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The elastodynamic behavior of polycrystalline cubic materials is studied through the fundamental

propagation properties, the attenuation and wave speed, of a longitudinal wave. Predictions made

by different analytical models are compared to both numerical and experimental results. The

numerical model is based on a three-dimensional Finite Element (FE) simulation which provides a

full-physics solution to the scattering problem. The three main analytical models include the Far-

Field Approximation (FFA), the Self-Consistent Approximation (SCA) to the reference medium,

and the herein derived Second Order Approximation (SOA). The classic Stanke and Kino model is

also included, which by comparison to the SOA, reveals the importance of the distribution of

length-scales described in terms of the two-point correlation function in determining scattering

behavior. Further comparison with the FE model demonstrates that the FFA provides a simple but

satisfactory approximation, whereas the SOA shows all-around excellent agreement. The experi-

mental wave velocity data evaluated against the SOA and SCA reveal a better agreement when the

Voigt reference is used in second order models. The use of full-physics numerical simulations has

enabled the study of wave behavior in these random media which will be important to inform the

ongoing development of analytical models and the understanding of observations.

VC 2018 Acoustical Society of America. https://doi.org/10.1121/1.5031008
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I. INTRODUCTION

Almost all naturally occurring materials exhibit heteroge-

neity on some length scale, but a wave propagating within such

a medium only becomes appreciably perturbed once the wave-

length is comparable to its characteristic dimension.1–4 When

this occurs, waves no longer propagate freely but rather

become scattered. Practical encounters of scattering are found

at both macro scales by seismic waves and at micro scales by

ultrasonic waves within biological tissue or metallic and

ceramic materials. These latter materials exhibit a polycrystal-

line microstructure with spatially varying elastic properties due

to contrasting crystallographic orientations between neighbor-

ing grains. In recent years, the aerospace and power generation

industries have driven research to better understand scattering

within metallic materials and improve both ultrasonic flaw

detection5–7 and ultrasonic material characterisation.8–10

Different aspects of ultrasonic characterization of mate-

rials with realistic microstructures have been addressed, such

as materials with macrotexture8 and duplex microstructures

for titanium9–12 and steel13 alloys, comparison of ultrasonic

and electron backscatter diffraction methods,14 effects of

applied stresses,15 and general macroscopic anisotropy16 on

ultrasonic scattering; also, multiscattering17,18 and the mode-

converted19 ultrasonic backscatter method have been

investigated.

Due to its fundamental importance and relevance to

practical applications, understanding both the elastic1–3 and

elastodynamic4–19 behavior within polycrystalline materials

remains of longstanding interest. Early studies on the latter

have been extensively reviewed by Papadakis20 and reported

in Refs. 21–24. Stanke and Kino24 presented the unified sec-

ond order approximation (SOA) model for scattering in a

polycrystal, based on the theories of Keller22 and Karal and

Keller,23 providing the dispersion equation for a perturbed

wavenumber capturing the various scattering regimes includ-

ing the Rayleigh, stochastic, and geometric. The underlying

SOA24 refers to the account of second order perturbations on

the small parameter e. Alternatively, Weaver25 developed a

scattering model taking roots in quantum field theory and

electromagnetic wave scattering26,27 and obtained an equiva-

lent dispersion equation to that of Stanke and Kino,24 how-

ever, as will be discussed later, within the spatial frequency

domain instead of the physical domain. Nonetheless, research

remains ongoing today in pursuit of more accurate and more

general solutions, including those which can account for a

wider range of heterogeneities such as elongated grains,10,11

duplex materials,9–14 and macrotextures.8,16

Existing theoretical models, however, are inherently

approximate due to the effects of multiple scattering and ran-

domness of the medium. They have an ever-present scope

for uncertainty, as theoretical models are limited by approxi-

mations in the order of material perturbations and their

account of multiple scattering, while experimentala)Electronic mail: m.lowe@imperial.ac.uk
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measurements fully contain such effects. Subsequently, vali-

dating the applicability of these analytical theories of scatter-

ing has historically been hindered by the difficulty of

obtaining sufficiently reliable experimental data where a fac-

tor of two in agreement is typically considered to be satisfac-

tory.4,5 Two main reasons for these experimental difficulties

can be identified: the difficulty of accurately measuring

coherent waves; the difficulty of accurately quantifying the

statistical properties of the random materials.

Alternatively, progress in elastodynamic modelling of

heterogeneous media using Finite Element (FE) methods28–31

has recently enabled accurate studies of wave scattering

within realistic volumes of polycrystalline materials. Such

methods, in direct contrast to the aforementioned limitations,

incorporate full-physics models, thereby including multiple

scattering and enable ideal experiments with full control and

knowledge of the random properties of the materials.

An opportunity thus exists to employ numerical meth-

ods to complement our understanding based on analytical

findings and answer some of the remaining questions sur-

rounding scattering approximations. This article employs

recently developed full-physics three-dimensional (3D)

numerical modeling and implements both classical and the

latest analytical scattering models to evaluate various scat-

tering approximations. The analytical scattering models are

modified to include the generalized two-point correlation

function determined from the simulated material systems

used in the 3D numerical modeling. This evaluation serves

to select the most appropriate models but in addition aims to

provide useful insights into scattering behavior; this is fun-

damentally important to a variety of fields but is also practi-

cally relevant where encounters of scattering occur, such as

seismics, acoustics, and non-destructive evaluation (NDE).

In particular, an independent validation of the analytical

models is relevant to inversion techniques which aim to infer

microstructural properties from physical measurements.

Section II describes the analytical theories considered,

before outlining the numerical methodology in Sec. III. The

results in Sec. IV are structured in three parts: first, the

numerical and analytical results convey the significance,

beyond a mean characteristic, of the statistical distribution

describing the heterogeneity in determining scattering

behavior. Second, we evaluate the far field approximation

(FFA) in its ability to provide a simpler implementation to

the scattering problem. Finally, we compare the analytical

and numerical model with experimental data to investigate

the suitability of two varying effective reference medium

approaches: the Voigt average or the self-consistent

approach (SCA). This is followed by concluding remarks in

Sec. V.

II. THEORY

Wave propagation and scattering in the established theo-

retical framework is described in terms of scattering induced

attenuation aL and dispersive phase velocity VL, pertaining

mathematically to the complex perturbed wavenumber for an

infinite plane wave. Our current model description is general

and suitable for arbitrary single-phase anisotropy of grains;

however, the later comparison with the numerical model is

given for the specific subset of equiaxed cubic grains.

A. Background: The dispersion equation in the spatial
frequency domain

Following Stanke and Kino,24 we call the model that we

employ and further develop in this work the SOA. In Ref.

24, the dispersion equation is obtained in the physical

domain and computations are performed for the exponential

two-point correlation function exp ð�r=aÞ where a is the

correlation radius which is interpreted as the averaged radius

of the equiaxed grains. Here we evaluate the dispersion

equation in the spectral domain as was presented by

Weaver.25 However, Weaver did not consider solutions for

the dispersion equations and instead employed the Born

approximation whilst also considering the exponential corre-

lation function. Solving the dispersion equation in the spec-

tral domain involves computation of the Cauchy integrals,

which complicates its evaluation. The values of the complex

perturbed wavenumber were computed by the spectral

method described by Calvet and Margerin32 without solving

the dispersion equation and instead computing maxima of

the spectral function, however, also utilizing the aforemen-

tioned exponential correlation function.

In this work, we obtain and numerically solve the dis-

persion equation in the spectral domain but instead imple-

ment a general two-point correlation, which later enables an

analytical fit to that to be obtained numerically from the FE

models (discussed in Sec. III). To be sure that this works cor-

rectly in the implementation in this analytical model, we

have made a direct comparison of its solution with that of

the Stanke and Kino dispersion equation24 for its specific

case of an exponential correlation function exp ð�r=aÞ; the
results are identical.

We compare the SOA model with the FE computations

in a wide range of non-dimensional frequency of scattering

regimes for the correlation function of numerically synthe-

sized 3D polycrystals. In addition, we implement such

“exact” correlation functions in two recently published mod-

els: the far field approximation (FFA) model33 and the

SCA,34 and compare the three models, SOA, FFA, and SCA,

under the same conditions with the FE results.

In our numerical and analytical models, we consider a

completely dense aggregate of a random assembly of per-

fectly bonded crystallites (anisotropic grains) forming a

polycrystalline medium in a 3D domain. The propagating

wave scatters on grain boundaries due to misorientation of

the crystallographic orientations of neighboring grains; this

resulting in the loss of scattered energy from the propagating

wave and leading to attenuation of the propagating wave. In

the numerical model, for a given random model realization

of the grain assembly, the scattering problem is solved

numerically with a complete account of the grain geometry

and boundary conditions between grains, and of multiple

scattering effects, thus determining the wave velocity and

attenuation. By computing wave propagation for numerous

random realizations of grain orientations in the material

model and averaging,31 we obtain dependences of the
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velocity and attenuation on frequency and grain size that are

used to evaluate approximate analytical models; this is the

objective of the present study.

Analytically, one can describe this complex stochastic

scattering problem only with use of different model approxi-

mations (for an excellent review and background we refer to

Refs. 24, 26, and 27). In the extension of the latest analytical

models considered here, the micro-inhomogeneous elastic

medium (polycrystal) is replaced by a continuous random

medium described by a local elastic stiffness tensor cijklðXÞ,
which is a random function of spatial coordinates XðX; Y; ZÞ.
The medium is assumed to be statistically homogeneous and

its local elastic stiffness tensor cijklðXÞ is represented as

cijklðXÞ ¼ Cijkl þ dcijklðXÞ; (1)

dcijklðXÞ are small random fluctuations with zero mean,

hdcijklðXÞi ¼ 0; (2)

and Cijkl ¼ hcijklðXÞi is the mean macroscopic elastic tensor.

The bracket notation h�i indicates spatial average. The mean

elastic medium with tensor Cijkl is called the reference

medium.25 While the mean tensor of the reference medium

coincides with the Voigt average,3 we do not assume that the

reference medium corresponds to the homogenized polycrys-

tal with physically correct static properties. In fact, as we

will discuss later, the model itself provides an elastic static

limit with modulus (velocity) below the Voigt3 average and

between the Hashin-Shtrikman2 bounds (see also Ref. 24).

The time-harmonic wave propagation and scattering is

described by a system of partial differential equations with

random coefficients, which is not solvable even in the scalar

case (for discussion of the problem see Refs. 22, 26, and 27).

For this reason, instead of seeking a solution for Green’s

dyadic GkaðX;X
0;xÞ, one considers a solution for the mean

Green function hGkaðX;X
0Þi (the Green’s function defines

the displacement response at location X in the kth direction

to a unit point load at point X0 in the a direction; x ¼ 2pf , f

is the frequency). Analysis of the averaged field in some

work is termed “smoothing”25,27 since the averaged field is

much smoother than the total field that includes fluctua-

tions.27 For the mean Green function hGkaðX;X
0Þi, the sto-

chastic wave propagation equations for random media

reduce to the Dyson integral equation25,34

hGkaðX;X
0Þi ¼ G0

kaðX;X
0Þ

þ

ð ð

G0
kbðX;YÞMbjhGjaðZ;X

0Þid3Yd3Z;

(3)

where Mbj is historically called a mass operator.26,27 Whereas

the Dyson integral equation generates all multiple scattering

events, the Mass operator comprises scattering paths with a

specific topology, which may be described in terms of irreduc-

ible Feynman diagrams. In Eq. (3), the dyadic Green function

G0
kaðX;X

0Þ is for the macroscopically homogeneous reference

elastic medium described by the tensor Cijkl.
25,34

While not explicitly shown, the polycrystal random

inhomogeneous properties are quantitatively represented

in Eq. (3) by the two-point correlation function (TPCF)

hdcijklðXÞdcabcdðX
0Þi25 for the elastic tensor fluctuations

dcijkl from Eq. (1). It is proportional to the probability den-

sity of two crystallographic orientations of grains at points

X;X0. The correlation function depends on grain size and

morphology and, by describing the neighboring grain orien-

tations, determines grain scattering.24 Due to the assumption

of the statistical homogeneity and macroscopic isotropy of

the polycrystalline medium, the covariance can be factorized

into tensorial and spatial parts24,25

hdcijklðXÞdcabcdðX
0Þi ¼ hdcijkldcabcdiwðX� X0Þ; (4)

where wðX� X0Þ is a geometrical two-point correlation

function (or autocorrelation function) describing the proba-

bility that the two points X;X0 are in the same grain; it

depends only on the difference r ¼ X� X0 between two vec-

tors X;X0(the distance and the orientation angle). The factor-

ization in Eq. (4) is equivalent to the assumption that the

tensorial part is independent of spatial location.

Further analyses show that the Dyson equation, Eq. (3),

has the form of a convolution integral26 and is solved for the

mean field Green function hGðkÞi in the spatial Fourier

domain space25,35

hGðkÞi ¼ G0ðkÞ�1 �MðkÞ
h i�1

; (5)

where G0ðk;xÞ¼
P3

M¼1u
MuM=ðx2�k2V2

MÞ¼
P3

M¼1g
o
Mu

MuM

is the spatial Fourier transform of the Green functions for the

homogenized (reference) anisotropic medium; k¼pk is the

wave vector, and p is the unit wave normal vector. The sum

over M indicates summation of the three possible propagating

modes with the Green functions goM for each of the modes M

with the mutually orthogonal unit polarization vectors uM.

In this work, we consider elastically isotropic homoge-

nized macroscopic polycrystalline media (the elastic texture is

absent at macro scale); the general models with texture were

considered in Ref. 35 for hexagonal texture and in Ref. 36 for

general texture where the full anisotropic Green’s function

was employed. Due to elastic macroscopic isotropy, we con-

sider macroscopic velocities as independent of the propaga-

tion angle. However, it is convenient to introduce an infinitely

small macroscopic anisotropy and to consider the Green’s

dyadic G0ðkÞ for the reference medium in the form for aniso-

tropic media, where the isotropic medium is obtained in the

limit of negligible anisotropy. This allows easy selection of

the wave polarization vectors and, as in Eq. (5), to decompose

the Green function into three propagating modes.33,35,36

Our objective is to find a complex wave number, per-

turbed by scattering, of the ensemble-averaged propagating

wave. The real part determines the wave velocity and the

imaginary part the scattering-induced attenuation. The per-

turbed complex wave number for wave propagation in a given

random medium is the root of the dispersion equation which is

obtained26,27 from the denominator of the mean Green func-

tion hGðkÞi, Eq. (5) (the existence of an additional root
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associated with a highly attenuated wave was discussed in Ref.

26 and for elastic waves in Refs. 32 and 33). The Dyson equa-

tion, Eq. (3), and its solution, Eq. (5), are exact; however, the

spatial Fourier transform of the mass operator Mð kÞ, repre-
senting multiple scattering, is given by a series that cannot be

summed26,27 in general. To obtain a tractable solution one

needs to make some approximations of the mass operator.

Different approximation methods by Keller22 (perturba-

tion method), Bourret26,37 (the diagrammatic method) and

the first order smoothing approximation27 of the mass opera-

tor essentially lead to the same results. Keller22 has shown

under which conditions his method is identical to that of

Bourret (those special conditions were used in Ref. 24). The

equivalency of those different methods was also discussed

by Frisch.27 Physical interpretation of the diagrammatic

method26,27,37 shows that those approximations result in

summation of the one convergent multi-scattering infinite

subsequence (from the infinite sequence of all scattering

event diagrams) that accounts for double scattering inside

each heterogeneity without recurrent visits. This approxima-

tion is valid for small elastic perturbations and propagation

distances such that the incident wave is mostly coherent.25–27

In this approximation, the dispersion equation for the propa-

gating wave M with the perturbed wave number k ¼ pk and

polarization vector uM can be presented33 in the form

k2 ¼ k2M �
1

V2
M

mMðkÞ; (6)

where

mMðkÞ ¼
1

q2
uMb u

M
q kakl

X

3

N¼1

ð

g0N kS;N
� �

vS;Nc v
S;N
j k

S;N
d k

S;N
i

� hdcijqldcabcdiW k� kS;N
� �

d3kS;N: (7)

Its solution provides the complex wave number k ¼ Rek þ ia

of the perturbed propagating wave, where a is the attenuation

coefficient, p the unit wave vector of the propagating wave,

and VM is the velocity in the reference medium; ka; kl are the
wave vector components. The term mMðkÞ in Eq. (6) relates

to the decomposition of the mass operator into three propagat-

ing modes.32,35,36 It produces a perturbation term in the dis-

persion equation that results in perturbation of the wave

number k relative to the propagation in the unperturbed

reference medium with the wave number kM. Due to elastic

modulus fluctuation, the main propagating wave M scatters

into three scattered waves N ¼ 1; 2; 3, indicated by the super-

script index S and summation over N in Eq. (7) (one of the

scattered waves is the same type as M). Each of the scattered

waves propagates with wave number kS;N ¼ kS;Ns and its own

polarization m
S;N vectors (s is a unit scattering wave vector).

Wðk� kS;NÞ is the spatial Fourier transform of the geometrical

two-point correlation function wðX� X0Þ in Eq. (4) and can be
interpreted as the material spectral function which filters the

spectral response of the main propagating wave.

Equations (6) and (7) are applicable to polycrystals with

texture (anisotropic reference media) and nonequiaxed

arbitrary anisotropic grains. Eventually, we will use the

polycrystal with equiaxed grains and macroscopic isotropy

with propagating pure longitudinal L and scattered longitudi-

nal and transverse waves; the two scattered transverse waves

have orthogonal polarizations and the same velocity.

B. Generalized representation of two-point correlation
function

To compute the dispersion equation [Eqs. (6) and (7)],

one should assume the form of the two-point correlation

function wðrÞ in Eq. (4) [spectral form Wðk� kS;NÞ in Eq.

(7)]. A priori, it is not known for a given material system;

however, it can be determined from an experiment.1,11,36

The assumption of Poisson statistics24,25 is usually used for

modeling of wave propagation in random media, and under

such assumption, the geometrical two-point correlation func-

tion wðrÞ for the equiaxed scatters is obtained in the form

wðrÞ ¼ exp ð�r=aÞ.24,25 The advantage of this assumption is

in its simplicity because the correlation function depends

only on one medium parameter, the correlation length a,

which for polycrystals can be interpreted as the mean grain

radius. On the other hand, the grains are deformed by the

material forming in many practical cases, and these can be

approximated by general ellipsoids; such cases are described

by direction-dependent correlation functions.9–12,14,38

The application of ultrasonic models with stochastic

media properties approximated by the exponential Poisson

correlation function wðrÞ has been shown to be successful to

reasonably describe experimental ultrasonic backscattering

and attenuation data for some material systems; however,

the applicability of this approximation has been questioned

by comparison with the experimental correlation functions.38

Also, by comparing to experiments, it is unclear how each of

the uncertainties contributes to the differences in the results,

that is to say, whether it is the approximation of the model or

the approximation of the medium that dominates. Thus, it is

important for quantitative comparison of the analytical mod-

els with numerical simulations to approximate more accu-

rately the actual two-point correlation functions of the

simulated polycrystal used for the numerical calculations.

We do so here by fitting an exponential series to the correla-

tion function obtained directly from the simulated polycrys-

tal. We will briefly outline the approach below; the

description for the anisotropic two-point function approxi-

mation will be published in detail elsewhere. We represent

the two-point correlation function as

wðrÞ ¼
X

n

i¼1

Ai exp �
r

ai

� �

; (8)

where Ai and ai are constants.

Our objective is to fit the experimental two-point correlation

function by the exponent series, Eq. (8), because of its simplicity

for the analytical spectral representation Wðk� kS;NÞ in Eq. (7)

and its utilization in the models. The sum of Eq. (8) should sat-

isfy the following physical constraints:

X

n

i¼1

Ai ¼ 1; (9)
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w0 r ¼ 0ð Þ ¼
X

n

i¼1

�
Ai

ai

� �

: (10)

The first of these constraints follows from the correlation func-

tion definition and the second, as proven by Man et al.,38

should be satisfied exactly for the general case. We do not attri-

bute a physical meaning to each term of the representations in

Eq. (8) (for example, positivity of the spectra or the require-

ment jAij < 1) and we apply these general physical require-

ments only to the total sum of Eq. (8) of the two-point

correlation function. Some insight into the meaning of the scale

length ai in Eq. (8) can be obtained considering the correlation

function in Eq. (8) for an actual polycrystalline medium in the

spatial spectral domain and comparing it to the corresponding

spectrum for the Poisson correlation function that depends on a

single length parameter. Each term of Eq. (8) essentially modi-

fies the spatial spectrum of the corresponding polycrystal with

the Poisson statistics, eventually representing the spectral char-

acteristic of the actual polycrystalline medium with its correla-

tion function fitted by the function in Eq. (8).

C. SOA: Dispersion equation for equiaxed grains with
generalized correlation function

For computation, it is advantageous to present the mass

operator [Eq. (7)] in the dispersion equation [Eq. (6)] in

spherical coordinates.33 Considering equiaxed grains, due to

symmetry, the integrand will depend on one angle: the angle

between the wave vectors of the incident (M) k and scattered

kS;N(N) waves. In this paper, we will consider a longitudinal

propagating wave M ¼ L. It scatters into a longitudinal and

two transverse waves, the latter with equal velocities which

can thus be combined into the one scattering transverse

wave term; we indicate those scattering terms by sub-indices

L ! L, L ! T and the mass operator is represented as

mLðkÞ ¼ mL!LðkÞ þ mL!TðkÞ: (11)

Substituting for the Wðk� kS;NÞ, the generalized spectral

representation of the two-point correlation function in Eq.

(8), and using the notations of Refs. 33, 36, and 39, we

obtain the longitudinal-to-longitudinal scattering term; the

first term in Eq. (11),

mL!L kð Þ ¼
k2k30L
q2V2

0L

2

p
P:V:

ð1

0

n4

1� n2

(

�

ðþ1

�1

X

N

j¼1

Aja
3
j

�

Re fLL k; aj; x; n
� �� �

2

4

þiIm fLL k; aj; x; n
� �� �	

3

5dxdn

þ

ðþ1

�1

X

N

j¼1

Aja
3
j Im fLL k; aj; x; 1ð Þ½ �
�

2

4

�iRe fLL k; aj; x; 1ð Þ½ �
	

3

5dx

)

: (12)

Here, n is a non-dimensional integration variable, x ¼ cos h

and

fLL k;aj; x;n
� �

¼
ALL þ BLLx

2 þCLLx
4

1þ k2a2j þ n2k20La
2
j


 �

� 2knk0La
2
j x

h i2
;

fLL k;aj; x;1ð Þ ¼ fLL k;aj; x;n
� �

jn¼1:

The longitudinal-to-transverse wave scattering term of the

mass operator mLðkÞ is

mL!T kð Þ ¼
k2k30T
q2V2

0T

2

p
P:V:

ð1

0

n4

1� n2

(

�

ðþ1

�1

X

N

j¼1

Aja
3
j

�

Re fLT k; aj; x; n
� �� �

2

4

þ iIm fLT k; aj; x; n
� �� �	

3

5dxdn

þ

ðþ1

�1

X

N

j¼1

Aja
3
j Im fLT k; aj; x; 1ð Þ½ �
�

�iRe fLT k; aj; x; 1ð Þ½ �
	

dx

)

; (13)

where

fLT k;aj; x;n
� �

¼
ALT þ BLTx

2 þCLTx
4

1þ k2a2j þ n2k20Ta
2
j


 �

� 2knk0Ta
2
j x

h i2
;

fLT k;aj; x;1ð Þ ¼ fLT k;aj; x;n
� �

jn¼1:

Those equations are for general anisotropy of equiaxed

grains in polycrystalline material. Specific crystallographic

symmetry and properties of grains are specified by coeffi-

cients ðA;B;CÞLL;LT . For cubic crystallites, they are given by

ALL ¼ 3c2=175, BLL ¼ 2c2=175, ALT ¼ c2=35, BLT ¼ 2c2=

175, CLL ¼ �CLT ¼ c2=525, where c ¼ c11 � c12 � 2c44 is

the anisotropy factor.

Equations (11), (12), and (13) for the mass operator are

substituted into the dispersion equation [Eq. (6)], which is

solved for the perturbed complex wavenumber k of the prop-

agating wave. For cubic polycrystals the numerical solution

of the dispersion equation [Eq. (7)] with the mass operator

representation [Eqs. (11)–(13)] for the perturbed wavenum-

ber k is identical to that of the Stanke-Kino dispersion equa-

tion24 when a single exponential correlation function wðrÞ
¼ exp ð�r=aÞ is assumed.

D. Far-field approximation (FFA): The mass operator

and dispersion equation

The SOA model just described is relatively complex,

especially for non-equiaxed grains. For this reason, we have

also selected for comparison the FFA model,33 which
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includes further simplification of the mass operator and

results in a much simpler dispersion equation suitable for all

frequency ranges. Comparison33 with the Stanke-Kino

model24 showed that it provides a reasonably accurate solu-

tion for the attenuation coefficient in all frequency ranges.

In-depth review of this model is beyond the scope of this

paper; we will only briefly outline further approximations of

the mass operator and specify the dispersion equation for the

perturbed complex wave number for the generalized repre-

sentation of the two-point correlation function as described

in Sec. II B.

First the inner products IPM!Nðh;uÞ ¼ hdcijqldcabcdi
� ubuqpaplsisdvcvj in the mass operator [Eq. (7)] are factored

approximately from the integrals.33 Based on physical con-

siderations, the pulled-out factor IpM!M ¼ IPM!MðpÞ takes

into account dominantly forward scattering at high fre-

quency into the main propagating mode N ¼ M since in this

frequency range scattering to the modes with N 6¼ M is

small. At low frequencies, the scattering of the propagating

main longitudinal wave in all directions into transverse

waves is dominant, so the angle-averaged inner products

IpM!N ¼ hIPM!Nðh;uÞi is taken. Next, the mass operator

[Eq. (7)] is transformed from the spectral to the physical

domain; this essentially leads to the FFA of the dispersion

equation [Eq. (6) and (7)]

k2ðpÞ ¼ k2M þ k2 pð Þ
X

3

N¼1

k2NQM!N

p

�

ð

exp ikNr½ �

r
w rð Þ exp �ikp � rð Þd3r; (14)

where the normalized scattering elastic factors QM!N that

determine scattering strength are introduced

QM!N ¼ IpM!N= 4q2V2
MV

2
N

� �

: (15)

The elastic scattering factors QM!N determine scattering

strength due to grain misorientation, which is controlled by

grain anisotropy. The exponential term of the Fourier trans-

form in Eq. (14) depends on the perturbed wave number

kðpÞ. The exp½ikNr� factor belongs to the Green function in

the unperturbed reference medium, with the unperturbed

wavenumber as the term belonging to the bare Green func-

tion. The perturbed wave number squared k2ðpÞ equals the

unperturbed wave number k2M in the macroscopically homog-

enized (reference) medium, plus a perturbation term depend-

ing on the perturbation parameters QM!N and the perturbed

wave number kðpÞ and the propagation direction.

The dispersion Eq. (14) is for the general shape of the

grains represented by the correlation function wðrÞ. It

depends on the radius vector direction r that results in the

dependence of the perturbed wave vector on the propagation

direction p. For the equiaxed grains, there is no dependence

on the propagation direction, and for the generalized expo-

nential series representation of the two-point correlation

function [Eq. (8)], the integrals in Eq. (14) can be taken

explicitly.33 As a result, the dispersion equation for a longi-

tudinal wave is reduced to a simple form

k2 ¼ k2L þ k2L

X

N

j¼1

Aj

4QL!L

k2

k2L
� 1þ

i

kLaj

� �2

0

B

@

þ
4QL!T

k2

k2T
� 1þ

i

kTaj

� �2

1

C

A
; (16)

where Aj and aj are defined in Eq. (8) and for cubic crystalli-

tes QL!L ¼ 4c2=ð525q2V4
0LÞ, QL!T ¼ c2=ð125q2V2

0LV
2
0TÞ.

Equation (16) is suitable for all frequency ranges and for the

exponential correlation function (N ¼ 1) wðrÞ ¼ exp ð�r=aÞ
that was compared to the Stanke-Kino model24 in Ref. 33.

As was discussed in Ref. 33, the FFA mostly makes a

difference to the near field adjacent to the scatterer, with lit-

tle change to the scattered energy carried away from the

scatterer. This results in a small effect on attenuation (the

imaginary part of the perturbed wave number), as was sup-

ported by comparison with Ref. 24. However, the approxi-

mation shifts the low frequency limit of velocity to that of

the Voigt velocity, thus shifting the whole dispersion curve

(this shift can be corrected for).

E. Self-consistent reference medium

The basis of the Stanke-Kino24 and Weaver25 models is

Eqs. (1) and (2), which introduce perturbed media with ran-

dom fluctuations dcijklðXÞ around the mean Cijkl ¼ hcijklðXÞi.
The polycrystal is replaced by a continuous random medium

with no physical grains and boundaries between them (thus

no need to satisfy boundary conditions). Different interpreta-

tions can be given to the Cijkl ¼ hcijklðXÞi relation as the

wave scattering is concerned. The Cijkl can be viewed

locally, interpreting it as the directional moduli average of

the anisotropic grain. All grains have the same directional

average, thus forming the unperturbed reference medium;

however, when the wave propagates, it sees different grain

orientations at particular points in space, and so it scatters,

which is accounted for by the random perturbation dcijklðXÞ.
As has been noted already by Stanke-Kino,24 the wave sees

grain effects differently in the Rayleigh and stochastic fre-

quency ranges.

However, the most common interpretation of Cijkl

¼ hcijklðXÞi is to consider it as the Voigt3 average for a static

polycrystalline medium (with which it coincides) and as the

upper bound for the medium’s properties. This upper bound

is above that implied by the actual elastic moduli of the

homogenized polycrystal, which is supported by low fre-

quency dynamic measurements and other experiments. Thus,

one may consider replacing the Voigt3 average reference

medium by the self-consistent (SC) static medium, which

more accurately represents the static elastic moduli, thus cor-

respondingly modifying Eq. (1) and considering dcijklðXÞ to
be a fluctuation from this background medium. Kube and

Turner34 have suggested and systematically employed this

principle in their model. It is reasonable to assume that, at

least at low frequency, due to averaging effects on the wave-

length, the elastic properties will be close to those of

J. Acoust. Soc. Am. 143 (4), April 2018 Van Pamel et al. 2399



properly homogenized polycrystalline media. For a recent

relevant review of different homogenization methods, see

Ref. 40.

In the Kube-Turner approach, a SC homogenized elastic

medium is taken as the reference medium.34 In that work,

they re-derived the basic equations in the model and have

demonstrated that the Stanke-Kino24 dispersion equation can

be used if one assumes a correspondingly modified aniso-

tropic factor for the grains in the polycrystal.34 They have

directly computed the Stanke-Kino dispersion equation by

the appropriate replacement of the grain anisotropy factor as

explained below.

As a result of analysis34 the new anisotropy factor is

defined for grains of cubic symmetry as

c ¼ c� hð3c11 � 3c12 þ 4c44Þ; (17)

where c is the anisotropy factor for a cubic crystal and

h ¼
c11 þ 2c12 þ 6CSC

44

� �

c11 � c12 � 2CSC
44

� �

3 8 CSC
44

� �2
þ 9c11C

SC
44 þ c11 � c12ð Þ c11 þ 2c12ð Þ

h i :

(18)

The shear elastic modulus CSC
44 for the SC medium is deter-

mined from a cubic polynomial34

8ðCSC
44 Þ

3 þ ð5c11 þ 4c12ÞðC
SC
44 Þ

2 � c44ð7c11 � 4c12ÞC
SC
44

� c44ðc11 � c12Þðc11 þ 2c12Þ ¼ 0: (19)

The effective longitudinal elastic modulus34 for the SC

model is

CSC
11 ¼ c12þhðc11� c12Þ½ �þ2c44ð1þ2hÞþ3c=5; (20)

and the Voigt VV
0L and SC VSC

0L velocities are obtained as

usual VV
0L ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

CV
11=q

p

, VSC
0L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

CSC
11 =q

q

.

In Ref. 34, the SC form of the Stanke and Kino model

was obtained by replacing the Voigt-average anisotropic fac-

tor c2 and velocities by the SC quantities, i.e., c2 and VSC
0L ,

VSC
0T .

The model predicts consistently lower scattering due to

an effective decrease of the anisotropic factor c of the crys-

tallites.34 Kube and Turner34 compared the results with the

experiment and against the Stanke-Kino model24 and found

that in some cases, the modified model better represents

experimental measurements. However, the comparison of

the results is strongly dependent on the statistics (two-point

correlation function) of the material which are usually

unknown or not well-known because for the latter case, they

are usually determined on a small set of surface grains of the

sample. On the other hand, the theoretical difference in

attenuation between the models of about 70%34 is, in most

cases, within the combined experimental uncertainty of

material statistics (see Ref. 41) and ultrasonic measurements.

Consequently, it is not possible to be conclusive about this

model’s performance versus that of the Stanke-Kino model.

The possibility of deploying independent numerical models,

which account for the boundary conditions between grains

and complete multi-scattering, then becomes attractive to

investigate the validity of these approaches. Due to the

importance of the selection of the reference medium, for fun-

damental reasons we have selected this and the SOA models

for careful numerical comparison.

In this work, we have compared the SCA model with the

SOA and numerical models, employing the SOA dispersion

equation [Eq. (6) and Eqs. (11)–(13)] for the SCA computa-

tion, with the same replacement as discussed above, of the

Voigt-average parameters with those of SCA, using general-

ized correlation functions, Eq. (8), for numerically synthe-

sized polycrystals for all models. To check our algorithm, we

have reproduced the original computations in Ref. 34 using

the exponential correlation function wðrÞ ¼ exp ð�r=aÞ.

F. Static limits of velocity

In addition to the elastodynamic properties, we make

later reference to the elastic properties of polycrystalline

materials as the static limits of velocity, and therefore

include the equations as derived by the SOA and SCA

model. In parallel to the Stanke and Kino approach, we apply

the Born approximation to the dispersion equations of SOA

and SCA to obtain an analytical equation for the complex

wave number at Rayleigh limit. The real part of the complex

wave number provides the static limit of phase velocity, as

shown in Ref. 24 with the correction of a misprint.33

Static limit of phase velocity from SOA

VV
l ¼

VV
0L

1þ
2c2

375 C0
11

� �2
2þ 3

CV
11

CV
44

 ! ; (21)

where Voigt velocity VV
0L ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

CV
11=q

p

. CV
11 ¼ 1=5ð3c11 þ 2c12

þ 4c44Þ and CV
44 ¼ 1=5ðc11 � c12 þ 3c44Þ are Voigt moduli

for polycrystals with cubic constituents. Equation (21) thus

provides a simple estimate of the homogenized static elastic

modulus C11 ¼ qV2
0L.

The static limit of phase velocity from the SCA is

acquired by replacing the Voigt velocity and modulus by

those in the SC media

VSC
l ¼

VSC
0L

1þ
2c2

375 CSC
11

� �2
2þ 3

CSC
11

CSC
44

 ! : (22)

III. NUMERICAL METHOD AND REPRESENTATION OF

POLYCRYSTALS

FE methods are being used increasingly for the elasto-

dynamic simulation of polycrystalline materials,28–31 and are

now capable of delivering accurate performance in realistic

sample volumes in three dimensions. The methodology

undertaken in the present work is fully communicated by the
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authors in Refs. 30 and 31 (also see dependencies43–45) and

therefore only a brief summary is provided here.

The approach30,31 involves propagating longitudinal

plane waves within a relatively slender rectangular cuboid of

polycrystals, where waves are transmitted on one end and

received at the other. The lateral faces of the cuboid are con-

strained such that the longitudinal wave in the slender cuboid

can be considered to be an approximation of a plane wave in

an infinite volume. The intention of this approach with its

focus on plane waves is to concentrate on the wave propaga-

tion behavior without the complications of spatially-varying

profiles, edges, and diffractions that arise when modelling

the finite beams of real transducers; if the plane wave can be

represented properly now, the adaptation of these models to

realistic finite fields is assured because that step has already

been long established. Although the numerical model solves

the wave propagation problem for both the spatially coherent

(ballistic) wave and the spatially incoherent, scattered (coda)

waves, for our present purpose we only require the former

coherent contribution to evaluate the scattering induced

attenuation aL and dispersive wave velocity VL. Both these

characteristics are calculated across a range of scattering

regimes, represented by a ka, which varies from 10�1 to 101.

In addition, a k¼ 0 “zero-frequency” wave velocity is

obtained employing a quasi-static implementation of our

otherwise dynamic FE model; this is detailed in Sec. II C.

To begin the procedure, independent realizations of 3D

cellular volumes representative of random polycrystals are

numerically generated by employing the Voronoi algorithm.

Each resulting random Voronoi tessellation requires suffi-

ciently high discretization to satisfy convergence criteria and

suppress numerical errors29,30 such as numerical attenuation,

also known as mesh scattering. Through evidence from pre-

vious studies, to reduce these numerical errors to negligible

levels,29,30 eight-noded cube elements with a maximum

node separation Dd, where Dd < a=10 and Dd < k=10, are
adopted in a structured mesh for incorporation into the spa-

tial FE formulation. Boundary conditions are subsequently

applied to accommodate a longitudinal plane wave compris-

ing symmetry boundary conditions along the four (largest)

exterior faces, also with their normal perpendicular to the

propagation direction. An explicit central difference time

marching scheme then incrementally solves the system of

equations in terms of displacement, at a time step defined by

the well-known Courant–Friedrichs–Lewy (CFL) condition.

An advantage of this particular numerical implementa-

tion is its ability to efficiently generate independent realiza-

tions of random but statistically equivalent media, thereby

enabling ensemble averaging to further our statistical consid-

erations. In order to achieve a new random and independent

sample, it has been suggested in Ref. 31 to randomly reshuf-

fle the grain orientations [formally known by the orientation

distribution function (ODF)], rather than generating a new

random tessellation which would require re-meshing a

model—a computationally expensive step in this process.

Although our numerical simulations solve both the quasi-

coherent (forward propagating) and incoherent scattered

wave field, the analytical solutions considered describe the

mean field propagation behavior. By spatially averaging the

FE results in post-processing from several independent real-

izations, we are able to enhance the contribution of the

desired coherent wave and suppress its small incoherent

counterpart.

For each individual model, the post-processing step

involves the calculation of aL and VL from the output time-

displacement response of the two (smallest) exterior surfa-

ces, with their normal parallel to the propagation direction.

One surface corresponds to the excitation surface and the

other to the reception surface, thereby emulating an experi-

mental pitch-catch setup. Upon the application of a selected

time-window to isolate the coherent transmitted T(t) and

received R(t) waves, fast Fourier transforms compute T(x)

and R(x), the spectral amplitudes and phases, to enable a fre-

quency dependent calculation of the attenuation and phase

velocity, respectively.

Complete numerical details of the FE models used here

can be found in Table I. The statistics of the random grain

properties produced by the above methodology, as described

by the two-point correlation function wðrÞ, are particularly

important as mentioned in Sec. II; calculation of wðrÞ is dis-
cussed in the Sec. III B. First, we discuss the material

models.

A. Material models

The FE methodology allows for general symmetry crys-

tallites. Here we consider cubically anisotropic materials

which contain equiaxed grains, producing locally scattering

media with macroscopically isotropic properties such that

they remain untextured. For instance, we represent equiaxed

polycrystalline copper using the material properties

c11¼ 169.6GPa, c12¼ 122.4GPa, c44¼ 74.0GPa, and a den-

sity of 8935 kg/m3(V0¼ 6000ms�1, �¼ 0.33, A¼ 3.2).

In addition, however, instead of naturally occurring

materials, we model fictitious materials to enable an isolated

parametric variation of the intensity of the elastic perturba-

tions whilst preserving its average characteristics. An alter-

native method that utilizes materials of varying scattering

strength without conserving all other parameters would ulti-

mately introduce additional and undesirable complexities

which also influence scattering behavior. The procedure to

obtain the fictitious material properties comprises the calcu-

lation of the single crystal elastic stiffness constants

(SCESC) for an equivalent Voigt3 referenced medium (the

equations can be found in Ref. 42) with varying a pre-

defined and desired elastic anisotropy coefficient, A, where

A¼ 2c44/(c11 – c12). Three fictitious materials are generated,

with an equivalent average longitudinal Voigt velocity,

V0, and an increasing cubic elastic anisotropy coefficient A

TABLE I. Numerical FE model details.

Model Label N115200 N11520

Centre-frequencies 1–4 MHz 1–10MHz

Dimensions (mm) 12� 12� 100 12� 12� 10

Grains 115 200 11 520

Grain size (lm) 500 500

Degrees of Freedom 345� 106 278� 106
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of 1.5, 1.8, and 2.4; full details are shown in Table II, where

in addition the anisotropy factor24 c¼ c11 – c22 – 2c44 is

given.

B. Calculation of the two-point correlation function

The function wðrÞ is obtained by randomizing the loca-

tions of multiple pairs of points, r1 and r2, within a volume

(our cuboid model) of cells (our grains), and determining

whether both points of each pair lie within a single grain; the

result is then expressed as a function of r where

r ¼ jr1 � r2j, the distance of separation. The probability of

this occurring decreases as the distance r increases, which is

quantified by wðrÞ.
Numerical implementation is relatively straight-

forward, namely, by exploiting the definition of the Voronoi

tessellation, the above method is equivalent to computing

whether the centroid of the Voronoi-cell nearest to point r2
is equal to that of point r1. Through repetition of this process,

analogous to a Monte-Carlo approach, the probability can be

calculated that a line of distance r exists within a single

grain. In this case, 105 samples per data point of r were suffi-

cient for convergence to below 1%, and r is incrementally

varied (approximately 30 steps) to produce a discrete sam-

pling of wðrÞ as shown in Fig. 1. In view of the large number

of sampling points, the uncertainty of these values is very

small, less than the size of the symbols used to mark the

points. A continuous analytical fit is subsequently obtained

using the functional form of Eq. (8) and produces the coeffi-

cients listed in Table III. The two-point correlation function,

wðrÞ, is thereby obtained and shown in Fig. 1, enabling us to

modify the theoretical scattering models outlined in Sec. II

to match the statistical properties of the material in our

numerical models. In addition, Fig. 1 shows an exponential

two-point correlation function used in the Stanke and Kino

(S&K) model (it depends on only one microstructure scale—

the mean grain radius). The actual form of the two-point cor-

relation function wðrÞ depends on the method of numerical

creation of the 3D polycrystal. In practice, it depends on the

thermomechanical material processing during production

and the microstructures obtained; as a result, the related two-

point correlation function may be very different from that

shown in Fig. 1. For example, Ref. 38 shows a case for rolled

Al, when the exponential correlation function significantly

overestimates the experimental values with a different trend

than that shown in Fig. 1.

C. Quasi-static calculations

In addition to the dynamic simulations, a quasi-static

analysis is performed to assess the pseudo-static wave veloc-

ity. Whereas static FE analysis is well established, the solu-

tion algorithms are quite different, and the solution of the

static stiffness equations for these problems of vast numbers

of degrees of freedom would be very costly in computer

memory and processing. Furthermore, the FE programs that

have been tuned for large computations have been developed

quite differently for static and wave propagation applica-

tions, such that it would not be possible simply to make use

of the same FE model just with different solution options. In

our case, the particular FE program that was used for this

study44 has been tuned to achieve its efficiency just for

explicit integration of dynamic behavior in the time domain.

Thus an alternative approach was developed in order to use

the dynamic implementation to achieve a quasi-static result.

In comparison to the previously outlined dynamic mod-

els, the spatial configuration for the quasi-static model

remains much unchanged, only the external boundary condi-

tions and forces are changed as illustrated in Fig. 2. The

main alteration is the substitution of the previously applied

tone-burst with a gradually applied static load Fs, such that

our setup now resembles that of a uniaxial compression test.

Whereas the symmetry boundary conditions remain

unchanged on the four external surfaces, an additional sym-

metry condition is required and applied to what was previ-

ously the reception surface at the right-hand end of the

domain in the figure, as shown in Fig. 2. Last, for the system

to reach a static steady state, a damping coefficient is intro-

duced into the material properties to gradually remove any

dynamic contribution, which given sufficient time-steps,

converges to a static displacement response, Dus, (or strain)

to the applied force, Fs (or stress). The applied load and

TABLE II. Material properties for fictitious cubic materials of varying

anisotropy, A, and a constant density, Voigt velocity, and Poisson ratio

(q¼ 8000 kgm�3, V0¼ 6000ms�1, �¼ 0.33).

Material label A 1.5 A 1.8 A 2.4

c11 (GPa) 262.1 251.7 237.1

c12 (GPa) 136.5 141.7 149.0

c44 (GPa) 95.3 100.5 107.8

c (GPa) �65 �91 �127.5

FIG. 1. (Color online) Two-point correlation function measured numerically

for a 500lm mean grain size FEM model including an analytical fit and a

general exponential function. The models and their respective autocorrela-

tion functions are indicated in brackets.

TABLE III. Coefficients of the two-point correlation function as shown in

Eq. (8).

A1 a1 A2 a2 A3 a3 A4 a4

115.5 0.07548 �28.44 0.06455 157.1 0.09546 �243.2 0.08898
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corresponding displacement can be reformulated into an

applied stress and strain respectively, which enables us to

calculate an effective Young’s Modulus. Using the Newton-

Laplace equation, c ¼
ffiffiffiffiffiffiffiffiffi

P=q
p

, we can subsequently obtain a

quasi-static wave velocity for compressional waves, Vs.

Typical applied load F(t) and its displacement response U(t)

is shown to convergence in Fig. 3. The methodology was

tested first using a homogeneous material for which the static

stiffness could be calculated perfectly by hand; this demon-

strated performance to an equivalent degree of accuracy as

achieved elsewhere in the modelling.

IV. RESULTS: EVALUATION OF SCATTERING
APPROXIMATIONS

Sections IVA–IVC have the following purposes: (i)

first we aim to demonstrate the influence of the two-point

statistics describing the heterogeneities in determining scat-

tering behavior; (ii) then we verify the FFA33 and its value

in offering a simplified and more accessible solution; (iii)

and last we address the question of the most appropriate ref-

erence medium between a SCA34 or Voigt3 assumption.

We assess scattering behavior in terms of the attenua-

tion, aL, and dispersion of velocity, VL, within cubic poly-

crystalline media using analytical, numerical, and

experimental results for the coherent longitudinal wave. In

particular, we consider three heterogeneous materials of

gradually increasing elastic cubic anisotropy, A, comprising

1.5, 1.8, and 2.4, and in addition, polycrystalline copper.

Table IV provides a summary of the analytical scattering

models considered and detailed in Sec. II. The numerical

methodology is outlined in Sec. III, and in each case, its

results serve as an independent benchmark that represents

the full-physics solution. The third set of results, experimen-

tal, makes use of velocity data from the literature.

A. Influence of the two-point correlation function

We demonstrate the influence of the two-point correla-

tion function in determining scattering behavior as it remains

a fundamentally and practically important question to our

understanding of scattering. Scattering behavior as observed

by the finite element model (FEM) is compared to a S&K24

scattering model, which simply considers the mean grain

size and assumes an exponential autocorrelation function,

whereas the SOA conversely approximates the distribution

of grain sizes using a fitted two-point correlation function

that matches the statistical properties of the material in our

numerical models.

Figure 4 plots the comparison of the normalized attenua-

tion, aaL, versus the normalized propagation constant, ka,

where k denotes the wavenumber for fictitious polycrystal-

line materials; we use the familiar choice of normalization

axes that have been used in the literature, such as in Ref. 24.

Results are obtained for a wide range of ka such that the

Rayleigh, transitional, and stochastic scattering behaviors

are treated.

The first observation to note is that scattering increases

according to the anisotropy coefficient for both models, as

expected. Furthermore, a qualitative agreement is obtained

by S&K theory, but this agreement can be seen to become

much improved when considering a matching two-point cor-

relation function as shown by the SOA. In addition to the

average grain size, the two-point correlation function can

thus be seen to play an important role in determining scatter-

ing behavior. This becomes most pronounced within the

transitional and Rayleigh scattering regimes as can be seen

from the change in slope, thus indicating a fundamental

change in wavenumber or frequency dependence.

In the low-frequency Rayleigh limit, the S&K theory

gives scattering dependence on the mean grain volume a3,24

whereas in the SOA model, the low frequency attenuation is

proportional to
PN

i¼1 Aia
3
i , thus showing dependence on the

shape of the complete correlation function and enhancing

the effect of larger microstructure scales ai. As one can see

FIG. 3. (Color online) Typical input load, F, and quasi-static displacement

response, Du, at time step, nt, for a FEM uniaxial compression of a polycrys-

talline material. Both values are normalized against their respective

convergence values, the static response represented by Fs and Dus in the cal-

culation for the quasi-static wave speed.

FIG. 2. Two-dimensional schematic of a 3D FEM uniaxial compression of a

polycrystalline material under load, Fs, and a corresponding change in

length, Dus. Not drawn to scale.

TABLE IV. Summary of the analytical models implemented (S&K, SCA,

FFA) and developed (SOA).

Approximation: S&K (Ref. 24) SCA (Ref. 34) FFA (Ref. 34) SOA

Two-point correlation

function

Exponential Fitted Fitted Fitted

Reference medium Voigt Self-consistent Voigt Voigt

Scattering field Full-field Full-field Far field only Full-field
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in Fig. 1, the SOA model correlation function for a fixed

wðrÞ has lower corresponding r in the tail (large r) leading to

smaller attenuation at lower frequencies compared to that in

the S&K model (Fig. 4). In quantitative terms, the relative

difference between SOA and FEM, hereon measured as

ðModel� FEMÞ=FEM, increases with anisotropy coefficient

within the Rayleigh region from 6%, 22%, to 37%. This is

expected and can be attributed to the increase of the material

perturbation (wave scattering) and thus the effects of the

approximation (albeit a superior one to the Stanke and

Kino24) of the two-point correlation function (Fig. 1) and to

the SOA approximation; and also to errors in the numerical

discretization that worsen for the higher anisotropies due to

the maximum wavenumber increasing. In the stochastic

region, however, a better agreement is found which remains

around 6% for all degrees of anisotropy.

Figure 5 plots the dispersive phase velocity, VL, against

the normalized wavenumber, ka, for the same fictitious

materials treated in the previous figure. Both theoretical

models now reveal a relatively small difference, rendering

them practically inseparable for the purposes of our discus-

sion. Nonetheless, the numerical results, both quasi-static

and dynamic, show excellent matching with both theoretical

models, where the better agreement is found for SOA in the

present cases. The quasi-static result for each case is the left-

most data point on the plot, all other points are found from

the dynamic simulations. At high ka values, the numerical

results can be seen to deviate from their predicted behavior,

which is probably due to numerical dispersion arising from

discretization errors as the effective sampling rate decreases

with increasing ka. Confirmation of this has not been pur-

sued further because the difference is still small, and there is

a huge computational burden in obtaining results for large

ka, however, this will be investigated in future work.

The findings from both Figs. 4 and 5 are therefore in

agreement. This provides further evidence in the validation

of scattering theories such as the SOA, as found in a previ-

ous study.31 However, more importantly here, it demon-

strates the significance of a full description of the grain size

statistics beyond the mean. This is particularly valuable

FIG. 4. (Color online) Normalized attenuation versus normalized propaga-

tion constant for fictitious polycrystalline materials of increasing anisotropy,

comparing FEM, S&K, SOA.

FIG. 5. (Color online) Phase velocity (ms�1) versus normalized propagation

constant for fictitious polycrystalline materials of increasing anisotropy, com-

paring FEM, S&K, SOA. Static-SOA results are included as per Eq. (21).

FIG. 6. (Color online) Normalized attenuation versus normalized propaga-

tion constant for fictitious polycrystalline materials of increasing anisotropy

comparing FEM, SCA, and FFA.

FIG. 7. (Color online) Phase velocity (ms�1) versus normalized propagation

constant for fictitious polycrystalline materials of increasing anisotropy com-

paring FEM, SCA, and FFA. Static-SCA results are included as per Eq. (22).
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when considering applications for inversion from attenuation

to material microstructure.

For the further studies to follow now, whether numerical

or analytical, we evaluate scattering behavior on a uniquely

equivalent basis, by modification of the assumed autocorre-

lation functions for the SOA, SCA, and FFA, to match the

grain statistics generated by our numerical procedure.

B. Evaluation of the far-field approximation

The validity of the FFA33 is assessed by comparison

with the SOA model; the latter solves for the full scattering

field, as does the FEM. As the SOA results have already

been plotted in Sec. IVA, they are omitted for clarity from

the proceeding Figs. 6 and 7 but will be included in the

discussion.

Figures 6 and 7 plot the attenuation and phase velocity

respectively for the fictitious materials treated previously.

The FFA shows excellent agreement in terms of attenuation,

the relative difference remains below 10% in all three scat-

tering regimes when A¼ 1.5. At higher A, 1.8 and 2.4, the

relative differences rises up to 37%. On a practical scale,

these results are almost identical to the FEM and thus also,

comparing with Figs. 4 and 5, to the SOA. In terms of phase

velocity, Fig. 7 now reveals that the FFA consistently over-

estimates the result when compared to the FEM and thus

also the SOA. However, this is to be expected because, as

mentioned in Sec. II, neglecting near field effects shifts the

solution of the dispersion equation towards the low-

frequency velocity limit of the Voigt velocity, which is only

an upper-bound limit, and therefore is not expected to

deliver accurate results (the correction for this discrepancy is

provided in Ref. 33).

C. Comparison of effective reference media

An important approximation which remains to be

addressed concerns the theory for an effective reference

medium. Such theories are useful to describe the average

elastic1–3 and elastodynamic24,25,33,34 properties of a hetero-

geneous material. Here, we compare two second order scat-

tering models, one employing a Voigt3 referenced medium,

the SOA; and alternatively the SCA,34 both static solutions

are given in Sec. II F. In addition to the previous fictitious

materials, polycrystalline copper is considered by numerical,

theoretical, and experimental means.

From the previously discussed Fig. 6, it can be seen

that the SCA systematically underestimates the scattering

for the cases tested here, typical errors are in the region

70%–80%, whilst the Voigt referenced medium, inter-

preted by the SOA, shows excellent agreement as men-

tioned earlier. In terms of phase velocity in Fig. 7, the SCA

produces a closer agreement with the numerical FEM

results (both quasi-static and dynamic) in comparison to

the relative difference in Fig. 6; however, the SOA (Fig. 5)

still outperforms the SCA on this occasion, thereby sup-

porting the previous findings: the SOA, based on Voigt

averaging, provides the most complete solution between

the scattering theories considered here and for the cases

studied here. The static results obtained from the SOA

and SCA [Eqs. (21) and (22), respectively], shown as x in

Figs. 4 and 7, add further confirmation that the SOA pro-

vides a satisfactory estimate in the zero-frequency limit for

the elastic properties of polycrystalline materials.

D. Agreement with experimental measurements of

copper

In this final section, we bring another independent

comparison, expand the range of cubic anisotropy consid-

ered, and add further evidence to determine the validity of

the discussed approximations. We include results for a real

polycrystalline material, copper, in addition to the afore-

mentioned numerical and analytical models, making use of

experimental results found in literature. Experimental mea-

surements for wave velocity, performed by Ledbetter46 for

polycrystalline copper, are compared to the predictions of

our previously mentioned models. Ledbetter’s experimental

results were chosen in particular as they represent the most

FIG. 8. (Color online) Normalized attenuation versus normalized propagation

constant for polycrystalline copper comparing FEM, SOA, S&K, and SCA.

FIG. 9. (Color online) Voigt-normalized phase velocity versus normalized

propagation constant for polycrystalline copper comparing numerical

(FEM), theoretical (S&K, SOA, and SCA), and experimental measurements

(EXP) from Ledbetter (Ref. 46). Three black lines indicate the quasi-static

limits, two dashed “- - -” lines plot the UHS and LHS bounds, and the dotted

“…” line shows the static SC averaging method. A single percentage (0.01)

change on the y-axis corresponds to approximately 60m/s.
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complete and conclusive physical evidence available on the

current matter and are believed to be of high accuracy.

Whilst this and other experimental data had previously

been available, a true comparison between the ability of

different scattering theories to predict the measurements

has not yet been possible, because of experimental errors

and ambiguity in the two-point material statistics, now the

deployment of the numerical modelling allows us to pursue

such an evaluation.

Despite the absence of experimental results for attenua-

tion, for completeness, we plot the attenuation results for

copper using all the theoretical models in Fig. 8. Figure 9

plots the phase velocity for polycrystalline copper obtained

by numerical, theoretical, and experimental46 methods. In

addition to the previously considered elastodynamic theo-

ries, we plot the quasi-static velocity limits as defined by the

upper Hashin-Shtrickman (UHS) and lower Hashin-

Shtrickman (LHS) second order bounds,2 and the static SC

result. The UHS and LHS provide a range for the theoreti-

cally possible wave velocities at low-frequency. It is there-

fore important that any predictions or measurements lie

within this range. The static SC result, also plotted, provides

a definite prediction for the quasi-static wave velocity.

In complement to the earlier findings of Sec. IVA, the

results presented in Fig. 9 continue to agree with the previ-

ously observed trends; the contrast of SOA and S&K with

the FEM predictions further reveals the beneficial impact of

considering the appropriately representative grain size statis-

tics, improving the confidence and extending the considered

range of anisotropy to 3.2. The dynamic SCA solution con-

tinues to show a systematic offset. We can newly observe,

however, an excellent agreement between the numerical

FEM, theoretical SOA, and experimental measurements

from Ledbetter;46 the discrepancy remains below 0.6%. As a

precautionary note, however, there is some uncertainty in the

2kLa parameters for the experiment as no details are pro-

vided in Ref. 46 on the method of the given grain size mea-

surement. The SOA model, as the second order model,

performs its own low frequency homogenization of the

medium that results in a low frequency velocity limit signifi-

cantly below the Voigt velocity V0 (V0 corresponds to zero

on the y-axis in Fig. 9). This low frequency SOA limit is

between the Hashin-Shtrickman (HS) bounds and slightly

above the quasi-static FEM and the static SC average, which

show good agreement.

The dynamic SCA model also performs its own low fre-

quency homogenization that results in a low frequency

velocity limit well below the static SC average and the

experimental and the quasi-static FEM results.

The discussion of the velocity limits in particular ena-

bles determining the suitability of the effective medium

approximation. For this reason, we summarize the results

from the fictitious and copper materials in Fig. 10, by re-

plotting only the computed low-frequency velocity limits as

a function of the anisotropy constant, A, for the various

material systems considered. As can be seen, the FEM and

SOA results remain within the theoretical HS bounds for all

cases, whereas the SCA model produces a minor violation of

the lower HS bound for the fictitious materials.

V. CONCLUSION

The elastodynamic scattering behavior of polycrystal-

line materials was studied across a wide spectrum of wave-

lengths including the Rayleigh, transitional, and stochastic

regimes. Contributions from numerical, theoretical, and

experimental evidence assessed the validity of the various

scattering approximations found in literature and determined

the influence of previously uninvestigated parameters on

scattering behavior. The evolution of the scattering induced

attenuation and dispersive phase velocity was obtained for

cubic anisotropic polycrystals, represented by both fictitious

and naturally occurring materials within a wide range of

anisotropy factors of crystallites. In addition to providing a

thorough background for the present state-of-the-art analyti-

cal scattering theories, this led to various findings. The study

revealed the following:

• In addition to an average length-scale characteristic to rep-

resent the medium’s heterogeneities, the distribution func-

tion of the length-scale plays an important role in

determining scattering behavior. A quantitatively excel-

lent agreement was reached when comparing numerical

FEM and SOA theory for both scattering induced attenua-

tion and phase velocity on a statistically equivalent basis.

This result is particularly useful for future experimental

approaches which aim to invert measurements to infer

material properties.
• The FFA approximation offers a relatively simple analyti-

cal implementation of scattering for future studies, which

was shown here to provide a good approximation to the

attenuation characteristics although expected discrepan-

cies were found in the prediction of phase velocity for the

cases considered.
• Prior to this study, a certain ambiguity existed regarding

the approximations to calculate the elastic properties for a

valid reference medium (and thereby also its

FIG. 10. (Color online) Voigt normalized low-frequency velocity limit ver-

sus cubic anisotropy, A, for the fictitious materials (Fi in blue/dark) and

Copper (Cu in red/light) as predicted by the theoretical scattering models

(SOA and SCA as square and x, respectively), numerical FEM model (as cir-

cle), and static SC averaging method (as triangle). The UHS and LHS

bounds (as dashed) are plotted to convey the range of theoretically possible

velocities for either material.
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perturbations). In this work, the Voigt reference medium

was demonstrated to produce sufficiently accurate results

for both attenuation and phase velocity, in comparison to

an alternative SC reference medium approach which pro-

duced overly conservative estimates to scattering. These

findings were supported by both numerical calculations

undertaken in the paper and experimental measurements

for velocity taken from literature.

In general, the levels of agreement between the numeri-

cal, experimental, and theoretical models were excellent and

unprecedented. This adds further evidence to the existing lit-

erature by investigating a new range of material systems,

that numerical approaches are now sufficiently mature to

solve the 3D elastodynamic scattering problem. The authors

believe these findings present significant steps towards fur-

thering our understanding of elastic wave propagation and

scattering within randomly heterogeneous media, and the

methodology introduces a reliable basis for substantial new

work in this field. The achieved numerical validation of the

second order models in the wide frequency and crystallite

anisotropic factor ranges has a fundamental importance due

to wide applications of these models in different fields and

therefore also our pursuit of achieving industrial non-

destructive wave inversion techniques to infer and character-

ize the properties of such materials.
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