s− 1), (73)

if ϕ ∈ Hs(Ωp), s ≥ 2, with

Eh
D = ‖ϕ− ϕh‖1.

We have indicated by the subscript h the finite element approximations of uf ,
pf and ϕ. We will verify these estimates numerically in Sect. 5.
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4.1 Fixed-point iterations

Fixed-point iterations to solve the coupled problem (16)–(18) can be written as
follows. Given u0

f ∈ Hf , for n ≥ 1, find un
f ∈ Hf , pn

f ∈ Q, ϕn ∈ Hp such that

af (un
f ,v) + cf (un−1

f ;un
f ,v) + bf (v, pn

f )

+

∫

Γ

g ϕn(v · n) +

∫

Γ

d−1
∑

j=1

ν

ε
(un

f · τ j)(v · τ j) =

∫

Ωf

f · v , (74)

bf (un
f , q) = 0 , (75)

ap(ϕ
n, ψ) =

∫

Γ

ψ(un
f · n) , (76)

for all v ∈ Hf , q ∈ Q, ψ ∈ Hp.

Algorithm (74)–(76) requires to solve at each iteration a linear coupled problem,
and it can be reinterpreted as a fixed-point method to solve the interface problem
(57). Indeed, let us first rewrite (74)–(75) in the equivalent form:

find un
f ∈ Vf such that

af (un
f ,v) + cf (un−1

f ;un
f ,v) +

∫

Γ

g ϕn(v · n)

+

∫

Γ

d−1
∑

j=1

ν

ε
(un

f · τ j)(v · τ j) =

∫

Ωf

f · v ∀v ∈ Vf . (77)

We denote λn = un
f · n on Γ and we remark that λn ∈ Λ0. Then, we consider

R
1
fλ

n ∈ Hf and we set un = un
f − R

1
fλ

n. By definition, un · n = 0 on Γ.

Moreover, remark that for all η ∈ Λ0, (28) implies ∇ · R1
fη = 0 in Ωf since we

can choose q = ∇ · R1
fη. Thus, un ∈ V 0

f .
From (76) it follows −K∇ϕn ·n = un

f ·n = λn on Γ, so that by definition of Rp,
we can write ϕn = Rpλ

n.
Finally, since v ∈ Vf , proceeding as for un

f , we can split v = w + R
1
fµ with

µ = v · n on Γ and w ∈ V 0
f . Thus, (77) becomes

af (un + R
1
fλ

n,w + R
1
fµ) + cf (un−1 + R

1
fλ

n−1;un + R
1
fλ

n,w + R
1
fµ)

+

∫

Γ

g(Rpλ
n)(w + R

1
fµ) · n +

∫

Γ

d−1
∑

j=1

ν

ε
((un + R

1
fλ

n) · τ j) ((w + R
1
fµ) · τ j)

=

∫

Ωf

f · (w + R
1
fµ) .

Taking into account that w ∈ V 0
f and the definition of R

1
f (27)–(28), this

corresponds to the fixed-point method: given ūn−1 = (λn−1,un−1) ∈ W , for
n ≥ 1,

find ūn = (λn,un) ∈W : ã(ūn−1; ūn, w̄) = 〈ℓ̃, w̄〉 ∀w̄ = (µ,w) ∈W .

Then, in view of this equivalence, the convergence of (74)–(76) is a direct con-
sequence of Lemma 3.1. We can state the following result which is a straight-
forward corollary of Theorem 3.2.
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Proposition 4.1 If (58) holds and if u0
f is such that |R1

f (u0
f · n)|1 < rM with

rM given in (59), then the sequence (un
f , p

n
f , ϕ

n) converges for n → ∞ to the

unique solution (uf , pf , ϕ) of problem (16)–(18), and |R1
f (uf · n)|1 ≤ rm.

4.2 Newton-like methods

Let us consider now the Newton method to solve (the discrete form of) (16)–
(18).
Let u0

f ∈ Hf be given. Then, for n ≥ 1, the Newton method reads: find
un

f ∈ Hf , pn
f ∈ Q, ϕn ∈ Hp such that

af (un
f ,v) + cf (un

f ;un−1
f ,v) + cf (un−1

f ;un
f ,v) + bf (v, pn

f ) +

∫

Γ

gϕn(v · n)

+

∫

Γ

d−1
∑

j=1

ν

ε
(un

f · τ j)(v · τ j) = cf (un−1
f ;un−1

f ,v) +

∫

Ωf

f · v , (78)

bf (un
f , q) = 0 , (79)

ap(ϕ
n, ψ) =

∫

Γ

ψ(un
f · n) , (80)

for all v ∈ Hf , q ∈ Q, ψ ∈ Hp.
In order to reduce the computational cost, we might consider the modified
Newton method: find un

f ∈ Hf , pn
f ∈ Q, ϕn ∈ Hp such that

af (un
f ,v) + cf (un

f ;u0
f ,v) + cf (u0

f ;un
f ,v) + bf (v, pn

f ) +

∫

Γ

gϕn(v · n)

+

∫

Γ

d−1
∑

j=1

ν

ε
(un

f · τ j)(v · τ j) = cf (un−1
f ;u0

f ,v)

+cf (u0
f − un−1

f ;un−1
f ,v) +

∫

Ωf

f · v , (81)

bf (un
f , q) = 0 , (82)

ap(ϕ
n, ψ) =

∫

Γ

ψ(un
f · n) , (83)

for all v ∈ Hf , q ∈ Q, ψ ∈ Hp.

Like for fixed-point iterations, we have to solve a linearized coupled problem at
each iteration of the Newton algorithms.

We would like to rewrite the Newton methods (78)–(80) and (81)–(83) as itera-
tive schemes for the interface equation (57). Let us consider the exact Newton
method. First of all, notice that it can be expressed in the equivalent form:

find un
f ∈ Vf , ϕn ∈ Hp such that

af (un
f ,v) + cf (un

f ;un−1
f ,v) + cf (un−1

f ;un
f ,v) +

∫

Γ

gϕn(v · n)

+

∫

Γ

d−1
∑

j=1

ν

ε
(un

f · τ j)(v · τ j) = cf (un−1
f ;un−1

f ,v) +

∫

Ωf

f · v , (84)

ap(ϕ
n, ψ) =

∫

Γ

ψ(un
f · n) , (85)
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for all v ∈ Vf , ψ ∈ Hp.
Furthermore, (84) can be equivalently restated as: find un

f ∈ Vf such that

af (un
f − un−1

f ,v) + cf (un
f − un−1

f ;un−1
f ,v) + cf (un−1

f ;un
f − un−1

f ,v)

+

∫

Γ

g(ϕn − ϕn−1)(v · n) +

∫

Γ

d−1
∑

j=1

ν

ε
((un

f − un−1
f ) · τ j)(v · τ j) =

−af (un−1
f ,v) − cf (un−1

f ;un−1
f ,v) −

∫

Γ

gϕn−1(v · n)

−
∫

Γ

d−1
∑

j=1

ν

ε
(un−1

f · τ j)(v · τ j) +

∫

Ωf

f · v , ∀v ∈ Vf . (86)

Let us now indicate by P (ū) the operator associated to (57): P (ū) : W → W ′,
P (ū) = (Ãū)ū − ℓ̃, ū = (λ,u) ∈ W , Ã and ℓ̃ being defined in Sect. 3. More
precisely,

〈P (ū), w̄〉 = af (R1
fλ,R

1
fµ) + af (u,w) + cf (u + R

1
fλ;u + R

1
fλ,w + R

1
fµ)

+

∫

Γ

d−1
∑

j=1

ν

ε
(R1

fλ · τ j)(R
1
fµ · τ j) +

∫

Γ

d−1
∑

j=1

ν

ε
(u · τ j)(w · τ j)

+

∫

Γ

g(Rpλ)µ−
∫

Ωf

f · (w + R
1
fµ) , ∀w̄ = (µ,w) ∈W .

The Gateaux derivative of the operator P in ū reads, for all v̄ = (η,v), w̄ =
(µ,w) ∈W ,

〈(P ′(ū))(v̄), w̄〉 = af (R1
fη,R

1
fµ) + af (v,w)

+cf (v + R
1
fη;u + R

1
fλ,w + R

1
fµ)

+cf (u + R
1
fλ;v + R

1
fη,w + R

1
fµ)

+

∫

Γ

d−1
∑

j=1

ν

ε
(R1

fη · τ j)(R
1
fµ · τ j)

+

∫

Γ

d−1
∑

j=1

ν

ε
(v · τ j)(w · τ j) +

∫

Γ

g(Rpη)µ .

Notice also that, in view of the definition of R
1
f , we have

〈P (ū), w̄〉 = af (u + R
1
fλ,w + R

1
fµ) + cf (u + R

1
fλ;u + R

1
fλ,w + R

1
fµ)

+

∫

Γ

d−1
∑

j=1

ν

ε
((u + R

1
fλ) · τ j)((w + R

1
fµ) · τ j)

+

∫

Γ

g(Rpλ)µ−
∫

Ωf

f · (w + R
1
fµ) ,
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and

〈(P ′(ū))(v̄), w̄〉 = af (v + R
1
fη,w + R

1
fµ) + cf (v + R

1
fη;u + R

1
fλ,w + R

1
fµ)

+cf (u + R
1
fλ;v + R

1
fη,w + R

1
fµ)

+

∫

Γ

d−1
∑

j=1

ν

ε
((v + R

1
fη) · τ j)((w + R

1
fµ) · τ j) +

∫

Γ

g(Rpη)µ .

Following the same argument used in Sect. 4.1, we can write in (86) uk
f =

uk + R
1
fλ

k with uk ∈ V 0
f and λk = uk

f · n on Γ, and we can set ϕk = Rpλ
k

(k = n− 1, n). Moreover, using again the fact that Vf = V 0
f + {R1

fµ : µ ∈ Λ0},
we can write v = w + R

1
fµ for w ∈ V 0

f and µ = v · n ∈ Λ0 on Γ.
Substituting into (86), we can easily see that it corresponds to the following
Newton method to solve (57): given ū0 = (λ0,u0) ∈ W , for n ≥ 1, find ūn =
(λn,un) ∈W such that

〈(P ′(ūn−1))(ūn − ūn−1), w̄〉 = −〈P (ūn−1), w̄〉 ∀w̄ = (µ,w) ∈W . (87)

Proceeding in an analogous way, one can show that algorithm (81)–(83) corre-
sponds to the modified Newton method to solve (57): given ū0 = (λ0,u

0) ∈W ,
for n ≥ 1, find ūn = (λn,un) ∈W such that

〈(P ′(ū0))(ūn − ūn−1), w̄〉 = −〈P (ūn−1), w̄〉 ∀w̄ = (µ,w) ∈W . (88)

Concerning the convergence of the Newton methods we can prove the following
result.

Proposition 4.2 Let f ∈ L2(Ωf ) and let

C̃1 =
32CNCΩf

‖f‖0

(Cκν)2
, C̃2 =

2
√

2CΩf
||f ||0

Cκν
. (89)

If

C̃1 ≤ 1

2
, (90)

then, there exists a unique solution ū = (λ,R1
0(λ)) ∈ Br0

of (57), with

Br0
= {w̄ = (η,w) ∈W : ‖w̄‖W ≤ r0} (91)

and

r0 =
1 −

√

1 − 2C̃1

C̃1

C̃2 . (92)

Moreover, the sequence ūn = (λn,un), n ≥ 1, obtained by the Newton algorithms
(87) or (88), taking ū0 = (0,0) ∈W , converges to this solution.
The following error estimate hold for the Newton method:

||ū− ūn||W ≤ 1

2n
(2C̃1)

2n C̃2

C̃1

, n ≥ 0, (93)

while for the modified Newton method we have (if C̃1 < 1/2):

||ū− ūn||W ≤ C̃2

C̃1

(

1 −
√

1 − 2C̃1

)n+1

, n ≥ 0. (94)

19



Proof. The proof is a corollary of Theorem 6.3. Consider ū0 = (λ0,u0) =
(0,0) ∈W . Then, for all w̄ = (η,w) ∈W , we have:

〈(P ′(ū0))(w̄), w̄〉 = af (R1
fη,R

1
fη) + af (w,w) +

∫

Γ

d−1
∑

j=1

ν

ε
(R1

fη · τ j)(R
1
fη · τ j)

+

∫

Γ

d−1
∑

j=1

ν

ε
(w · τ j)(w · τ j) +

∫

Γ

g(Rpη)η

≥ Cκν

2
(|R1

fη|21 + |w|21) =
Cκν

2
||w̄||2W .

Consequently, [P ′(ū0)]
−1 exists and

||[P ′(ū0)]−1||L(W ′,W ) ≤
2

Cκν
. (95)

Moreover,

〈P (ū0), w̄〉 = −
∫

Ωf

f · (w + R
1
fη) ≤

√
2CΩf

‖f‖0||w̄||W ,

and therefore,
||P (ū0)||W ′ ≤

√
2CΩf

‖f‖0 . (96)

The second derivative of the operator P reads:

〈((P ′′(ū))(v̄))(w̄), ζ̄〉 = cf (w + R
1
fη;v + R

1
fµ, z + R

1
fξ)

+cf (v + R
1
fµ;w + R

1
fη, z + R

1
fξ) ,

for ū = (λ,u), v̄ = (µ,v), w̄ = (η,w), ζ̄ = (ξ, z) ∈W . Thus,

〈((P ′′(ū))(v̄))(w̄), ζ̄〉 ≤ 2CN |w + R
1
fη|1|v + R

1
fµ|1|z + R

1
fξ|1

≤ 4
√

2CN |v̄|W |w̄|W |ζ̄|W ,

so that
||P ′′(ū)||L(W,L(W,W ′)) ≤ 4

√
2CN .

Consequently, in our case, inequality (106) corresponds to (90).
Moreover, since the operator P is defined and has continuous second derivative
on W , we can select a radius r satisfying (107)–(110) with r0 in (92) and

r1 =
1 +

√

1 − 2C̃1

C̃1

C̃2 .

Finally, the error estimates (93) and (94) are directly obtained from (111) and
(112), respectively. ✷

Remark 4.1 With the help of a little algebra we can see that C̃1 and C̃2 are
related to the constants C1 and C2 in (60) as: C1 = 2

√
2C̃2/C̃1 and C2 =

2
√

2C̃2
2/C̃1. Thus, condition (58) can be reformulated as C̃1 ≤ (3 + 2

√
2)/8. If

we compare it with (90), we can see that the condition required for the conver-
gence of the Newton method is more restrictive than condition (58)
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Finally, notice that rm becomes

rm =
1 −

√

1 −
√

2C̃1

C̃1

√
2C̃2 .

Thus, rm has a form similar to r0 in (92) and r0 ≥ rm. Notice however that
in the definition of Brm

(see (62)) we control only |R1
fλ|1, while in Br0

in (91)
we take the whole norm ‖ū‖W . We can conclude that the well-posedness results
of Lemma 3.1 and Proposition 4.2 are consistent.

4.3 Preconditioned Richardson method

We consider the following iterative method to solve (16)–(18): given u0
f ∈ Hf ,

ϕ0 ∈ Hp, for n ≥ 1, find un
f ∈ Hf , qn

f ∈ Q, ϕn ∈ Hp such that

af (un
f − un−1

f ,v) + bf (v, pn
f − pn−1

f ) +

∫

Γ

d−1
∑

j=1

ν

ε
((un

f − un−1
f ) · τ j)(v · τ j)

= θ

[

∫

Ωf

f · v − af (un−1
f ,v) − cf (un−1

f ;un−1
f ,v) − bf (v, pn−1

f )

−
∫

Γ

d−1
∑

j=1

ν

ε
(un−1

f · τ j)(v · τ j) −
∫

Γ

g ϕn−1(v · n)



 , (97)

bf (un
f − un−1

f , q) = 0 , (98)

ap(ϕ
n, ψ) =

∫

Γ

ψ(un
f · n) , (99)

for all v ∈ Hf , q ∈ Q, ψ ∈ Hp. θ > 0 is a suitably chosen relaxation parameter.
Unlike the fixed-point and the Newton methods, this algorithm requires to solve
at each iteration two decoupled linear equations at each iteration: one in the
fluid domain and one in the porous media subdomain.
Proceeding as in Sects. 4.1 and 4.2, we can interpret (97)–(98) as an iterative
method for the interface problem (57) and we can prove its convergence for θ
chosen in a suitable interval (0, θmax) with θmax depending on ν, g and ‖f‖0.
For details we refer the reader to [2].

5 Some numerical experiments

We consider the computational domain Ω = (0, 1)×(0, 2) with Ωf = (0, 1)×(1, 2)
and Ωp = (0, 1) × (0, 1), and uniform regular triangulations characterized by a
parameter h. We use Taylor-Hood elements for the Navier-Stokes equations and
quadratic Lagrangian elements for the Darcy equation (6).
In a first test, we set the boundary conditions in such a way that the ana-
lytical solution for the coupled problem is uf = (ex+y + y,−ex+y − x), pf =
cos(πx) cos(πy)+x, ϕ = ex+y − cos(πx)+xy. In order to check the behavior of
the iterative methods that we have studied with respect to the grid parameter
h, to start with we set the physical parameters (ν, K, ε, g) all equal to 1.
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The algorithms are stopped as soon as ‖xn−xn−1‖2/‖xn‖2 ≤ 10−10, where ‖·‖2

is the Euclidean norm and xn is the vector of the nodal values of (un
f , p

n
f , ϕ

n).

Our initial guess is u0
f = 0.

The number of iterations obtained using the fixed-point algorithm (74)–(76), the
Newton method (78)–(80), and the Richardson method (97)–(99) are displayed
in table 1. All methods converge in a number of iterations which does not
depend on h.

Table 1: Number of iterations for the iterative methods with respect to h.

h Fixed-point Newton Richardson (θ = 0.5)
1/7 11 5 72
1/14 11 5 72
1/28 11 5 72

In Fig. 2 (left), we show the convergence history of the three methods in the case
h = 1/14, while in Fig. 2 (right) we plot the errors with respect to h between
the exact solution and the solution obtained by the Newton method. We can
see that the theoretical estimates (72) and (73) are fulfilled.
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Figure 2: Convergence history for the three methods corresponding to h = 1/14
(left) and errors with respect to the exact solutions (right).

A second test is carried out in order to assess the influence of the physical
parameters on the convergence rate of the algorithms. In this case, we consider
the same computational domain, however the analytical solution now is uf =
((y−1)2+(y−1)+ε, x(x−1)), pf = 2ν(x+y−1), and ϕ = K

−1(x(1−x)(y−1)+
(y − 1)3/3)+2νx. We choose several values for the physical parameters ν and K

as indicated in table 2, and we set ε =
√

K/10. The numerical results in table 2
show that the smaller the parameters the higher the number of iterations. This is
particularly evident for the Richardson method where the relaxation parameter
θ must be chosen very small.
In Fig. 3 we show the convergence history of the different methods for h = 1/14
and ν = 10−1, K = 10−1 (on the left), and ν = 10−2, K = 10−1 (on the right).

Concerning the computational cost, we remark that the fixed-point algorithm
requires at each iteration to assemble the matrix corresponding to the linearized
form cf (un

f ;un−1
f ,v).

22



Table 2: Convergence behavior of the iterative methods with respect to the parameters
ν and K.

Number of iterations for the fixed-point method
ν K h = 1/7 h = 1/14 h = 1/28
1 1 7 7 7
1 10−4 5 5 5

10−1 10−1 10 10 10
10−2 10−1 17 17 17
10−2 10−3 14 14 14

Number of iterations for the Newton method
ν K h = 1/7 h = 1/14 h = 1/28
1 1 5 5 5
1 10−4 4 4 4

10−1 10−1 5 5 5
10−2 10−1 6 6 6
10−2 10−3 5 5 5

Number of iterations for the Richardson method
ν K θ h = 1/7 h = 1/14 h = 1/28
1 1 0.5 33 33 33
1 10−4 0.01 * * *

10−1 10−1 0.5 44 44 44
10−2 10−1 0.01 * * *
10−2 10−3 0.001 * * *

(* more than 200 iterations are required)

On the other hand, at each iteration n ≥ 1 of the Newton method we have to
assemble two matrices associated to the linearized forms cf (un

f ;un−1
f ,v) and

cf (un−1
f ;un−1

f ,v) besides updating the right-hand side, which requires the mul-

tiplication of the matrix of cf (un−1
f ;w,v) by the vector un−1

f of the nodal values
of the velocity obtained at the previous iteration. For the set-up of the linear
system, the Newton method is thus computationally more expensive than the
fixed-point one.
In both cases we have to solve a linear system of similar structure and, in partic-
ular, we have to deal with both the fluid and the porous-media subproblems at
once. Each of the algorithms (74)–(76) and (78)-(80) involves indeed a linearized
Navier-Stokes/Darcy problem in Ωf ∪ Ωp.
The set-up of each iteration of the preconditioned Richardson method is much
less expensive. Indeed, only a few matrix-vector multiplications are required to
update the right-hand side in (97). Then, one has to solve the Stokes equations
(97)-(98) in Ωf and the Darcy problem (99) in Ωp. These two problems can be
solved separately in a sequential mode, since only un

f is needed in (99) while ϕn

does not appear in the formulation of the fluid subproblem.
In terms of computational effort required to perform each iteration, the Richard-
son scheme is then the cheapest one. In addition, this method is quite attractive
for its decoupling property.
In practice, the extra computational effort for the Newton method pays back
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Figure 3: Convergence history for the three methods corresponding to h = 1/14
and ν = 10−1, K = 10−1 (on the left), and ν = 10−2, K = 10−1 (on the right).

with fewer iterations compared to the other algorithms as shown in tables 1 and
2. Moreover, Newton iterations seem to be more robust since their number is
substantially independent of both the grid parameter h and of the values of the
viscosity ν and the hydraulic conductivity.
For these reasons, we adopt the Newton method for the following test case.
We consider the computational domain illustrated in Fig. 4 to represent the
2D section of a channel alongside a porous material. In this case, the boundary
conditions are chosen in such a way that, if we would disregard the porous media,
the Navier-Stokes equations would admit the following Kovasznay solution

uf =

(

1 − eλx cos(2πy),
λ

2π
eλx sin(2πy)

)

, pf = −e
2λx

2
,

with λ = 0.5Re −
√

0.25Re2 + 4π2, Re = 1/ν and ν = 0.025. Moreover, we
impose that the conormal derivative of the piezometric head is null on ΓN

p and

ϕ = −0.25 on ΓD
p . The hydraulic conductivity coefficient is K = 10−1.

Ωf

Ωp

Γ

ΓD
p

ΓN
pΓN

p

x

y

inflow

(-1,2.5) (3,2.5)

(-1,0.5)
(3,0.5)

(0,0) (3,0)

Figure 4: Computational domain for the third test case.

We have solved this problem using two different grids and adopting the Newton
method. The convergence results are reported in table 3, the computed velocity
and piezometric head are displayed in Fig. 5.
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Table 3: Newton iterations to solve the problem illustrated in Fig. 4.

Grid elements Newton iterations
792 7
3168 8
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Figure 5: Computed solution: piezometric head ϕ (top left), velocity field uf (top
right), contour lines of the velocity in x- (bottom left) and y-direction (bottom right).
Notice that the Kovasznay flow is modified due to the presence of the porous media:
indeed, the velocity in y-direction has negative values in correspondence to the porous
media interface.

6 Appendix

6.1 Some existence and uniqueness results

In this section we recall some existence and uniqueness results for nonlinear
saddle-point problems, referring the reader to, e.g., [5, 6, 7, 9] and also [17] for
a rigorous study.

Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be two real Hilbert spaces and consider a bilinear
continuous form b(·, ·) : X × Y → R, (v, q) → b(v, q), and a trilinear form
a(·; ·, ·) : X×X×X → R, (w, u, v) → a(w;u, v), where, for w ∈ X the mapping
(u, v) → a(w;u, v) is a bilinear continuous form on X ×X.
Then, we consider the following problem: given l ∈ X ′, find a pair (u, p) ∈ X×Y
satisfying

a(u;u, v) + b(v, p) = 〈l, v〉 ∀v ∈ X
b(u, q) = 0 ∀q ∈ Y.

(100)

Introducing the linear operatorsA(w) ∈ L(X;X ′) for w ∈ X, andB ∈ L(X;Y ′):

〈A(w)u, v〉 = a(w;u, v) ∀u, v ∈ X ,

〈Bv, q〉 = b(v, q) ∀v ∈ X, ∀q ∈ Y ,

25



problem (100) becomes: find (u, p) ∈ X × Y such that

A(u)u+BT p = l in X ′ ,
Bu = 0 in Y ′ .

(101)

Taking V = Ker(B), we associate (100) with the problem

find u ∈ V : a(u;u, v) = 〈l, v〉 ∀v ∈ V , (102)

or, equivalently: find u ∈ V such that ΠA(u)u = Π l in V ′, where the linear
operator Π ∈ L(X ′;V ′) is defined by 〈Π l, v〉 = 〈l, v〉, ∀v ∈ V .
If (u, p) is a solution of problem (100), then u solves (102). The converse may
be proved provided an inf-sup condition holds. Indeed, the following results can
be proved.

Theorem 6.1 (Existence and uniqueness) Suppose that:

1. the bilinear form a(w; ·, ·) is uniformly elliptic in the Hilbert space V with
respect to w, i.e. there exists a constant α > 0 such that

a(w; v, v) ≥ α‖v‖2
X ∀v, w ∈ V ;

2. the mapping w → ΠA(w) is locally Lipschitz-continuous in V , i.e. there
exists a continuous and monotonically increasing function L : R

+ → R
+

such that for all m > 0

|a(w1;u, v) − a(w2;u, v)| ≤ L(m)‖u‖X‖v‖X‖w1 − w2‖X (103)

∀u, v ∈ V , ∀w1, w2 ∈ Sm with Sm = {w ∈ V |‖w‖X ≤ m};

3. it holds
‖Π l‖V ′

α2
L

(‖Π l‖V ′

α

)

< 1 . (104)

Then (102) has a unique solution u ∈ V .

We consider now problem (100).

Theorem 6.2 Assume that the bilinear form b(·, ·) satisfies the inf-sup condi-
tion: ∃β > 0

inf
q∈Y

sup
v∈X

b(v, q)

‖v‖X‖q‖Y
≥ β . (105)

Then for each solution u of (102) there exists a unique p ∈ Y such that the pair
(u, p) is a solution of (100).

6.2 Convergence of the Newton methods

Let X and Y be two Banach spaces. We consider the sphere of radius R > 0
centered in x0 ∈ X: Ω = {x ∈ X : ||x − x0||X < R}, and the closed sphere of
radius 0 < r < R centered in x0: Ω0 = {x ∈ X : ||x − x0||X ≤ r}. We assume
that Ω contains a zero of an operator P : Ω ⊂ X → Y , i.e. a point x∗ ∈ Ω such
that P(x∗) = 0.
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If P has a continuous derivative in Ω, we can apply the Newton method to
compute the zero x∗: given an initial approximation x0 ∈ Ω of x∗, for n ≥ 0,

xn+1 = xn − [P ′(xn)]−1(P(xn)) ,

assuming that [P ′(xn)]−1 exists.
Alternatively, we can use the modified Newton algorithm: given x0 ∈ Ω, for
n ≥ 0,

xn+1 = xn − [P ′(x0)]−1(P(xn)) .

Concerning the convergence of these methods, we have the following theorem
(Theorem 6 (1.XVIII) in [21], p. 708).

Theorem 6.3 (Kantorovich Theorem) Let P be defined on Ω ⊂ X with
continuous second derivative in Ω0. Moreover assume that

(1) there exists the continuous linear operator [P ′(x0)]−1;

(2) there exists a positive constant K1 > 0 : ||[P ′(x0)]−1(P(x0))||X ≤ K1;

(3) there exists a positive constant K2 > 0 : ||[P ′(x0)]−1P ′′(x)||X ≤ K2 for
all x ∈ Ω0.

If

K3 = K1K2 ≤ 1

2
, (106)

and the radius r of Ω0 satisfies

r ≥ r0 =
1 −√

1 − 2K3

K3
K1 , (107)

then, there exists a zero x∗ of P to which the Newton and the modified Newton
methods converge. In this case,

||x∗ − x0||X ≤ r0. (108)

Furthermore, if for K3 < 1/2

r < r1 =
1 +

√
1 − 2K3

K3
K1 , (109)

or for K3 = 1/2
r ≤ r1 , (110)

the solution x∗ is unique in the sphere Ω0.
The convergence rate of the Newton method is characterized by

||x∗ − xn||X ≤ 1

2n
(2K3)

2n K1

K3
, n ≥ 0, (111)

while that of the modified method, for K3 < 1/2, by

||x∗ − xn||X ≤ K1

K3
(1 −

√

1 − 2K3)
n+1 , n ≥ 0. (112)
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