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We investigate the unsteady, non-isothermal, pressure driven channel flow of a third grade
liquid subject to exothermic reactions. We assume temperature dependent fluid viscosity and
also that the flow is subjected to convective cooling at the channel walls. The exothermic reac-
tions are modelled via Arrhenius kinetics and the convective heat exchange with the ambient at
the channel walls follows Newton’s law of cooling. The time-dependent, coupled, and nonlinear
partial differential equations governing the flow and heat transfer problem are solved numeri-
cally using efficient, semi-implicit finite difference algorithms. The sensitivity of the fluid flow
and heat transfer system to the various embedded parameters is explored.
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1. Introduction

The flow and material behavior of many fluids of applied engineering and in-
dustrial interest cannot be adequately described via the classical, linearly viscous,
Newtonian fluid model. Examples of such fluids include: coal slurries, polymer
solutions, polymer melts, drilling muds, clay coatings, elastomers, emulsions,
hydrocarbon oils, grease, liquid foams, food products, etc. To this end, several
alternative fluid constitutive models have been developed to characterize the
inherent non-Newtonian behavior. Amongst these non-Newtonian constitutive
models are those of the differential type; the so-called n-th grade fluids [1]. The
first grade fluids represent the classical, linearly viscous, incompressible, and
homogeneous Newtonian fluid model.

A detailed study of the general thermodynamics, stability, and uniqueness
properties of fluids of the differential type (with the fluid of third grade be-
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ing a special case) is presented in [2]. The third grade fluid model has been
widely used to describe the non-Newtonian response of incompressible fluids
[3–9]. A complete thermodynamic analysis of heat transfer problems in the flow
of third grade fluids is performed in [10]. Even though a number of studies on heat
and mass transfer in the flow third grade fluids have been conducted, say in [3–8,
11, 12], the thermodynamics effects that arise due to the combined effects of the
Arrhenius kinetics and variable viscosity in transient Poiseuille flow have yet to
be fully investigated. The current study aims to fill this gap. In particular, we em-
ploy the Frank-Kamenetskii theory [13] to model the Arrhenius exothermic reac-
tions. In addition to the exothermic reactions in this non-isothermal flow problem,
we also employ a relevant, temperature dependent, viscosity constitutive model.

Analysis of the non-linear dynamics of non-Newtonian fluids presents an in-
teresting challenge to engineers, physicists, and mathematicians. This especially
given the significance of these fluids in engineering and industrial applications as
well as the serious challenges posed in experimental investigations involving such
fluids. The development of accurate, robust, and efficient computational tech-
niques for the analysis of the non-linear dynamics (as alternatives to experimen-
tal investigations) is therefore invaluable. For example, the investigations in [14]
explore computational methodologies to conduct important comparative studies
of the thermal loading capacities of Newtonian and viscoelastic lubricants sub-
jected to exothermic reactions. The present study implements similarly robust,
efficient, and accurate computational algorithms based on semi-implicit finite dif-
ference methods. We perform the numerical analysis to investigate the combined
effects of exothermic chemical kinetics and variable viscosity on the transient
flow of an incompressible, reactive, third grade fluid.

2. Mathematical model

We consider the unsteady pressure driven flow of an incompressible, reac-
tive, variable viscosity, third grade fluid between two parallel walls. The parallel
walls are subjected to symmetric convective heat exchange with the ambient.
We choose the x-axis parallel to the flow and the y-axis normal to it, as shown
in Fig. 1.

Fig. 1. Geometry of the problem.
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We assume laminar, unidirectional flow in the x-direction with axial velocity
field u = u(y, t), transverse velocity v = 0, and temperature field T = T (y, t). As
given in, say, [5] the governing equations for the momentum and energy balance,
after appropriate modifications, can be written respectively as,
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Given the geometric symmetry, we consider only the upper-half of the chan-
nel, 0 ≤ y ≤ a, and hence the relevant initial and boundary conditions are,

u(y, 0) = 0, T (y, 0) = T0,(2.3)

∂u

∂y
(0, t) = 0,

∂T

∂y
(0, t) = 0, for t > 0,(2.4)

u(a, t) = 0, −k∂T
∂y

(a, t) = h[T (a, t)− Ta], for t > 0.(2.5)

The chemical kinetics term, governing the exothermic reactions, in the energy
equation is due to [13]. Here u = u(y, t) is the fluid axial velocity, T = T (y, t)
is the fluid temperature, Ta is the ambient temperature, T0 is the fluid initial
temperature, P is the modified pressure, t is the time, ρ is the fluid density, k is
the thermal conductivity coefficient, cp is the specific heat at constant pressure,
h is the heat transfer coefficient, Q is the heat of reaction, A is the rate constant,
E is the activation energy, R is the universal gas constant, C0 is the initial
concentration of the reacting species, a is the channel half width, l is Planck’s
number, K is Boltzmann’s constant, ν is the vibration frequency, the normal
stress modulus α1 is a measure of the fluid viscoelasticity, the material modulus
β3 represents shear dependent viscosity, m is a numerical constant such that
m ∈ {−2, 0, 0.5}, refer to [5] and references therein. The three values taken by
the parameterm represent the numerical exponent for sensitized, Arrhenius, and
bimolecular kinetics respectively [5] and references therein. As shown in Eq. (2.3),
we employ zero initial condition for the fluid velocity and temperature profile.
The temperature dependent viscosity, µ = µ(T ), follows a Nahme-type law,

(2.6) µ(T ) = µ0e
−b(T−T0),

where b is a viscosity variation parameter and µ0 is the reference viscosity at tem-
perature T0. We introduce the dimensionless variables and parameters, Eq. (2.7)
into Eqs (2.1) and (2.2),
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and obtain the non-dimensional governing system given as Eqs (2.8) and (2.9),
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where λ, Pr, Bi, ε, δ, γ,G, α, Ω, Θa, respectively, represent the Frank-Kamenetskii
parameter, the Prandtl number, the Biot number, activation energy parameter,
material parameter, the non-Newtonian parameter, the pressure gradient param-
eter, the variable viscosity parameter, the viscous heating parameter, and the
ambient temperature parameter.

The corresponding, non-dimensional, initial and boundary conditions are:

W (y, 0) = 0, Θ(y, 0) = 0,(2.10)

∂W

∂y
(0, t) = 0,

∂Θ

∂y
(0, t) = 0, for t > 0,(2.11)

W (1, t) = 0,
∂Θ

∂y
(1, t) = −Bi [Θ(1, t)−Θa], for t > 0.(2.12)

In engineering calculations, the wall shear rate (skin friction) and the wall
heat transfer rate are usually the preferred measure for flow velocity (W ) and
temperature (Θ), respectively. In dimensionless terms, the skin friction (Cf )
and the wall heat transfer rate (Nu) are,
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(2.13) Cf = −dW
dy

(1, t), Nu = −dΘ

dy
(1, t).

In the following section, the Eqs (2.8) and (2.9) are solved numerically, sub-
ject to the initial conditions (2.10) and boundary conditions (2.11), (2.12) using
semi-implicit finite difference algorithms.

3. Numerical algorithms

Our computational algorithms are built on the ideas from [15]. As in [14, 16],
we extend the algorithm to the non-isothermal regime. Being semi-implicit finite
difference methods, it is imperative to choose the implicit terms carefully and
in line with numerical stability considerations. For versatility, we also take the
implicit terms at the intermediate time level (N + ξ) where 0 ≤ ξ ≤ 1. The algo-
rithm employed in [14] uses ξ = 1/2 which improves accuracy in time to second
order. For pragmatic reasons, we however follow the formulation in [15] and thus
take ξ = 1 so that we can use larger time steps and converge to steady states
much faster. Indeed, with ξ = 1 we are free to use very large time-steps such as
∆t = 1 in this article. This enables fast computations and rapid convergence to
steady states and hence greatly reduces computational costs. We do not explore
ξ = 1/2 in this study since this, in turn, would require very small time steps and
high computational costs.

The finite-difference discretization of the governing equations is based on
a uniform mesh and grid (∆y = constant, ∆t = constant). We approximate
both the second and first spatial derivatives with second-order central differences.
The equations corresponding to the first and last mesh points are modified to
incorporate the boundary conditions. The semi-implicit scheme for the velocity
component reads,
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In Eq. (3.1), and throughout this numerical section, it is understood that
∂#/∂t := (#(N+1)−#(N))/∆t. The equation for velocity at the next time step,
W (N+1), then becomes,

(3.2) −r1W
(N+1)
j−1 + (1 + 2r1)W

(N+1)
j − r1W

(N+1)
j+1 = explicit terms,

where r1 = (ξ∆t µ(N) − δ)/(∆y2) and µ(N) = exp(−αΘ(N)). The solution pro-
cedure for W (N+1) thus reduces to inversion of tri-diagonal matrices. This is
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a clear advantage over a full implicit scheme which would have, among other
complexities, led to unstructured matrices. The semi-implicit finite difference
scheme for the temperature equation is similarly obtained. In particular, and in
view of numerical stability considerations, unmixed second partial derivatives of
the temperature are treated implicitly,
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The equation for Θ(N+1) thus becomes,
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where r = ξ∆t/∆y2. The solution procedure again reduces to inversion of tri-
diagonal matrices. The schemes ((3.2) and (3.4)) were checked for consistency.
For ξ = 1, these are first-order accurate in time but second order in space. The
schemes in [14] have ξ = 1/2 which improves the accuracy in time to second
order. As already mentioned, we use ξ = 1 here so that we are free to choose
larger time steps and still converge to the correct steady solutions. The steady
state computational results of the following section are obtained near the time
t = 100. To reach such a high time via the extremely low time steps that would
be necessary with the choice ξ = 1/2, would be at the expense of huge com-
putational costs. Using the choice ξ = 1, on the other hand, greatly reduces
computational costs as we can choose time steps as high as ∆t = 1. The time
step choices ∆t = 0.001 and ∆t = 0.01 used in the next section still gave re-
sults in real time, roughly 23 seconds and 2.3 seconds respectively to run the
numerical code to time t = 100!

4. Results and discussion

Unless the context dictates otherwise, we employ the default parameter va-
lues, G = 1, Pr = 10, Θa = 0.1, δ = 0.0001, λ = 0.1, Bi = 1, m = 0.5, ε = 0.1,
L = 1, α = 0.1, Ω = 0.1, γ = 0.1, ∆y = 0.02, ∆t = 0.001, and t = 100.

4.1. Transient and steady flow profiles

We display, in Fig. 2, the time evolution of solutions from the transient to
the steady states. The figures show a transient increase in both fluid velocity
and temperature until the respective steady states are reached.
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Fig. 2. Transient and steady state velocity and temperature profiles.

4.1.1. Blow up of solutions. Given the presence of exothermic reactions, it
should therefore be pointed out that the steady profiles, such as those shown
in Fig. 2, may not be attainable for certain values of the exothermic parameters.
In particular, the reaction parameter, λ, will need to be carefully controlled as
“large” values can easily lead to blow up of solutions as illustrated in Fig. 3.

Fig. 3. Blow up of fluid temperature for large λ.

In Fig. 3, the viscous heating parameter, Ω, is included to illustrate that blow-
up of solutions is intrinsically linked to the reaction parameter, λ. Even though
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the viscous heating source terms are indeed also responsible for temperature
increases within the fluid system, if the exothermic reactions are absent from the
system, then no blow-up (thermal runaway) of solutions would occur. Viscous
heating therefore only serves to either delay thermal runaway (when Ω ≈ 0) or
speed it up (when Ω is ‘large’). To conclusively illustrate this point, Fig. 4 shows
that, in the absence of exothermic reactions (i.e. λ = 0) no thermal runaway is
observed.

Fig. 4. Illustration that blow up of fluid temperature is related to λ.

4.1.2. Parameter dependence of solutions. In addition to the influence of
the heat source terms, λ and Ω, on thermal runaway, we now also explore the
sensitivity of the solutions more generally to changes in the values of the embed-
ded parameters. The response of the velocity and temperature to varying values
of the non-Newtonian parameter (γ) is illustrated in Fig. 5.

An increase in the parameter γ effectively leads to corresponding increases
in those non-Newtonian properties of the fluid linked to increased resistance to
flow as well as to reduced strength of the heat source terms. This respectively
explains the reduction in both the fluid velocity and fluid temperature with
increasing non-Newtonian character as measured by the parameter γ, see Fig. 5.
The influence of the variable viscosity parameter on the velocity and temperature
profiles is shown in Fig. 6.

Increasing the parameter α reduces the fluid viscosity and hence also reduces
the fluid’s resistance to flow. This leads to increased fluid velocity as illustrated in
Fig. 6. The increased velocity, and hence also increased shear rates (| dW/ dy|),
in turn increase the viscous heating source terms in the temperature equation
and hence also increase the fluid temperature as shown in Fig. 6. The effects of
the chemical kinetics exponent m on the velocity and temperature profiles are
shown in Fig. 7.
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Fig. 5. Effects of non-Newtonian parameter (γ) on velocity and temperature.

Fig. 6. Effects of variable viscosity parameter (α) on velocity and temperature.
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Fig. 7. Effects of parameter (m) on velocity and temperature.

Figure 7 shows that the internal heat generated in the fluid during a bi-
molecular type of exothermic chemical reaction (m = 0.5) is higher than that
generated either under the Arrhenius (m = 0) or sensitized (m = −2) reaction
types. This is expected given the relationship between the parameter m and Ar-
rhenius source terms in the temperature equation. Since the parameter m only
enters the velocity equation implicitly through the temperature/viscosity cou-
pling, the effects of m on the fluid velocity are not as pronounced. The effects of
the activation energy parameter ε on the velocity and temperature profiles are
shown in Fig. 8. The parameter ε plays a more-or-less similar role (both mathe-
matically and physically) to the parameter m described in Fig. 7 and hence its
effects are similarly explained.

The effects of the Biot number Bi on the velocity and temperature profiles
are illustrated in Fig. 9.

As seen from the temperature boundary condition (2.12), higher Biot num-
bers correspond to higher degrees of convective cooling at the channel walls
leading to lower temperatures at these walls and hence also in the bulk fluid.
The overall fluid temperature thus decreases with increasing the Biot number as
the bulk fluid continually adjusts to the lower wall temperatures, see Fig. 9. The
reduced temperatures correspondingly decrease the fluid viscosity and hence also
marginally decreases the fluid velocity due to flow resistance. The effects of the
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Fig. 8. Effects of activation energy parameter (ε) on velocity and temperature.

Fig. 9. Effects of the Biot number (Bi) on velocity and temperature.
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Prandtl number Pr on the velocity and temperature profiles are illustrated in
Fig. 10.

Fig. 10. Effects of the Prandtl number (Pr) on velocity and temperature.

Larger values of the Prandtl number correspondingly decrease the strength
of the source terms in the temperature equation and hence in turn reduces the
overall fluid temperature as clearly illustrated in Fig. 10. As already pointed
out, the reduced fluid temperature decreases the fluid viscosity and hence re-
duces fluid velocity. The effects of the reaction parameter λ on the velocity and
temperature profiles are illustrated in Fig. 11.

The reaction parameter λ plays a roughly opposite role to the Prandtl number
just described. Increased values of λ lead to a significant increase in the exother-
mic reaction strength and hence significantly increase the fluid temperature as
shown in Fig. 10 and also in the blow up, Fig. 3. The significant temperature rise
leads to equally significant reductions in the fluid viscosity hence significantly
also increasing the fluid velocity. The effects of the viscous heating parameter Ω
on the velocity and temperature profiles are illustrated in Fig. 12. The effects of
Ω mirror those of λ.

The dependence of the skin friction, Cf , on the reaction parameter, λ, is
illustrated in Fig. 13 for various values of the viscosity variation parameter α.
Similarly, Fig. 14 shows the dependence of the skin friction on λ for various
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Fig. 11. Effects of the reaction parameter (λ) on velocity and temperature.

Fig. 12. Effects of the viscous heating parameter (Ω) on velocity and temperature.
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Fig. 13. Variation of wall shear stress with λ and α.

Fig. 14. Variation of wall shear stress with λ and γ.

values of the non-Newtonian parameter γ. In general, parameters that decrease
(respectively increase) the fluid velocity correspondingly decrease (respectively
increase) the skin friction.

The dependence of the wall heat transfer rate on λ is illustrated in Fig. 15
for various values of α. Similarly, Fig. 16 shows the dependence of the wall heat
transfer on λ for various values of γ. As with the wall shear stress, parameters

Fig. 15. Variation of wall heat transfer rate with λ and α.
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Fig. 16. Variation of wall heat transfer rate with λ and γ.

that decrease (respectively increase) the fluid temperature will correspondingly
decrease (respectively increase) the wall heat transfer. Figures 13–16 were ob-
tained at time t = 100 but using the larger time-step, ∆t = 0.01.

5. Conclusion

We employ robust and efficient finite difference algorithms to investigate the
transient and steady state characteristics in the non-isothermal, pressure driven
channel flow of a reactive variable viscosity third-grade liquid subjected to con-
vective cooling at the channel walls. We observe that, for low values of reaction
parameters, there is a transient increase in both fluid velocity and temperature
until steady states are reached. We also observe that, at steady state, there is
an increase in both fluid velocity and fluid temperature with an increase in the
reaction strength; viscous heating; and viscosity variation parameter. A decrease
(at steady state) in both fluid velocity and fluid temperature is observed with
an increase in the non-Newtonian character. The possible finite time blow-up of
solutions means that the reaction strength needs to be carefully controlled. We
also notice that due to the nature of especially the viscosity coupling, the fluid
velocity and fluid temperature either both increase or both decrease. Parameters
that increase the viscosity would decrease these two flow quantities and similarly
those that decrease the viscosity would increase the two flow quantities. The be-
haviour of the skin friction and the wall heat transfer rate respectively mirror
the corresponding behaviour of the fluid velocity and the fluid temperature.
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