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The behaviour of structures subjected to progressive collapse is typically investigated by introducing column-

removing scenarios. Previous experimental results show that large-deformation performances of reinforced concrete

(RC) assemblages under a middle column removal scenario (MCRS) involve discontinuity due to bar slip and fracture

near the joint interfaces. To consider the effects of the discontinuity on structural behaviour, a component-based

joint model is introduced into macromodel-based finite-element analysis (macro-FEA), in which beams are modelled

as fibre elements. The joint model consists of a series of non-linear springs, each of which represents a load

transfer path from adjoining members to a joint. The calibration procedures of spring properties are illustrated

systematically. In particular, a macro-bar stress–slip model is developed to consider the effects of large post-yield

tensile strains and finite embedment lengths on the bar stress–slip relationship. Comparisons of simulated and

observed responses for a series of RC assemblages indicate that macro-FEA incorporating the joint model is a

practical approach to simulate the essential structural behaviour of RC assemblages under a MCRS, including

catenary action. Finally, the macro numerical model is used to investigate the effects of boundary conditions, bar

curtailment and beam depth on the structural behaviour of RC assemblages. The results suggest that beam depth

affects the fixed-end rotation contributed by bar slip, and further significantly influences the development of

catenary action.

Notation
Ab bar cross-sectional area

A9s compressive bar area

a9s distance from extreme compression concrete fibre to

centroid of compression reinforcement at joint

interfaces

b width of beam

Cc compressive force contributed by concrete

Cs compressive force contributed by steel

reinforcement

cN neutral-axis depth of beam

db bar diameter

dj depth of joint panel

Eh hardening modulus of reinforcing bars

Es elastic modulus of reinforcing bars

Fmt force equal to (Fyt + Fut)/2

Fs forces in two diagonal springs representing shear

panel behaviour

Fut force of springs kbb and kbt corresponding to the

smaller capacity based on bar fracture or pullout

Fyt force of springs kbb and kbt corresponding to the bar

yielding in tension

f 9c compressive strength of concrete

fs applied axial stress at loaded end of bar

fse maximum elastic bar stress applied in the available

elastic length le under pulling force

fu ultimate tensile strength of reinforcing bars

fy yield strength of reinforcing bars

f 9y artificial yield strength to make bilinear constitutive

models of reinforcement have the same strain

energy as that from material tests up to bar fracture

Ka equivalent axial restraint stiffness at two-bay beam

ends

Kr equivalent rotational restraint stiffness at two-bay

beam ends

kbb bar force–slip springs along the centroid of the top

reinforcement layers at a joint interface

kbs interface spring at a joint interface

kbt bar force–slip springs along the centroid of the

bottom reinforcement layers at a joint interface

ks joint panel spring representing shear panel

behaviour

le available elastic length (¼ lembd – lyrq)

led elastic development length for reducing yield

strength to zero (led > lerq)

lembd bar embedement length

lerq required elastic length for reducing maximum

elastic stress to zero
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lj diagonal length of joint panel

ls straight embedment length of anchored bars with

hooks

lyrq required inelastic length for reducing maximum

inelastic stress to yield strength

Nb axial compression of beams corresponding to

extreme compression concrete fibre reaching the

ultimate strain simultaneously with tension

reinforcement attaining the yield strain

Nu maximum axial compression of beams

s slip of bars at the joint interface (i.e. deformation of

bar force–slip springs)

s0 slip at unloaded end of reinforcing bar

s1 slip corresponding to ultimate bond stress in the

local bond–slip model proposed by Eligehausen et

al. (1983)

sext bar extension from zero stress point to a joint

interface

T axial tension of tensile reinforcing bars

� ratio of equivalent rectangular stress block depth to

neutral-axis depth

ª shear distortion of joint panel

˜ elongation and contraction of diagonal springs in

joint panel

�cu ultimate compressive strain of concrete

�end strain at centre of a continuous bar

�h hardening strain of reinforcing bars

�s strain at loaded end of a bar

�9scr strain of compression bars corresponding to

concrete attaining ultimate compressive strain

�u strain corresponding to ultimate tensile strength of

reinforcing bars

�y yield strain of reinforcing bars

Ł angle of diagonal line of a joint panel with respect

to the horizontal

�e elastic bond stress at the free end of a bar with

inadequate embedment length

�EC elastic compressive bond strength around a bar

�ET elastic tensile bond strength around a bar

�p shear stress along the perimeters of a joint panel

�u ultimate bond stress in the local bond–slip model

proposed by Eligehausen et al. (1983)

�YC inelastic compressive bond strength around a bar

�YT inelastic tensile bond strength around a bar

Introduction
With increasing threat of terrorist attacks, the progressive collapse

of structures under extreme loading is a concern for government

agencies. The alternate load path (ALP) approach recommended

in design guidelines (DoD, 2010; GSA, 2003) requires checks on

whether the remaining structure can bridge over missing columns.

Furthermore, non-linear static analysis can be used to evaluate

progressive collapse capacity by way of dynamic load amplifica-

tion factors (DoD, 2010) or energy-based approaches (Dusenberry

and Hamburger, 2006; Izzuddin et al., 2008).

To find out the potential ALPs of reinforced concrete (RC)

structures against progressive collapse, tests have been conducted

on RC assemblages under a middle column removal scenario

(MCRS) (Sadek et al., 2011; Yi et al., 2008; Yu and Tan, 2013a,

2013b). The experimental results show that with adequate lateral

restraints, ALPs transit from a flexural mechanism at small

deformations to catenary action at large deformations. Moreover,

catenary action can provide larger structural resistance but is

significantly affected by the rotation capacities and the failures of

beam–column connections. For example, at the end of catenary

action stage in the tests (Yu and Tan, 2013b), wide cracking and

bar fracture occurred at or near the middle joint and end-column

stub (ECS) interfaces, as shown in Figure 1(a). For the bars lap-

spliced in the middle joint region, local failure occurred at the

free ends of the lap-spliced bars, as shown in Figure 1(b). Those

failures caused discontinuous zones in the development of

catenary action. Therefore, it is necessary to extract the joints

and to model them as independent elements when analysing

structural behaviour at large deformations.

Over recent years, some numerical studies (Cesare and Archilla,

2006; Grierson et al., 2005) have been dedicated to assessing

global structural behaviour under progressive collapse by introdu-

cing simplified assumptions for modelling beams and columns,

without considering the effects of joints. On the other hand, high-

fidelity analyses (Hansen et al., 2006; Luccioni et al., 2004) were

able to vividly demonstrate the failure process of structures

subjected to abnormal loading, but were too computationally

demanding and not practical for engineers. Recently, macromodel-

based finite-element analysis (macro-FEA) has emerged as an

effective approach to analyse structural behaviour under a MCRS,

with considering the effects of joint failures (Bao et al., 2008; Yu

and Tan, 2013a). In macro-FEA, beams and columns are modelled

with fibre elements, and joints with a series of springs, in so-called

component-based joint models. However, there is a lack of careful

calibration of the springs to consider the character of load transfer

under a MCRS.

This paper attempts to make macro-FEA a practical and feasible

approach for analysing the structural responses of RC structures

under a MCRS. To this end, component-based joint models are

modified and employed in macro-FEA using the software

Engineer’s Studio (Forum8, 2008) to conduct non-linear static

analysis of RC assemblages. The validity of macro-FEA is

evaluated by experimental results. The procedures to calibrate

each component (or spring) in the joint model are provided, with

special attention to the tensile bar force–slip spring, which

governs bar fracture and the ensuing discontinuity in the struc-

tural response. Accordingly, a macro-bar stress–slip model is

developed to consider the effects of large post-yield tensile strains

and finite embedment lengths of bars on the bar stress–slip

relationship. Finally, the validated numerical model is used to

investigate the effects of boundary conditions, bar curtailment

and beam depth on the structural behaviour of RC assemblages

under a MCRS.
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Description of component-based joint model
The principle of the component-based joint model is to decom-

pose the complex mechanisms of a joint into a series of simple

components, each of which represents a unique load transfer path

and can be characterised by an equivalent uniaxial non-linear

spring (Jaspart, 2000). To consider the contribution of joint panel

distortion and bar slip at joint interfaces to RC structure

deformations, the idea of modelling RC joints as an assembly of

springs has been employed in seismic research (Lowes and

Altoontash, 2003; Mitra and Lowes, 2007; Youssef and Ghobarah,

2001) and, more recently, in progressive collapse (Bao et al.,

2008; Yu and Tan, 2013a).

Configurations of RC joints are regular, and load transfer paths

from adjoining members to joints are limited. Therefore, the

models proposed by Youssef and Ghobarah (2001) and Lowes

and Altoontash (2003) are generic to cast in situ RC joints.

Conceptually similar to these models, a joint model was modified

to simulate structural behaviour under a MCRS, as shown in

Figure 2. As no failure occurs at the connections of the column–

joint interfaces, they are assumed rigid. The following three types

of springs are used in this joint model.

j Joint panel spring (ks). The joint panel is characterised by

four pins and four rigid members enclosing the joint, as

shown in Figure 2. Two diagonal springs represent the ability

to resist shear distortion in the joint panel. Although shear

End
column

stub

Middle
joint

(a)

End
column

stub

Middle
joint

(b)

Figure 1. Failure modes of one-bay beam in RC assemblages:

(a) with continuous bottom bars at the middle joint; (b) with

lap-spliced bottom bars at the middle joint

Column
Concrete spring

Rebar spring

kbt

ks
ks

kbt

kbs kbs

kbb

kbb

Beam

Rigid
member

Concrete spring

Rebar spring
Column

Pin

Shear springs

Beam

Zero-length
interface springs

Figure 2. Proposed component-based joint model
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distortion is not appreciable for interior joints under a MCRS

(Yu and Tan, 2013b), it could be dominant for exterior joints.

j Joint interface spring (kbs). kbs represents the shear transferred

from the adjoining beams to the joint panel across the

cracked joint interfaces. Conventional frame members have

adequate shear capacity to preclude shear failure, and no

interface shear failure is observed in the assemblage tests.

Therefore, kbs is taken as an elastic linear spring with a large

stiffness as suggested by Lowes and Altoontash (2003).

j Bar force–slip springs (kbb and kbt). The pair of springs kbb

and kbt represent the bending moment combined with the

beam axial force transferred into the joint panel. Each spring

should include the contribution from both concrete and

reinforcement. However, the tensile contribution from

concrete is typically ignored. In assemblage tests (Yu and

Tan, 2013a, 2013b), it was found that flexural and axial

action were most dominant, and the tests were eventually

stopped due to the fracture of kbb and kbt at some joint

interfaces. Therefore, the tensile bar force–slip relationship is

the most critical in a MCRS.

The load transfer mechanisms of RC assemblages under a MCRS

show that with increasing beam deflection, kbt at the middle joint

will transition from a compressive spring to a tensile spring,

whereas kbb always works as a tensile spring. Therefore, kbt and

kbb are specified at the centroid of reinforcement at the joint

interfaces in this paper. However, previous research either put kbt

and kbb at the four corners of a joint panel (Lowes and

Altoontash, 2003) or located them at the centroid of beam

flexural compression and tension zones respectively (Mitra and

Lowes, 2007; Youssef and Ghobarah, 2001).

In this paper, only calibration of the envelopes of the spring

force–deformation relationships is considered. However, detailed

information about unloading and reloading of the springs can be

found in the help document of Engineer’s Studio (Forum8, 2008).

Calibration of spring components in joint
models

Shear panel spring

Based on the modified compression field theory (Vecchio and

Collins, 1986), the relationship between shear stress �p in a joint

panel and shear distortion ª can be obtained using the program

Membrane 2000 (Bentz, 2000). Then the relationship �p–ª can be

converted into the force–deformation relationship of two diagonal

springs. The force in each diagonal spring Fs can be calculated

through force equilibrium at a pin, as shown in Figure 3(a), from

Fs ¼ �pdjlj=21:

where dj and lj are the joint depth and the diagonal length of the

joint panel respectively.

Since the stiffnesses of the two springs are equal due to

symmetry, elongation of one spring equals contraction of the

other. According to the geometric relationship shown in Figure

3(a), shear distortion is given by Youssef and Ghobarah (2001) as

ª ¼ 2˜=lj sin 2Ł2:

where Ł is the angle of the diagonal line of the joint with respect

to the horizontal direction.

Due to symmetry, only the positive branch of the shear panel

spring is shown in Figure 3(b). The non-linear force–deformation

relationship is then simplified into a multi-linear relationship.

The critical points to determine the multi-linear model are located

at the intersections of lines from linear regression at each

segment (Table 1).

Tensile bar force–slip spring

Assuming uniform bond, stress in the elastic and plastic part of

an anchored bar is efficient in determining the bar force–slip

relationship at the loaded end (Alsiwat and Saatcioglu, 1992;

(a)

τp b jh d /2

dj joint depth�
τp

τp b jh d /2

τp j jb d /2

τp j jb d /2

τp τp

τp

Fs
Fs

θ

l j hb

bj

Force equilibrium

∆
/2

Original shape of
panel

∆
/2

∆
/2

∆
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θ

l j
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γ2
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Figure 3. Shear panel spring ks: (a) conversion of shear panel;

(b) envelope of ks (symmetric)
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Lowes and Altoontash, 2003). The model of Alsiwat and

Saatcioglu assumes that the reinforcement constitutive model has

no effect on inelastic bond strength, but Viawanthanatepa et al.

(1979) pointed out that the selection of reinforcement constitutive

models affects the evaluation of inelastic bond stress. The model

of Lowes and Altoontash assumes that the embedment length is

adequate so that zero-slip–stress conditions can be achieved at a

point far away from the loaded end. However, these two models

have a deficiency under a MCRS, in which large inelastic strains

develop prior to bar fracture and zero-slip–stress conditions may

not be satisfied due to the finite embedment lengths of bars

extending from beams to joints. To consider the effects of high

post-yield stress and finite embedment length, a simplified

macro-bar stress–slip model is proposed with the following

assumptions.

j Assumption 1: the distribution of bond stress within an elastic

or inelastic part of a reinforcing bar remains uniform.

j Assumption 2: bar slip at the joint interfaces equals the bar

extension over the embedment length plus the slip at the free

end if any.

j Assumption 3: the constitutive model of the reinforcement is

bilinear.

Reinforcing bars are typically continuous or lap-spliced in

interior joints and anchored in exterior joints. Differences in the

boundary conditions of continuous and anchored bars result in

different strain and slip distributions over the embedment length

and failure modes. Therefore, the two cases are introduced

separately.

Slips of continuous bars at joint interfaces

Based on assumption 1, the distribution of bond stress � and bar

stress f of a continuous bar under applied axial tensile stress fs at

the interior joint interfaces is illustrated in Figure 4. Due to

symmetry, one-half of the joint width is regarded as the bar

embedment length lembd. With constant inelastic bond strength

�YT, the bar stress linearly decreases from fs to the yield strength

fy over the inelastic length lyrq. Similarly, with constant elastic

bond strength �ET, the bar stress f is linearly distributed over the

elastic length le. Even if the bar is stressed up to the centre, the

associated slip is still zero due to symmetry. As a result, the slip

s at each joint interface is solely determined by the bar extension

sext according to assumption 2

s ¼ sext ¼

ðl

0

�(x) dx
3:

where �(x) is the strain at position x; x ¼ 0 is defined at a point

with zero-slip (for an interior joint with two equal-span beams at

both sides, the point is the joint centre) and l is the smaller of the

embedment length lembd and the stressed length of the bar.

According to assumptions 1 and 3, it is derived that the bar strain

is linearly distributed at the elastic and inelastic parts as well.

Depending on the stress state and the embedment length lembd, the

strain profiles over lembd can be divided into five categories, as

shown in Figure 5. Due to symmetry, only one-half of the

continuous bar is shown.

When the applied stress fs is less than the yield strength fy, as

shown in Figures 5(a) and 5(b), the required elastic length lerq can

be determined from force equilibrium

f sAb ¼ �ET�dblerq4:

where Ab is the nominal area of the bar and db is the bar

diameter.

Therefore

lerq ¼ f sdb=4�ET when f s < f y5:

When fs attains fy, lerq becomes the elastic development length led

(i.e. led ¼ f ydb=4�ET). When fs exceeds fy, part of the bar is

stressed inelastically with �YT mobilised over the required

inelastic length lyrq, and the strain profiles are shown in Figures

5(c) and 5(d). Therefore

Critical point Deformation: mm Force: kN

A 0.046 71.17

B 1.230 266.13

C 1.660 266.13

D 3.570 139.87

Table 1. Properties of shear panels in RC sub-assemblages

Bond stress over
the bar

A fb s A fb s

x

x

fsfy
f

fyfs
Bar stress

Bond stress τ lembd

τYT
τET

Centre
le

f fs y�

lyrq

f fs y�

Figure 4. Bond and bar stress distribution of continuous bars

under axial tension
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f sAb ¼ �YT�dblyrq þ f yAb6:

Thus

lyrq ¼ ( f s � f y)db=4�YT when f s . f y7:

Due to the finite dimensions of the joint, Figures 5(b) and 5(d)

show that the available elastic length le, in which �ET is allowed

to develop, is shorter than lerq. Moreover, lyrq may even exceed

lembd, as shown in Figure 5(e).

After the strain distribution over lembd is determined, the slip due

to bar extension is calculated using Equation 3. For example, the

slip in category 4 shown in Figure 5(d) is calculated as

sext ¼
(�end þ �y)le

2
þ
(�y þ �s)lyrq

28:

where lyrq is given by Equation 7 and le ¼ lembd � lyrq. Based on

the bilinear constitutive model of reinforcement, the strain �s at

the loaded end is

�s ¼ �y þ �h ¼
f y

Es

þ
f s � f y

Eh9:

and �end at the centre of the continuous bar can be determined

using a similar triangle

�end ¼ (led � le)�y=led10:

Substituting Equations 7, 9 and 10 into Equation 8 establishes the

bar stress–slip relationship on the conditions that fs . fy and

led + lyrq . lembd but lyrq < lembd.

Slip of anchored bars at joint interfaces

If the embedment length lembd of an anchored bar is adequate, the

bar always exhibits a zero-slip–stress point, as shown in Figure

5(a) or 5(c). Otherwise, the bar can be stressed up to the free end

(i.e. the physical cut-off point). In this case, the slip at the loaded

end should include the bar extension sext and the free end slip s0

(i.e. s ¼ sext þ s0). Accordingly, the strain profile similar to the

one shown in Figure 5(b) or 5(d) should be modified by the faint

dashed lines to ensure zero-strain at the free end.

Compared with sext, s0 is either zero or very small, but it is an

indicator of pullout failure. Similar to the model presented by

Alsiwat and Saatcioglu (1992), the local bond–slip model of

Eligehausen et al. (1983) is used to obtain s0

s0 ¼ s1(�e=�u)
2.511:

where the ultimate bond stress �u and the corresponding slip s1

are computed as

�u ¼ (20� db=4)( f 9c=30)
0.512:

l le embd�

lerq

εs(a)

lerq

l le embd�

εend

εs(b)

εs

lembd

l lerq ed� lyrq

εyle

(c)

le lyrq

εend

εyl lerq ed�

εs(d)

lyrq

lembd

εs

εy

εend

(e)

Figure 5. Categories of strain profiles under axial tension:

(a) category 1, fs < fy and lerq < lembd; (b) category 2, fs < fy and

lerq . lembd; (c) category 3, fs . fy and led + lyrq < lembd; (d) category

4, fs . fy and led + lyrq . lembd but lyrq < lembd; (e) category 5, fs . fy

and lyrq . lembd
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s1 ¼ (30= f 9c)
0.513:

where f 9c is concrete compressive strength (MPa) and �e in

Equation 11 is the elastic bond stress at the free end of a bar,

given by

�e ¼
0 if le . lerq
f sedb=4le if le < lerq

�

14:

where fse is the maximum elastic bar stress (< fy) applied in the

available elastic length le. For category 2 shown in Figure 5(b),

le ¼ lembd, and for category 4 shown in Figure 5(d), le ¼ lembd �

lyrq. Equation 14 suggests that �e will be mobilised if le is shorter

than the required elastic length lerq. If �e reaches �u (i.e. s0 > s1),

the bar will fail by pullout. Note that if le ¼ 0, �e will become

infinitely large. Therefore, an anchored bar can never develop the

strain profile shown in Figure 5(e).

In practice, it is common to use hooks for anchorage of

reinforcing bars in exterior RC joints. Filippou et al. (1983)

suggested that a hooked bar can be modelled as a straight bar

with an equivalent length of leq ¼ ls þ 5db, where ls is the

straight embedment length. This recommendation is adopted in

the proposed model.

Figure 6 shows the procedure to obtain tensile bar stress (force)–

slip relationships. Note that it is unnecessary for a bar in the joint

to go through each strain category shown in Figure 5 in a

sequential manner. Following the above procedure, the bar force–

slip relationship is characterised by a curve, which is then

simplified into a multi-linear relationship. As shown in Figure 7,

Fyt corresponds to the bar yielding in tension, Fut denotes the

smaller capacity based on bar fracture or pullout and

Fmt ¼ (Fyt + Fut)/2. The compressive branch of bar force–slip

springs will be introduced later.

Determination of parameters of the macro-bar stress–

slip model

The proposed macro-bar stress–slip model was verified by

comparing the results with those predicted using a local bond–

slip model (Yu and Tan, 2012). In implementing the macromodel,

the elastic bond strength �ET is taken as 1.8( f 9c)
0.5: Moreover,

special attention should be given to the bar hardening modulus Eh

and the inelastic bond strength �YT, as they significantly affect the

ultimate slip. To capture bar fracture, Eh is calculated by equating

the area enveloped by the original and the idealised bilinear bar

stress–strain curves. This suggests that, at bar fracture, the

bilinear model can absorb the same amount of strain energy as

the original stress–strain relationship. To this end, an artificial

yield strength f 9y is introduced, as indicated in Figure 8.

Accordingly, Eh equals Eh ¼ ( f u � f 9y)=(�u � f 9y=Es), where fu

and �u are the ultimate tensile strength and strain respectively. For

typical reinforcement with fu /fy less than 1.25, f 9y approximately

Input parameters: (1) geometric: , ;
(2) material: , , , , ; (3) bond strength: ,

l d

f f E E f
embd b

y u s h c ET YT� τ τ

Apply stress at loaded end of the barfs

Stress distribution according
to boundary conditions

Strain profiles over lembd

To determine bar extension sext

Any free end
slip ?s0

Yes
Slip s s s� �ext 0

No

Slip s s� ext s s0 1?�

Yes

Pullout failure
END

No

f fs u?�

Increase the loaded
stress fs

No

Yes

Bar fracture
END

Figure 6. Procedure to determine tensile bar stress–slip

relationship ( fu ¼ ultimate tensile strength of bar)

Force

Fut

Fmt

Fyt

sc3 sc2 sc1

syt smt sut

Fc1

Fc2
Fc3

F F Fmt yt ut( )/2� �

Deformation

Figure 7. Bar force–slip for springs kbb and kbt
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equals fy. With this bilinear model, �YT should be capped to

0.3( f 9c)
0.5:

Compressive bar force–slip spring

As illustrated in Figure 2, the compressive force at the joint

interfaces is made up of contributions from both the concrete

(Cc) and the reinforcement (Cs). Both Cc and Cs are affected by

the variation of the neutral-axis depth in the loading history. To

determine the compressive bar force–slip relationship prior to

structural analysis, the viable approach is to assume a constant

neutral-axis depth and Cc linearly increasing with Cs (Lowes and

Altoontash, 2003). However, the latter assumption overestimates

Cc and makes the compressive spring extremely stiff, as concrete

has limited compressive strength. Therefore, an alternative ap-

proach is needed.

At the joint interfaces of RC assemblages (Su et al., 2009; Yu

and Tan, 2013b), the ratio of Nu (the maximum axial compres-

sion) and Nb is 0.4–1.0; Nb is obtained from cross-sectional

analysis at balanced failure, in which the extreme compression

concrete fibre reaches the ultimate strain �cu (say, 0.003) simul-

taneously with tension reinforcement attaining the yield strain �y.

Span-to-depth ratios of typical beams are in the range 8–12,

becoming 16–24 in a MCRS. Within this range, Nu is smaller

than 0.7Nb (Yu, 2012). Therefore, the neutral-axis depth cN

corresponding to Nu ¼ 0.7Nb allows typical beams to achieve

compressive arch action (CAA) capacity. The strain and stress

distribution at this state is shown in Figure 9.

0.7Nb ¼ Cs þ Cc � T ¼ f 9scrA9s þ 0.85 f 9cb�cN � f yAs15:

where f 9scr ¼ Es�9scr ¼ Es(1� a9s=cN)�cu, A9s is the compressive

bar area, b is the beam width and � is the ratio of the equivalent

rectangular stress block depth to the neutral-axis depth, as defined

in ACI 318-05 (ACI, 2005).

The neutral-axis depth cN from Equation 15 is used to calculate

the ultimate compressive force of concrete (Cc ¼ 0.85 f 9cb�cN).

Before the strain of compression bars reaches �9scr (corresponding

to concrete attaining �cu), Cc is linearly linked to the compression

bar strain �9s: Therefore, the compressive spring force Fc is given

by

Fc ¼ Cs þ Cc ¼ f 9sA9s þ (�9s=�9scr)0.85 f 9cb�cN16:

When �9s exceeds �9scr, Cc in Equation 16 is constant as

0.85 f 9cb�cN: The constitutive model of compression reinforce-

ment is bilinear, the same as that of tension reinforcement.

Therefore, Fc is a function of �9s:

As concrete excels at sustaining compression, the free end slip of

compressive bars can be ignored and the loaded end slip solely

depends on the bar contraction. The compressive elastic (�EC) and

inelastic (�YC) bond strengths are taken as 2.2( f 9c)
0.5 and

3.6( f 9c)
0.5 respectively (Lowes and Altoontash, 2003). Similar to

the derivation for tensile springs, the compressive bar stress–slip

relationship is obtained by simply replacing �ET and �YT with �EC
and �YC respectively, and is then converted to the force–slip

relationship using Equation 16. Note that concrete is unable to

follow compression reinforcement to a large strain. Moreover,

compressive springs change into tensile springs when catenary

action kicks in, and eventually fail in tension. Therefore, for

compressive springs, the ultimate force is not a critical parameter,

and a strain of 10�cu is tentatively used to determine the ultimate

force and deformation. Finally, it is natural to locate the compres-

sive spring at the centroid of compression reinforcement due to

the transition of compression to tension (contributed by Cs only)

in the loading history.

According to Equation 16, Fc1 and Fc2 denote the smaller and the

Stress

fu

f �y

fy

Es

ε�y εu

Strain

Eh

Figure 8. Constitutive model of steel reinforcement

h
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Figure 9. Stress and strain distribution at beam sections
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larger capacity corresponding to concrete attaining a crushing

strain �cu and compression reinforcement reaching the yield strain

respectively, as shown in Figure 7. Fc3 is the capacity at the strain

of 10�cu.

Validation of component-based joint model

Overall modelling parameters

The joint model is validated by comparisons of simulated and

observed responses for RC assemblages S3, S4, S5 and S6 under

a MCRS (Yu and Tan, 2013b). Each specimen consisted of one

middle joint, two single-bay beams and two ECSs, as shown in

Figure 1. The four specimens had the same dimensions but

different reinforcement detailing. The span of each single-bay

beam was 2750 mm. The cross-section was 250 mm depth by

150 mm width for beams, 250 mm square for the middle column

and 400 mm by 450 mm for the ECSs. The top and bottom

reinforcements in the joint and ECS interfaces of S4 were

3˘13 mm and 2˘13 mm respectively. In comparison to S4, the

corresponding bottom reinforcement in S3 was changed to

2˘10 mm, the bottom one in S5 to 3˘13 mm, and the top one in

S6 to 3˘16 mm. For all four specimens, one top bar was cut off

at 1000 mm away from the middle joint and ECS interfaces.

Stirrups with two legs of ˘6 mm were uniformly distributed

throughout the beams with a spacing of 100 mm. For more

information on specimen detailing, the reader is referred to the

work of Yu and Tan (2013b). The compressive strength of

concrete was 38.2 MPa and the material properties of the steel

reinforcements are shown in Table 2. In calibrating the bar force–

slip springs, the hardening modulus Eh was 1032, 929 and

753 MPa for ˘10, ˘13 and ˘16 mm respectively.

The joint model was incorporated into macro-FEA using En-

gineer’s Studio software (Forum8, 2008), as shown in Figure 10.

The beams near the joint and ECS interfaces were modelled with

second-order fibre elements and the rest of beams with first-order

fibre elements. Two ECSs were modelled with elastic beam

elements. Besides the middle joint, the ECS interfaces were also

modelled with an assembly of spring elements. Non-linear static

analysis was conducted by applying a displacement at the top of

the middle joint until the specimen failed.

The constitutive models for concrete and reinforcement devel-

oped by Maekawa et al. (2003), namely COM3, are were

employed for the beams. The compressive branch of the concrete

model was an elasto-plastic fracture model. As the beam had

large cracks near the joint interfaces (Yu and Tan, 2013b), the

confinement effect from stirrups was not considered. In COM3

models, the concrete between cracks can contribute tension due

to bond, and average tensile stress–strain relationships are used

for both concrete and steel reinforcement with an assumption of

‘perfect bond’. After the tensile strength, concrete has a descend-

ing tensile branch. The average tensile yield stress of reinforcing

bars depends on the effective reinforcement ratio. For bars in

compression, buckling was not considered.

Similar to the tests, the top middle node in the joint was

rotationally restrained. The horizontal restraints (namely, Top-RW,

Btm-RW, Top-AF and Btm-AF, as indicated in Figure 10) were

modelled using linear spring elements accounting for connection

Bar

diameter:

mm

Yield

strength

fy: MPa

Elastic

modulus

Es: MPa

Tensile

strength

fu: MPa

Ultimate

strain

�u: %

6 349 199 177 459 —

10 511 211 020 622 11.00

13 494 185 873 593 10.92

16 513 184 423 612 13.43

Table 2. Material properties of steel reinforcement

Pin–pin connection

Top-RW

Btm-RW

Elastic element
End column
stub

Beam

Zero-length
springs

Fibre-based beam
element (first-order)

Pin node

kbt

kbs

kbb

Shear panel
springs ( )ks Rigid element

Zero-length
springs

Fibre-based
beam element
(second-order)

Top-AF

Btm-AF

Figure 10. Macro finite-element model of assemblages
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gaps. During the tests, the reaction force and the displacement of

each restraint were measured. For simplicity, only the restraints

of specimens S4 and S6 are shown in Figures 11(a) and 11(b)

respectively. Each branch was used to evaluate the restraint

stiffness and connection gaps by way of linear regression. Table 3

shows the restraint stiffnesses and gaps of specimens S4 and S6.

Spring parameters in component-based joints

The interface springs kbt, kbs and kbb were modelled with zero-

length springs, as indicated in the inset of Figure 10. The

envelopes of the shear panel springs ks and the bar force–slip

springs kbb and kbt are shown in Figure 3(b) and Figure 7

respectively. In Engineer’s Studio, unloading and reloading of

springs are implemented using the Takeda hysteresis model.

Because the material and geometric properties of the middle

joints in the tests (Yu and Tan, 2013b) were nearly the same, the

critical points of ks were selected to be the same for all the

specimens.

Without considering bond deterioration, the upper limit of the

inelastic bond strength �YT was around 0.25( f 9c)
0.5 using the

bilinear reinforcement constitutive model (Yu and Tan, 2012).

However, previous experiments showed that the bond deteriora-

tion zone could extend several times the bar diameter under a

pullout force (Qureshi and Maekawa, 1993; Viawanthanatepa et

al., 1979). Thus, the bond deterioration more severely reduces

�YT for bars with short embedment lengths. The bottom bars in

the middle joints of S3 and S6 were lap-spliced, whereas those in

S4 and S5 were continuous. With calibration on the anchored

bars in S3 and S4, according to the embedment length and bond

deterioration, �YT takes on values of 0.1( f 9c)
0.5 and 0.15( f 9c)

0.5 for

the continuous and lap-spliced bars in the middle joints respec-

tively, and 0.2( f 9c)
0.5 for the anchored bars in the ECS.

The properties of springs kbt and kbb of specimens S4, S5 and S6

are shown in Tables 4 and 5. Spring kbb at the middle joint

interfaces (Table 4) and spring kbt at the ECS interfaces (Table 5)

transfer tension only. Note that the bar between two adjacent

flexural cracks near a joint interface is under axial tension, and

half the bar extension contributes to the ultimate slip of kbb and

kbt. This contribution is more obvious when the embedment

length in the joint is short. The beam bar extension is calculated

in the same way as that for the continuous bar in the joint. For

example, the ultimate slip of the bar embedded in the middle
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Figure 11. Stiffness of axial restraints at ECSs: (a) specimen S4;

(b) specimen S6

Horizontal restraint Tension

stiffness: kN/m

Compression

stiffness: kN/m

Tension

gap: mm

Compression

gap: mm

Specimen S4

Top-RW 160 393 — 1.4 —

Btm-RW 82 650 254 495 4.1 �4.3

Top-AF 100 572 — 1.8 —

Btm-AF 49 255 175 277 3.5 �2.1

Specimen S6

Top-RW 142 144 — 5.8 —

Btm-RW 67 813 204 322 2.5 �5.0

Top-AF 90 794 — 0.0 —

Btm-AF 80 139 175 093 1.5 �4.8

Table 3. Restraint stiffnesses and gaps
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joint of S4 is around 12 mm. The spacing of severe flexural

cracks is 100 mm, as shown in Figure 12, and the extension of

the 50 mm long bar contributes about 5 mm to the slip of kbb.

Therefore, springs kbb and kbt at the middle joint interfaces of S4

and S5 include the contribution of beam bar extension, as

indicated in Table 4. In addition, the top bars of S5 fractured at

50 mm away from the ECS interface, so the corresponding beam

bar extension is considered. However, if the spacing of flexural

cracks is not available in design, it can be estimated as one-half

the maximum crack spacing computed according to Eurocode 2

(CEN, 2004). Without considering the slip from beam bar

extension, the numerical simulations always predict bar fracture

at a smaller middle joint displacement (MJD).

Comparison with experimental results

Figure 13 shows that the simulated structural behaviour of RC

assemblages agrees well with the experimental results in terms of

applied load–MJD and beam axial force–MJD relationships. This

indicates that macro-FEA with the modified component-based

joint model and the proposed calibration procedure on spring

properties can represent essential structural behaviour (including

CAA and catenary action) with satisfactory accuracy. Moreover,

Spring kbt Spring kbb

lembd: mm Eh: MPa Tensile branch Compressive branch lembd: mm Eh: MPa Tensile branch

St: mm Ft: kN Sc: mm Fc: kN St: mm Ft: kN

S4 125 + (50) 929 0.30 196.71 0.068 477.52 125 + (50) 929 0.30 131.14

7.93 216.42 0.157 544.63 7.93 144.28

17.26 236.13 0.217 554.74 17.26 157.42

S5 125 + (25) 929 0.25 196.71 0.072 497.24 125 + (25) 929 0.25 196.71

7.42 216.42 0.157 560.36 7.42 216.42

16.75 236.13 0.217 570.47 16.75 236.13

S6 265 832 0.26 309.43 0.080 531.69 530 929 0.19 131.14

9.98 339.29 0.210 649.57 5.28 144.28

25.75 369.15 0.270 661.93 19.61 157.42

Table 4. Properties of springs kbb and kbt at middle joint

interfaces. For S4 and S5, tensile slip includes extension of the

beam bar near joint interfaces with the length indicated in

brackets. However, for compressive slip, the contribution of

beam bars is ignored

Spring kbb Spring kbt

lembd: mm Eh: MPa Tensile branch Compressive branch lembd: mm Eh: MPa Tensile branch

St: mm Ft: kN Sc: mm Fc: kN St: mm Ft: kN

S4 425 929 0.19 131.14 0.074 461.35 425 929 0.19 196.71

4.00 144.28 0.157 502.24 4.00 216.42

14.75 157.42 0.216 508.98 14.75 236.13

S5 425 + (25) 929 0.25 196.71 0.072 497.25 425 + (25) 929 0.25 196.71

5.34 216.42 0.157 560.36 5.34 216.42

17.42 236.13 0.216 570.48 17.42 236.13

S6 425 929 0.19 131.14 0.070 481.49 425 832 0.26 309.43

4.00 144.28 0.157 524.85 5.47 339.29

14.75 157.42 0.216 531.59 20.21 369.15

Table 5. Properties of springs kbb and kbt at ECS interfaces.

Specimen S5 includes the contribution of beam bar extension to

total tensile slip
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Figure 12. Contribution of beam bars to slip at joint interfaces of

S4
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Figure 13. Validation of the proposed component-based joint

model using macro-FEA: (a) specimen S3; (b)specimen S4;

(c) specimen S5; (d) specimen S6
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the effect of bar fracture on structural performance is predicted.

Similar to the experimental results, the first fracture in numerical

analyses occurred at spring kbb of one middle joint interface and

the final fracture at spring kbt of one ECS interface. During the

tests, the bottom bars at the joint interfaces sequentially fractured

due to non-uniform material properties and imperfect construc-

tion. However, in the numerical analyses, springs kbb at both joint

interfaces fractured almost simultaneously. At the middle joint

interfaces, after the fracture of kbb, the beam axial force is

transferred by kbt. The good agreement between the numerical

and experimental results in this range as shown in Figure 13

suggests that the proposed bar stress–slip model can provide

appropriate tensile spring properties.

Discussion on numerical modelling schemes

To improve computational efficiency and simplify numerical

modelling, another two modelling schemes are now discussed.

j Model 2 uses fibre beam elements and rigid joint models to

save the procedure calibrating components in the joint model.

j Model 3 employs component-based joint models and fibre

beam elements only for highly non-linear parts (including the

plastic hinge zones near the joint interfaces and the both

sides of a bar cut-off point), and elastic beam elements for

the rest of the beam, as shown in Figure 14.

For simplicity, specimen S4 is used to demonstrate the effects of

these two numerical modelling schemes, but the simulations on

other specimens provided similar conclusions.

Figure 15(a) shows that model 2 overestimates CAA capacity and

predicts early bar fracture. Model 2 also predicts early onset of

catenary action when the beam axial force transfers from com-

pression to tension, as shown in Figure 15(b). Under a MCRS,

local rotation at the beam ends is contributed by both flexural and

fixed-end rotations, in which the latter is attributed to bar slip at

the joint interfaces. If joints are assumed rigid, as in model 2, the

fixed-end rotation cannot be considered. Therefore, the assem-

blage presents a stiffer performance and bar fracture occurs with

a smaller rotation of the beams and a smaller MJD of the

assemblage.

Model 3 predicts almost the same results as model 1, as shown in

Figure 15, indicating that model 3 is computationally efficient to

simulate the structural behaviour of RC assemblages subjected to

large deformations and severe discontinuity. Therefore, the

numerical approach in model 3 is a feasible alternative to the

extensive three-dimensional (3D) continuum-based FEA.

Parametric study on structural behaviour of
RC assemblages under a MCRS

Effect of imperfect boundaries

Specimen S4 was selected to illustrate the effects of boundary

conditions (BCs) on the assemblage behaviour. The BCs of S4

contained restraint gaps, as shown in Figure 11(a). However, no

gaps exist between structural members of monolithic RC

Elastic element Second-order fibre element
at plastic hinge zones

First-order fibre element
near cut-off points

Figure 14. Numerical modelling with combination of elastic and

fibre elements for beams
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Figure 15. Effects of modelling schemes on load–deflection

history: (a) applied load–MJD; (b) axial force–MJD. Model 1, fibre

beam elements and component-based joint model; model 2, fibre

beam elements and rigid joint model; model 3, combination of

elastic and fibre beam elements and component-based joint

model
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buildings. Therefore, to find out the effects of restraint gaps, a

case study (i.e. case 2) with the same restraints at the ECS as S4

but with zero gaps is analysed.

In a 3D building, the BCs of the two-bay beam depend on the

locations of the removed columns. For example, Figure 16(a)

shows column removal scenarios for a typical office building with

six spans by four bays. Due to symmetry, only half of the plan

view is demonstrated. Except for the corner column removal

scenario, the general BCs of the two-bay beam are shown in

Figure 16(b). The in-plane restraints from the adjacent structural

members can be simplified as vertical supports, lateral (Ka) and

rotational (Kr) springs. Except for the corner and penultimate

columns, the removal of any single column ensures the corre-

sponding beams having adequate Ka (equivalent axial restraint

stiffness) at least in one direction. Fully fixed ends (i.e. Ka and Kr

tend to infinity) are the idealised BCs (i.e. case 3). For a

penultimate column removal scenario (i.e. case 4), the idealised

BCs are that one end is fully restrained and the other end is

rotationally restrained but laterally unrestrained (Dat and Hai,

2013), say, Ka1 ¼ 0 and Kr1 tends to infinity.

A comparison of cases 1 and 2 indicates that the presence of gaps

reduces the stiffness and capacity at the CAA stage with beam

axial compression, as shown in Figure 17. However, the gaps

have little effect on catenary action. When the BCs are enhanced

as fully fixed restraints in case 3, the CAA capacity increases by

around 11% on top of case 2, and the maximum axial compres-

sion increases by around 41%, but the catenary action resistance

has no evident improvement. When one beam end is laterally

unrestrained (case 4), the beam axial force is not mobilised, as

shown in Figure 17(b), indicating that the structural capacity is

solely contributed by a flexural mechanism. Different from the

other three cases, case 4 attains its maximum structural capacity

of 52.4 kN at the fracture of bottom bars at one middle joint

interface. Therefore, all measures to increase flexural resistance

can be employed to mitigate the collapse potential caused by a

penultimate column removal.

In summary, adequate lateral restraints must be provided to

develop CAA and catenary action. Compared with catenary

action, CAA is much more sensitive to imperfect restraint

conditions, and a larger CAA capacity is achieved at stronger

BCs.

Exterior
penultimate
column

Interior
penultimate
column

Corner
column

(a)

Ka1 Kr1
Ka2

Kr2

(b)

Figure 16. Boundary conditions of assemblages under different

scenarios of column removal: (a) scenarios of column removal;

(b) general boundary conditions of column removal scenario
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Effect of bar curtailment

In RC structures, reinforcing bar curtailment is very common.

Therefore, specimen S4 with fully fixed BCs (i.e. case 3 in Figure

17) is used here to investigate the effect of bar curtailment. In the

first case, one top bar out of three is curtailed at 1000 mm away

from the middle joint and ECS interfaces. In the second case, no

curtailment is considered.

It is found that bar curtailment has an insignificant effect on the

overall load–deflection relationships, suggesting that beam seg-

ments between the bar curtailment points can effectively transfer

axial tension. However, bar curtailment causes the beam to

deform in a more curved manner than one without curtailment at

a large deflection (e.g. a MJD of 400–600 mm), as shown in

Figure 18. The deformed shape at the left-hand side of Figure 18

indicates that, besides at the beam–column connections, an

additional plastic hinge occurs near the bar curtailment point that

faces the end support. Analyses on assemblages S5 and S6 came

to the same findings.

Effect of beam depth

An assemblage with a beam depth less than its width was

found to develop large catenary action capacity prior to bar

fracture in tests (Sadek et al., 2011). In addition, RC slabs can

develop much greater resistances than yield line capacities by

way of tensile membrane action (Park and Gamble, 2000),

which is analogous to ‘two-dimensional catenary action’. The

above findings suggest that structural members with shallower

sections are more suitable to develop catenary action. There-

fore, the effect of beam depth on RC assemblage behaviour is

considered here. Specimen S4 with fully fixed BCs at both

ends (i.e. case 3) is chosen as the reference case. The other

two cases have the same geometric and material properties as

S4 except for beam cross-sectional dimensions. The beam

section of S4 was 150 mm wide by 250 mm deep (150 3 250

for short). To maintain similar reinforcement ratios, beam

sections of 1903 200 and 2503 150 were used for cases 5

and 6 respectively.

Figure 19(a) shows that a smaller beam depth results in a smaller

CAA capacity, a larger catenary action resistance and a greater

MJD at the first bar fracture at the middle joint interfaces. For

example, case 6 with the shallowest beam depth (150 mm)

reaches the smallest CAA capacity (28.0 kN) among the three

cases, but attains the largest catenary action resistance (135.4 kN)

at MJD ¼ 572 mm at the first bar fracture. Figure 19(b) demon-

strates that, with the same reinforcement, reducing the beam

depth slightly decreases the maximum axial compression and

causes the assemblage to transition into catenary action at a

smaller MJD. However, the latter finding is not evident between

cases 3 and 5.

Larger beam span-to-depth ratios result in smaller CAA capacity

(Yu and Tan, 2014) and greater flexural rotation capacity

(Panagiotakos and Fardis, 2001). That is, the global flexural

behaviour is significantly affected by beam span-to-depth ratios.

However, besides flexural deformation, fixed-end rotation at joint

interfaces also contributes to assemblage deformation. The fixed-

end rotation is mainly determined by the ultimate tensile slip at

the joint interface and the distance of tension and compression

reinforcement layers. When the tension reinforcement is less than

the compression reinforcement at a beam section, the fixed-end

rotation is more dominant. For instance, prior to imminent bar

fracture, the fixed-end rotation at the middle joint interface of

each case is much larger than that at the ECS interface, as shown

in Table 6. The smaller fixed-end rotation is then used to calculate

the lower bound of deflection due to slips. Table 6 demonstrates

that fixed-end rotation contributes more than 49.5% of the total

deflection in each case. Furthermore, with decreasing beam depth,

the fixed-end rotations due to slip and the MJD at imminent bar

fracture increase. Both unbroken beam reinforcement and large

deflection help to develop catenary action resistance.
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Conclusions
A component-based joint model was modified to capture the

effects of large slip and fracture of bars near joint interfaces on

the structural behaviour of RC assemblages under a middle

column removal scenario (MCRS). A systematic calibration

procedure for each component was presented, in particular for

the tensile bar force–slip spring, which governs the fixed-end

rotation and bar fracture. Comparisons of numerical and experi-

mental results indicate that macro-FEA with the joint model and

fibre elements is able to characterise the essential structural

mechanisms, including compressive arch action (CAA) and

catenary action. Also, the modelling scheme of employing the

joint models, fibre elements only for highly non-linear parts and

elastic beam elements for the rest, was found to be more

practical for simulating large-scale structures suffering progres-

sive collapse.

With the joint model, catenary action resistance can be estimated

properly. However, it is challenging to predict middle joint

displacement at bar fracture with high precision. This is because

the slip of post-yield bars depends on the inelastic bond strength,

which is affected by the bar constitutive model, embedment

length and bond deterioration. There is still a lack of adequate

experimental data with which to calibrate this parameter. Follow-

ing the presented calibration procedure, in particular ignoring the

contribution of beam bar extension to the slips of interface

springs, the prediction is conservative.

The numerical model was finally used to investigate the effects of

boundary conditions, bar curtailment and beam depth on the

structural behaviour of RC assemblages under a MCRS. The

presence of connection gaps in restraints and finite restraint

stiffnesses in the tests reduced the CAA capacity, but had no

evident effect on catenary action. Moreover, due to the lack of

adequate axial restraints to beams under a penultimate column

removal scenario, CAA and catenary action are not mobilised and
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Beam section:

mm

MJD at bar

fracture: mm

Fixed-end rotation: rad Lower bound of deflection due to slip

At middle joint

interface

At support

interface

Corresponding MJD:

mma

Proportion of total

deflection: %

(I) (II) (III) (IV) (V) ¼ 2750 3min[(III), (IV)] (VI) ¼ (V)/(II)

150 3 250 259 0.0929 0.0484 133 49.5

190 3 200 423 0.1251 0.0925 254 60.1

250 3 150 585 0.1970 0.1375 378 64.6

a Deflection due to slip equals the net span (2750 mm in case studies) multiplied by fixed-end rotation.

Table 6. Deflection due to bar slip at the first imminent bar

fracture from analysis
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the two-bay beam has to rely on flexural capacity. Bar curtailment

has an insignificant effect on the overall load–deflection history,

but does affect the deformed configuration of beams at the

catenary action stage. With the same parameters except for beam

cross-sections, reducing the beam depth decreased CAA capacity,

but significantly improved catenary action resistance at the first

bar fracture through effectively converting bar slip into fixed-end

rotation and increasing the flexural rotation capacity.
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To discuss this paper, please submit up to 500 words to

the editor at journals@ice.org.uk. Your contribution will

be forwarded to the author(s) for a reply and, if

considered appropriate by the editorial panel, will be

published as a discussion in a future issue of the journal.
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