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Abstract: In this study, a three-dimensional thermo-elastic model that considers the interaction of mechanical 

and thermal deformation is developed using a semi-analytic method for steady-state rolling contact. Creepage 

types in all directions are considered in this model. For verification, the numerical analysis results of shear 

traction and temperature increase are compared separately with existing numerical results, and the consistency 

is confirmed. The analysis results include heat flux, temperature increase, contact pressure, and shear traction. 

Under severe rolling conditions, the thermal effect changes the behavior of the contact interface significantly. 

Furthermore, the effects of creepage, rolling speed, and conformity under different rolling and creep conditions 

are investigated. 
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1  Introduction 

Rolling contacts are widely used in machine com-

ponents, such as railwheels, rolling bearings, camrollers, 

and gear systems [1]. In recent years, as awareness of 

global environmental protection increases worldwide, 

a reduction in the size and weight of mechanical 

components has become necessary; this results in 

severe operating conditions such as high loads and 

high speeds in rolling contact [2]. In rolling contact 

interfaces, the basic analysis of relative slip and shear 

traction is crucial for investigating the fatigue life, 

traction control, and wear. When rolling contact is severe 

[1], frictional heat and the resulting temperature 

increase and thermal deformation become significant 

issues. Rolling without sliding or rotating is often 

referred to as “pure rolling”. However, even though 

most mechanical parts operate in a pure rolling state, 

minimal sliding is included [3]. Johnson [4] argues 

that the term “pure rolling” is ambiguous because 

the transmission of tangential forces smaller than the 

limit friction is not excluded owing to the absence of 

apparent sliding. Instead of pure rolling, he insisted 

that the terms “free rolling” when the tangential force 

is zero, and “tractive rolling” when the tangential force 

is non-zero are appropriate for describing the rolling 

motion. Traction rolling is primarily explained via the 

creep phenomenon. The first analytical solutions of the 

two-dimensional (2D) rolling contact between identical 

elastic bodies, including the creep phenomenon, 

were published by Carter [5]. Nowell and Hills [6, 7], 

Bentall and Johnson [8], and Kalker [9] expanded the 

existing solutions for 2D steady-state rolling contact 

between identical elastic cylinders to a solution for 

two dissimilar elastic cylinders. Johnson [10, 11] 

considered the effects of lateral creep and spin, which 

could not be explained in Carter’s study by extending 

the 2D rolling contact solution to three-dimensional 

(3D) cases using an approximate method. Kalker 

[12–14] contributed significantly to the problem   

of rolling contact by proposing several theories  

and numerical approaches based on the minimum 

complementary potential energy principle strategy. 

CONTACT, a well-known program developed by  
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Nomenclature 

Roman Letters 

0
a   Hertzian contact half width in rolling direction 

  (mm) 

c c0 st sl
, , ,A A A A   Real contact area, Hertzian contact 

      area, stick area, and slip area (mm2) 

0
b   Hertzian contact half width in lateral direction 

  (mm) 

C   Influence coefficient 

E   Elastic modulus (GPa) 
*E   Equivalent elastic modulus (GPa),  

  1 / E    2 2

1 1 2 2
(1 ) / (1 ) /E E  

F   Friction force (N) 

G   Green’s function 

i
,h h  Surface gap, initial gap (mm) 

k   Thermal conductivity (W/(m·K)) 

,m n  Frequency domain coordinates corresponding 

  to x and y 

l   Characteristic length (mm) 

p   Contact pressure (MPa) 

0
p   Maximum Hertzian contact pressure (MPa) 

p   Dimensionless contact pressure, 
0

/p p p  

1 2
, ,q q q  Total heat flux, and heat flux flowing  

   to two bodies (W/m2) 

q   Dimensionless total heat flux, 
t

/q q l k  

F
Q   Total frictional heat (W),  

c
F d d

A
Q q x y  

R   Radius of sphere (mm) 


y

R   Equivalent radius in the lateral direction of  

  the two bodies (mm),   
,1 ,2

1 / 1 / 1 /
y y y

R R R

Pe ,Pe
x y

 Peclet numbers along two axes 

ΔT   Temperature increase (K) 

, ,
x y z

u u u  Surface deformations in three directions 

   (mm) 
e t,z zu u  Elastic and thermal surface deformations in 

  normal direction, respectively (mm) 
t
zu   Dimensionless thermal surface deformation 

  in normal direction,  tt / (1 )z zuu l    

U   Lateral velocity (m/s) 

V   Rolling velocity (m/s) 

s   Slip velocity (mm/s) 

w   Distance in frequency domain,  2 2w m n

w   Effective distance in frequency domain, 

       2 ( Pe Pe )
x y

w w i m n  

W   Normal load (N) 

, ,x y z  Space coordinate (mm) 

,x y  Dimensionless space coordinate,  

   
0 0

/ , /x x a y y b  

Greek letters and scripts 

t   Linear thermal expansion coefficient (μm/(m·K))


c

  Contact area ratio,  
c c c0

/A A  


p

  Maximum contact pressure ratio,  
max 0

/
p

p p  


st

  Stick area ratio,  
st st c

/A A  

   Rigid body approach (mm) 

   Thermal diffusivity (m2/s) 

   Friction coefficient 

   Poisson ratio 

   Angular speed of contact surfaces for spin (rad/s)

   Angular speed of contact surfaces in lateral  

  direction (rad/s) 

   Angular speed of contact surfaces in rolling  

  direction (rad/s) 


x

  Creepage ratio in rolling direction 


y

  Creepage ratio in lateral direction 

   Spin creepage ratio (rad/mm) 

   Shear traction (MPa) 

   Dimensionless shear traction,  
0

/ p  

   Heat partition coefficient 

x
   Longitudinal creepage (mm/s) 

y
   Lateral creepage (mm/s) 

   Spin creepage (rad/s) 

Special marks 

   Two-dimensional Fourier transform operator 

*  Convolution operation 

Superscripts 

e  Elastic 

t  Thermal elastic 

Subscripts 

1,2  Lower and upper surfaces, respectively 

x,y,z Rolling, lateral, and normal direction, respectively
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Kalker, is widely used in academia and industry as it 

can solve the problem of transient 3D dissimilar body 

rolling contact by considering creep and spin in all 

directions. However, this program requires a significant 

amount of analysis time. Wang et al. [15] used a 

semi-analytical method (SAM) to reduce analysis 

burden. They used the conjugate gradient method 

(CGM) [16] and the discrete convolution fast Fourier 

transform (DC-FFT) [17] to solve the defined SAM 

rolling contact problem; their method incurred a 

significantly shorter analysis time compared with 

Kalker’s solution. Recently, Xi et al. [1] solved the 2D 

rolling contact problem using a linear complementarity 

problem formulation based on the advantage that 

many numerical algorithms are available and easy to 

understand and implement. In addition, Xi et al. [18] 

expanded a 2D model to a 3D model and derived a 

method to consider creep and spin in all directions; 

this method was compared and verified with Kalker’s 

solution. However, considering that the analysis results 

above were obtained on an extremely coarse grid, it 

is questionable whether solving without using FFT is 

advantageous. 

Owing to improvements in computer performance, 

the finite element method (FEM) has been applied to 

the analysis of rolling contact, including effects such 

as crack propagation [19, 20], inelastic behavior [21–24], 

rolling contact fatigue [25, 26], vibration [27, 28], and 

thermal effects [26, 29]. The boundary element method 

(BEM) was similarly employed to analyze rolling 

contact problems as a dimension-reduction method 

[30, 31]. However, it is time consuming to resolve 

rolling contact with creep using the FEM or BEM [15], 

and most studies did not consider the three possible 

creepage types—that is, longitudinal, lateral, and spin 

creepage—simultaneously [18]. 

The microslip generated in the slip zone of rolling 

contacts generates frictional heat, which causes a 

temperature increase and thermal deformation. This 

thermal effect can result in various problems. Studies 

regarding the thermal effect of wheel rails indicate that 

this effect can accelerate thermal fatigue or failure by 

altering the residual stress and reducing the yield 

limit of the material [32–35]. Liao and Lin [36] 

investigated the change in load distribution and friction 

torque increase due to the thermal effect under the  

elasto-hydrodynamic lubrication (EHL) condition of 

angular contact ball bearings. Similarly, Hao et al. [37] 

proposed a thermal-fluid–solid coupling model and 

compared the temperature of rolling bearings with 

experimental results to validate the coupling model. 

Recently, Gao et al. [38] proposed a kinematic Hertzian 

thermal hydrodynamic model for angular contact 

ball bearings and demonstrated that the sliding 

behavior caused by insufficient traction on the rolling 

element significantly increased the bearing tem-

perature. However, in the studies above, the exact 

thermo-mechanical behaviors within the contact 

patch were not analyzed. Instead, only the thermo- 

mechanical behavior of the system was investigated 

using a FEM-based solution or a simple EHL equation 

for shear stress. 

In the past two decades, the SAM has been used 

extensively to solve contact problems associated with 

frictional heating and has proven to be excellent in 

terms of efficiency and effectiveness for analysis 

[39–44]. The most representative study pertaining to 

this mechanical SAM is the analysis of elastoplastic 

behavior in sliding spherical contact by Chen and 

Wang [43], where the sliding speed, heat partition, and 

thermal softening effects were considered. Recently, 

Zhang and Wang [44] used this thermo-mechanical 

SAM to investigate the thermo-elastic frictional contact 

response of a sliding sphere in an elastic-layer-substrate 

system involving an imperfect interface. Nonetheless, 

a thermo-mechanical SAM that includes creep has 

yet to be introduced in rolling contact. 

The main objective of this study is to develop a 3D 

thermo-elastic rolling contact model under a steady 

state. This model is an improved version of the shear 

traction calculation method and includes the creep 

effect introduced in Ref. [15]; therefore, it can account 

for creepage in all directions. This model was combined 

with a study pertaining to the thermal effects of contact 

surfaces in Ref. [43]. The analysis results for shear 

traction were verified through comparison with the 

solution of Xi et al. [18], and the analysis results for 

the temperature increase caused by frictional heating 

were verified through a comparison with the solution 

of Tian and Kennedy [45]. Subsequently, the results 

of heat flux, temperature increase, contact pressure, 

and shear traction under different rolling and creep 

conditions were analyzed and compared. 



Friction 10(4): 630–644 (2022) 633 

www.Springer.com/journal/40544 | Friction 

 

2 Theory 

2.1 3D rolling contact model 

In this study, the variations in the distributions of 

contact pressure and tangential shear traction were 

numerically investigated under the effect of thermal 

deformation caused by friction heat between two 

spheres during rolling contact at high speeds. The 

Cartesian coordinate system was used to describe  

the rolling motion, as shown in Fig. 1. Two identical 

spheres of radius R were pressed into contact by a 

normal load W, and a contact region was formed. The 

z-axis was normal to the contact surface, and the 

x y  plane was tangential to the contact surface. Linear 

velocities for the rolling direction  
1 2

( ) / 2V V V   

and the lateral direction  
1 2

( ) / 2U U U  as well as  

angular velocities  ,  , and   were considered. 

The longitudinal, lateral, and spin creepage are denoted  

by   
1 2

( )
x

R ,   1 2( )y R  , and    
1 2

,  

respectively. The assumptions used in the rolling 

contact analysis are as follows: 

1) Two bodies of the same elastic material establish 

contact with each other. Accordingly, because no 

dissimilar effect occurs, the combined effect of the 

normal contact pressure and tangential shear traction 

is negligible. 

2) Surface deformation analyses based on elastic 

and thermal elastic half-space are valid. 

3) The Coulomb friction law is valid. 

4) Heat generated between two bodies is distributed 

and transferred evenly. 

 

Fig. 1 Overview of the rolling motion. 

5) Heat propagates only in the slip area, and the 

stick area is assumed to be adiabatic. 

6) The system is in steady state with a constant 

rolling speed.  

Figure 2 presents a flowchart of this study. In 

Section 2.2, each part of the analysis is explained 

comprehensively. 

2.2 Contact model 

A general dry contact model [4] is derived as follows 

for completeness:  

 
c

d d
A

W p x y                 (1) 

   
i

0
z

h h u                (2) 

where 
c

A  is the real contact area, p is the contact 

pressure,   is the rigid body approach, and h and 

i
h  are the surface gap and initial gap, respectively. 

The normal surface deformation 
z

u  is the sum of the 

lower normal surface deformation 
,1z

u  and the upper 

normal surface deformation 
,2z

u , i.e.,  
,1 ,2z z z

u u u . 

Disregarding the residual deformation, the normal 

surface deformation 
z

u  can be expressed as the sum 

of the elastic surface deformation e
zu  and thermal 

surface deformation t
zu , as follows: 

 e t
z z zu u u                 (3) 

 

Fig. 2 Flowchart of numerical analysis for thermo-elastic rolling 

contact problems. 
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The elastic surface deformations at points ( , )x y  by 

contact pressure  ( , )p x y  can be expressed as follows 

based on the Boussinesq–Cerruti integrals [4].  

 

 

        e ( , ) ( , ) ( , )d dzu x y G x x y y p x y x y     (4) 

where   *( , ) 1/G x y E r  is the continuous Green’s 

function, *E  is the equivalent elastic modulus and 

 2 2r x y . Equation (4) can be rewritten in a discrete 

form for the numerical computations, as follows: 

 
  

   
c

e

( , )

( , )zu
zij p i j

i j A

u c i i j j p         (5) 

where zu

p
C  is the coefficient of influence between the 

contact pressure and the normal surface deformation. 

This convolution product can be computed more 

efficiently using the FFT and inverse FFT. 

  IFFT( )*
z zu ue

z p pu C p C p
           (6) 

Herein, the convolution operation is denoted with 

an asterisk (*). The DC-FFT algorithm proposed by 

Liu et al. [17] was used to efficiently calculate discrete 

convolutions. The evaluation of the thermal surface 

deformation t
zu  is discussed in Section 2.4. 

2.3 Shear traction 

For 3D steady-state rolling, the governing equations 

are as follows [4]: 

      / /
x x x

s V y u x            (7) 

      / /
y y y

s V x u x            (8) 

where 
x

s  and 
y

s  denote the slip velocities between 

the two surfaces parallel to the x- and y-directions, 

respectively. 
x

u  and 
y

u  are the tangential surface  

deformations, and    /
x x

V  and    /
y y

V  are the  

creepage ratios in the rolling and lateral movements, 

respectively, and     / V  is the spin creepage ratio.  

c
A  is divided into the stick area 

st
A  and slip area 

sl
A . 

It is assumed that the shear tractions   of the stick 

and slip areas fulfill the following conditions: 

In stick area:    2 2

x y
p , and   2 2 0

x y
s s     (9) 

In slip area:    2 2

x y
p , and   2 2 0

x y
s s     (10) 

where   is the friction coefficient. In the stick area, 

   0
x y

s s , and Eqs. (7) and (8) are expressed as 

follows: 
 

    /
x x

u x y  

    /
y y

u x x  
(11)

Integrating with respect to x yields 

    ( )
x x

u x xy f y   

  2/2 ( )y yu x x g y   

(12)

where ( )f y  and ( )g y  are functions of y and must be 

resolved through iteration similar to the shear traction. 

The discrete form of Eq. (12) is as follows: 

   
xij x i i j j

u x x y f  

   2 / 2
yij y i i j

u x x g  

(13)

The surface deformations can be calculated using the 

FFT in terms of the influence coefficients; subsequently, 

Eq. (13) becomes 

                    

2*
/2

x x x

x y

y y y

x y

u u u xij
q q p x i i j j

yiju u u
y i i jq q p

ij

C C C x x y f

x x gC C C
p






 


 

  (14) 

Based on the assumption that the two objects in 

this study are of the same material, the dissimilar 

effect is disregarded, which implies that the shear 

traction is not a function of the contact pressure, and 

  0yx
uu

p p
C C . Accordingly, Eq. (14) can be simplified 

as follows: 

                  
2*
/2

x x

x y

y y

x y

u u
q q xij x i i j j

u u
yij y i i jq q

C C x x y f

x x gC C





  
  

    (15) 

In this section, the development of the equation for 

tangential shear traction calculation is the same as 

the method suggested by Wang et al. [15], except that 

spin is considered. They employed the CGM to solve 

Eq. (15) based on the constraints of Eqs. (9) and (10), 

and the detailed solving process is reported in Ref. [15]. 
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2.4 Frictional heat flux and heat partitioning 

The concept of heat generation by microsliding and 

heat transfer for rolling contact is illustrated in Fig. 3. 

The total heat flux q generated at the contact interface 

can be calculated by multiplying the tangential traction 

by the relative sliding speed, as follows: 

 
x

q s                  (16) 

As suggested by Eq. (16), heat is generated in the 

slip region, whereas the relative sliding speed does 

not exist in the stick region ( 0)
x

s ; hence, no heat 

flux occurs. This heat flux is allocated to two bodies 

in contact and then transferred. The heat partitioning 

coefficient   is the ratio of the heat transferred to one 

of the two bodies. Therefore, the equations of heat flux 

flowing into each body in contact are expressed as 

shown in Eqs. (17) and (18). 


1

q q                  (17) 

 
2

(1 )q q                (18) 

As mentioned above, in this study, it is assumed 

that frictional heat is equally distributed to the two 

bodies, resulting in   0.5 . 

 

Fig. 3 Concept of the heat transfer for rolling contact. 

2.5 Temperature increase and thermal deformation 

Liu and Wang [42] developed formulations for 

temperature increase and thermal expansion in half- 

space due to irregularly distributed surface heat sources 

in terms of a frequency response function. They 

presented this formula for three cases, i.e., transient 

instantaneous, transient continuous, and steady state, 

and introduced the following dimensionless values to 

clarify the following equations:   tT T ,  t /q q l k , 

and  t t / (1 )z zu u l  , where T  is the temperature 

increase, t  is the linear thermal expansion coefficient, 

l  is the characteristic length, k  is the thermal con-

ductivity, and   is the Poisson ratio. The 2D Fourier 

transform of the normal thermal deformation and the 

temperature increase in the half-space for the steady 

state corresponding to the analysis conditions of this 

study are as follows: 

 
 

t 2

( )
z q

w w
u

w
              (19) 




ΔT
q

w
                (20) 

where  2 2w m n  and      2 ( Pe Pe )
x y

w w i m n ;  

m and n are the frequency coordinates corresponding  

to x and y,  Pe /
x x

s l  and  Pe /
y y

s l  are the Peclet  

numbers along the two axes, and   is the thermal 

diffusivity. It is noteworthy that the Peclet number is 

a function of position because the sliding speed differs 

in the contact area during a rolling motion, unlike during 

a perfectly sliding motion, in which the velocity is 

constant within the contact area. 

3 Verification and validation of model 

3.1 Shear traction 

To verify the calculation of shear traction in this study 

for conditions with different linear and spin creeps, the 

distribution of shear traction, which was calculated 

using the current model without considering the 

thermal effect, was compared with the results of Xi  

et al. [18] when two spheres of the same size were in 

rolling contact. The model in this study differs from Xi’s 

model [18]; however, for convenience of comparison, 

the coordinate system used in Xi’s study [18] was 

used in this study. In Xi’s study, the material used 

was steel, whose E was set to 210 GPa,   to 0.28, W to 

100 N, R to 50 mm, and   to 0.6 in both the rolling 

and lateral directions. Five cases that combined the 

different creepage ratios used to validate the shear 

traction calculations are presented below: 1) only cree-

page ratio in rolling direction: x 0.00135,  y   0; 
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2) without spin creepage ratio:   
x y

0.00135,   0; 

3) only spin creepage ratio:   
x y

0,   0.02;   

4) without lateral creepage ratio:  
x

0.00135,  
y

0,  

  0.01; 5) with all linear and spin creepage ratios:  

  
x y

0.00135,   0.01. 

The numerical model domain measured 
0 0

2.2 2.2a b , 

where 
0

a  and 
0

b  represent the Hertzian contact half 

widths of rolling and lateral direction, respectively; 

Xi used a 22 × 22 coarse mesh system within the contact 

area, whereas in the current model, a 256 × 256 mesh 

system was used to present more details. The analysis 

results of the shear traction distribution obtained by 

the current model for the above five cases are presented 

in Fig. 4 and consistent with Ref. [18], where the shear 

traction was normalized by the maximum Hertzian 

contact pressure 
0

p  and the x and y coordinates were 

normalized by 
0

a  and 
0

b , respectively. 

3.2 Temperature increase 

An example of a moving uniform square heat source 

was solved to verify the calculation of temperature 

increase in this study. The square heat source was 

imposed on an area measuring 0 02 2a a . The sliding 

speed was assumed to be constant in this area. For the 

steady state, a closed-form solution of the example 

case is available [46]. Figure 5 shows a comparison of 

the current solution with the results obtained by Tian 

and Kennedy [46] when Pe
x
 = 18.8. The comparison,  

 

Fig. 4 Dimensionless shear traction distribution. Parameters were set to 0.6,  (a) 0.00135, x y   0,  (b) 0.00135, x y 

0,  (c) 0, x y   0.02,  (d) 0.00135, 0, 0.01,  x y     and (e) 0.00135, 0.01.  x y     The arrows denote directions

and relative magnitudes of shear traction. 
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Fig. 5 Comparison of the current and Tian and Kenedy solutions 

[45] based on the temperature increase analysis. 

performed along the centerline ( y  = 0) in the sliding 

direction, indicates that the current solution is consistent 

with that of the existing method. 

4 Results and discussion 

4.1 Thermal deformation effect on rolling contact 

including creep 

To analyze the effect of thermal deformation on rolling 

contact including creep, it was assumed that creep 

occurred only in the rolling direction, not in the other 

direction. In this section, the condition 
x

= 0.003 is 

used as a representative example. The analysis results 

of the total frictional heat, temperature increase, 

contact pressure, and shear traction are presented for 

the rolling contact of a half-space. Table 1 lists the  

Table 1 Material properties and their settings. 

Parameter Value 

Young’s elasticity modulus, E (GPa) 210 

Poisson ratio,   0.28 

Thermal conductivity, k (W/(m·K)) 50.2 

Thermal expansion coefficient, t  (m/(m·K)) 11.7 

Thermal diffusivity,   (m2/s) 10 

Characteristic length, l (mm) 1 

Sphere radius, R (mm) 30 

Friction coefficient,   0.3 

Rolling velocity, V (m/s) 1 

Normal load, W (N) 65 

Heat partitioning coefficient,   0.5 

mechanical and thermal properties of the materials 

and their settings. 

The results for the total frictional heat flux, 

temperature increase, contact pressure, and shear 

traction are shown in Figs. 6–9, respectively, based on 

whether thermal deformation was considered. Only 

the temperature increase was a real-dimensional 

value, whereas the remaining were expressed as 

dimensionless values. The contact pressure was 

normalized by the 
0

p , the same parameter used to 

normalize the shear stress. In Figs. 6–9, the interior of 

the red solid line represents the initial contact region, 

whereas the interior of the white solid line represents 

the initial slip region. The interiors of the dotted line 

represent the contact and slip regions changed by the 

thermal deformation. Considering thermal deformation, 

it was observed that the contact and slip regions 

reduced. The heat flux inside the contact area was 

non-uniform. Because no heat flow was present in 

the stick region, the overall concentration of the heat 

flux was closer to the trailing edge than the leading 

edge. In addition, owing to the effect of the contact 

pressure, the heat flux at the center of the contact was 

greater than that at the edge of the contact. The uneven 

distribution of heat flux resulted in an uneven 

temperature increase and thermal deformation. In 

areas where the heat flux was high, a greater amount 

of thermal expansion occurred, resulting in a greater 

contact pressure in the area. The reduction in the 

contact region due to thermal deformation was 

caused by an increase in the local contact pressure. 

The distribution of shear traction changed with the 

reduction in the contact region and the change in the 

contact pressure distribution. Consequently, the slip 

area was reduced, and the position where the slip 

commenced shifted toward the trailing edge.  

Figure 10 shows plots of the total frictional heat flux, 

temperature increase, contact pressure, and shear 

traction along the centerline (y = 0) in the rolling 

direction. When spin was absent, their maximum 

values appeared along the centerline. The decrease  

in the slip area due to thermal deformation was the 

greatest at the centerline. As shown from the heat 

flux plot in Fig. 10(a), the dimensionless length of the 

slip in the rolling direction along the centerline 

changed from 0.78 to 0.5. The distribution of heat flux 

was concentrated toward the trailing edge via thermal  
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deformation, and the maximum values of the 

dimensionless total heat flux were 0.102 in the initial 

state without thermal deformation, and 0.132 when 

thermal deformation was considered, representing a 

1.3× increase. However, because the slip region 

decreased in a manner opposite to the increase in  

 

Fig. 6 Contour maps of dimensionless total heat flux distributions: (a) without thermal deformation and (b) with thermal deformation.

 

Fig. 7 Contour maps of temperature increase distributions: (a) without thermal deformation and (b) with thermal deformation. 

 
Fig. 8 Contour maps of dimensionless contact pressure distribution: (a) without thermal deformation and (b) with thermal deformation.

 
Fig. 9 Contour maps of dimensionless shear tractions: (a) without thermal deformation and (b) with thermal deformation. The arrows 

denote directions and relative magnitudes of shear traction. 
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Fig. 10 Analysis results along the centerline: (a) dimensionless 

total frictional heat flux, (b) temperature increase, (c) dimensionless 

contact pressure, and (d) dimensionless shear traction.  

heat flux in these localized regions, the total amount 

of heat generated between the two bodies was not 

proportional to the increase in the maximum heat 

flux. The total amount of heat was 6.8 W when thermal 

deformation was not considered, whereas it decreased 

to 5.6 W when thermal deformation was considered. 

Even when thermal deformation was considered,  

no significant difference was observed in the total 

amount of heat; therefore, the maximum temperature 

increase did not differ significantly. In contrast to the 

difference in the maximum value of temperature 

increase, which was a simple representative value, the 

temperature increase distribution was concentrated 

toward the trailing edge owing to the change in the 

distribution of heat flux due to thermal deformation 

(Fig. 10(b)). In the contact pressure plot along the 

centerline, as shown in Fig. 10(c), a decrease in the 

contact area and an increase in the local contact pressure 

were clearly observed. Owing to thermal deformation, 

the dimensionless x-position of the starting point of 

the leading edge changed from –1.0 to –0.88; when  

the dimensionless x was between –0.1 and 1.0, the 

contact pressure exceeded the initial maximum contact 

pressure. At this time, the maximum contact pressure 

was approximately 1.26 times the initial contact 

pressure, and it appeared near the position where the 

heat flux in the slip region was maximized, not at the 

center of the contact. The contact pressure distribution 

near the maximum pressure exhibited a gentle peak 

around that point. An interesting observation is that 

the distribution of contact pressure, reflecting the 

effect of thermal deformation in a specific dry state, 

contained pressure peaks, similar to the pressure 

distribution in the EHL state. As shown in Fig. 10(c), 

the shear traction distribution shows a change similar 

to the contact pressure distribution, in which the 

maximum shear traction increases and the shear 

traction is concentrated toward the trailing edge. A 

characteristic change in the shear traction distribution 

due to thermal deformation is that when thermal 

deformation is not considered, the curve of shear 

traction at the boundary between the stick and slip is 

discontinuous; however, when thermal deformation 

is considered, the curve becomes relatively smooth 

and exhibits a continuous shape. 

4.2 Creepage effect 

Section 4.1 shows the general tendency of the thermal 

deformation effect for a specific creepage ratio, 

whereas this section presents the effect of thermal 

deformation in accordance with the creepage ratio. 

Figure 11 shows the contact pressure and shear traction 

based on combinations of linear creep at the centerline 

when spin is absent. In the absence of spin, even if 

the linear creepage ratios are combined, all values  

of the total heat flux, temperature increase, contact 

pressure, and shear traction are maximized in the 

lateral direction when they are in the centerline and 

are symmetrical with respect to this line. Herein, the 

solid line indicates the results based on 
x

 when 


y

= 0.001, whereas the dotted line indicates the results 

based on 
y

 when 
x

= 0.001. As a result of the increase 

in the thermal deformation effect with the increase  

in the creepage ratio, the contact region decreased, 

whereas the maximum contact pressure and maximum 

shear traction increased. When the creepage ratio was 

relatively low, the contact pressure changed significantly  

only at the edge of the contact, particularly near the 

trailing edge, and the amount of change was not 

significant. By contrast, when one of the linear creepage 

ratios exceeded 0.003, a contact pressure greater than 

the maximum Hertzian contact pressure occurred, and 

the contact pressure indicated a significant change 
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over the total contact area, resulting in a completely 

different contact pressure distribution than the Hertzian 

contact pressure distribution. The shear traction curve 

along the centerline shows a distinct difference between 

the stick and slip regions. In the slip region, the shear 

traction curve is parabolic, which is the same as the 

shape of the contact pressure curve. In the stick region, 

the shear traction curve is a polynomial of the third 

or higher order. The value of shear traction was 

extremely low near the leading edge and increased 

gradually as it shifted away from the leading edge; 

meanwhile, it increased rapidly as it approached the 

maximum value. As the creepage ratio increased, the 

maximum value of shear traction increased, and the 

change in the slope of the shear traction curve in the 

stick region decreased. In both the contact pressure 

and shear traction curves, the change due to creep in 

the rolling direction was slightly greater than the effect 

of creep in the lateral direction. Unlike the case in 

which only linear creeps were combined, when spin 

was added, a representative line such as a centerline 

could not be defined; therefore, a contour map must 

be used to verify the effect of spin. Figure 12 presents 

a contour map of the analysis results involving the  

 

Fig. 11 Dimensionless contact pressure and dimensionless shear traction for combinations of linear creep centerline without spin. 

 

Fig. 12 (a–c) Contour maps of dimensionless contact pressure and (d–f) dimensionless shear traction. Parameters were set to 

(a, d) x  = y  = 0,   = −0.01; (b, e) x  = y  = 0,   = −0.03; (c, f) x  = y  = 0.001,   = −0.03. The arrows denote directions and 

relative magnitudes of shear traction. 
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presence of spin. Figures 12(a)–12(c) show the dimen-

sionless contact pressure, whereas Figs. 12(d)–12(f) 

show the dimensionless shear traction. The parameter  

set of the creepage ratios is indicated in the figure 

caption. Figures 12(a) and 12(d) show the low pure 

spins, whereas Figs. 12(b) and 12(e) show the high pure 

spins; Figs. 12(c) and 12(f) show the combined case  

of creeps in all directions. In the case of pure spin   

(Figs. 12(a), 12(b), 12(d), and 12(e)), the contact pressure  

and shear traction were not at their maxima at the 

centerline, but a symmetrical distribution was obtained 

based on the centerline. Symmetry was ruined when 

both the linear creep and spin appeared simultaneously 

(Figs. 12(c) and 12(f)). In this case, owing to the addition 

of the linear creep, the slip region increased more than 

that of the pure slip state, and the thermal deformation 

effect increased. The fact that thermal deformation by 

spin significantly affects the change in the contact and 

slip regions, as investigated based on the linear creep, 

is shown in Fig. 12. 

4.3 Velocity and conformity effect 

Because the heat flux is the product of shear traction 

and sliding speed, even if the slip and friction are 

high, the heat flux may not be sufficient to induce a 

thermal deformation effect under slow sliding speeds. 

Because the sliding speed and rolling speed are 

proportional, the rolling speed is an important factor 

that significant affects thermal deformation. In addition 

to the rolling speed, the shape of the two contact 

bodies significantly affects thermal deformation.   

In most mechanical components, the radius of the 

rolling direction is often uncontrollable because of 

certain limitations in terms of size. Meanwhile, in the 

lateral direction, a whole circle is not necessitated, and 

the shape of the circle is only required at the contacting 

part; therefore, the radius can be used as a design 

factor. Hence, we analyzed the results by performing 

an analysis based on the rolling speed for three 

conditions: non-conformal, flat, and conformal, with 

different lateral radii. For each condition, the upper  

body was a sphere with   
,2 ,2x y

R R R  30 mm. In  

the non-conformal condition, the upper and lower 

bodies were represented as the abovementioned 

sphere; in the other conditions, the lower body was 

represented as an ellipsoid with 
,1x

R 30 mm only in  

the rolling direction. The lateral radius of the lower 

body was  ,1yR  in the flat condition and 
,1y

R  

−32 mm in the conformal condition. The radius is 

expressed as a negative value in the conformal 

condition because the curvature direction is opposite 

to that in the non-conformal condition. The equivalent 

radius in the lateral direction of the two bodies can  

be calculated as   
,1 ,2

1 / 1 / 1 /
y y y

R R R  and 
y

R  = 15,  

30, and 165 mm for the non-conformal, flat, and 

conformal conditions, respectively. When the contact 

between two bodies becomes extremely conformal, 

the influence coefficients for the non-conformal 

condition is no longer applicable. Nevertheless, the 

analysis results for the conformal condition were 

derived using the same influence coefficients as those 

for the non-conformal condition, as the contact in the 

rolling direction remained non-conformal. If extreme 

conformal contact does not form in both directions, 

then this approach will be effective; in fact, it is  

typically used in contact analyses, such as that for 

rolling bearings. Figure 13 shows the total frictional 

heat 
F

Q , maximum temperature increase, stick area 

and contact area ratios, and ratio of maximum pressure 

increase for the three 
y

R  conditions based on the 

rolling speed. In this case, unlike the assumption of a 

constant creep, as in Sections 4.1 and 4.2, it is assumed 

that the frictional force in the rolling direction 
x

F  is 

constant at 25 N and the friction force in the lateral 

direction 
y

F  does not exist. The total frictional heat 

increases with the rolling speed but exhibits a curve 

with a decreasing slope, and the order of samples with 

the highest total frictional heat at the same rolling 

speed, from low to high, is conformal, flat, and non- 

conformal; this implies that as 
y

R  increases, the total 

frictional heat increases. The maximum temperature 

increase was almost linearly proportional to the rolling 

speed and decreased as 
y

R  increased, as opposed to 

the total frictional heat sequence. This is because 

when 
y

R  was large, heat flux was generated in a large 

area, whereas when 
y

R  was small, heat flux was 

generated in a narrow area, such that when 
y

R  is 

small, the concentration of heat flux in the local 

area will be larger. As shown in Figs. 13(a) and 13(b), 

a small 
y

R  is advantageous in terms of the total  

frictional heat, whereas a large 
y

R  is advantageous in 

terms of the local temperature increase. In Fig. 13(c),  
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the contact area ratio 
c

 is the ratio of the Hertzian 

contact area 
c0

A  to the real contact area 
c

A  after 

thermal deformation, and the stick area ratio 
st

 is the 

ratio 
st

A  to 
c

A . As the rolling speed increased, 
c

 

decreased, and 
st

 increased owing to the greater 

thermal deformation effect. A larger 
y

R  resulted in a 

higher decrease rate in 
c

 and a higher increase rate 

in 
st

 based on the rolling speed; this is because a 

larger 
y

R  resulted in a more even thermal deformation 

in the contact area. Finally, we analyzed the maximum  

contact pressure ratio,  
max 0

/
p

p p  based on the  

rolling speed. The rolling speed and 
p

 indicated an 

almost proportional relationship, i.e., the larger the 


y

R , the higher was the contact area reduction ratio; 

therefore, the slope was smaller. A larger 
y

R  under 

the same load resulted in a lower maximum contact 

pressure but a greater thermal deformation effect of 

the maximum contact pressure. Therefore, 
y

R  must 

be analyzed sufficiently in terms of design at a high 

rolling speed. 

5 Conclusions 

In this study, a numerical analysis method that 

considers the thermal effect in steady-state rolling 

contact including creep was proposed based on an 

SAM. The method was validated and demonstrated 

consistency with results of previous solutions. 

Simulation results for heat flux, temperature increase, 

contact pressure, and shear traction were obtained 

and compared under different rolling and creep 

conditions. In rolling contact including creep, the 

contact and slip areas reduced owing to the thermal 

effect. Furthermore, the thermal effect induced an 

increase in contact pressure and shear traction in 

localized areas, and the position where slip commenced 

shifted toward the trailing edge. As creep increased, 

the thermal effect became more prominent, resulting 

in a significant change where the distributions of 

heat flux, temperature increase, contact pressure, and 

shear traction were locally concentrated. Quantitative 

investigations revealed that rolling speed significantly 

affected the thermal effect. When two objects were in 

a more conformal contact, the total frictional heat 

increased, whereas the contact increased, resulting in 

a lower local pressure and shear traction, and an 

increase in the maximum temperature owing to 

thermal effects. The proposed method can accurately 

analyze the behavior of an interface in rolling contact 

under severe conditions. In further studies, we will 

improve this model by considering more accurate 

 

Fig. 13 Analysis results for three yR  conditions based on rolling speed: (a) total frictional heat, (b) maximum temperature increase, 

(c) stick area and contact area ratios, and (d) maximum contact pressure ratio. 
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heat partitioning effects in dry conditions, thermal 

deformation effects in lubrication conditions through 

a combination with thermal EHL analysis in the 

lubrication condition, and transient effects. Finally, 

we will apply our findings to rolling bearings, 

railwheels, etc. 
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