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ABSTRACT

Numerical calculations of the rate at which energy is converted from the external to internal tides at steep

oceanic ridges are compared with estimates from analytic theories. The numerical calculations are per-

formed using a hydrostatic primitive equation ocean model that uses a generalized s-coordinate system as

the vertical coordinate. The model [Regional Ocean Modeling System (ROMS)] estimates of conversion

compare well with inviscid and nondiffusive theory in the sub- and supercritical regimes and are insensitive

to the strength of viscosity and diffusivity. In the supercritical regime, the nondissipative analytic solution

is singular all along the internal tide beams. Because of dissipation the ROMS solutions are nonsingular,

although the density gradients are strongly enhanced along the beams. The agreement between model and

theory indicates that the prominent singularities in the inviscid solution do not compromise the estimates

of tidal conversion and that the linearization used in deriving the analytical estimates is valid. As the model

beams radiate from the generation site the density gradients are further reduced and up to 20% of the

energy is lost by model dissipation (vertical viscosity and diffusion) within 200 km of the ridge. As a result

of the analysis of the numerical calculations the authors also report on the sensitivity of tidal conversion to

topographic misrepresentation errors. These errors are associated with inadequate resolution of the topo-

graphic features and with the smoothing required to run the ocean model. In regions of steep topographic

slope (i.e., the Hawaiian Ridge) these errors, if not properly accounted for, may lead to an underestimate

of the true conversion rate up to 50%.

1. Introduction

Ocean tides are an important source of mechanical

energy required to mix the global ocean (Garrett and

St. Laurent 2002). Tidal forces perform about 3.5 TW of

work, of which 2.5 TW is contributed by the semidiur-

nal tide alone (Munk and Wunsch 1998). Recent stud-

ies using satellite altimetry and ocean models show that

most of the energy conversion from the external to in-

ternal tides occurs over island chains, oceanic trenches,

and midocean ridges. Examples include the Hawaiian

Ridge, the Izu Ridge, and the Mendocino Escarpment

(Althaus et al. 2003; Cummins et al. 2001; Egbert and

Ray 2000, 2001; Kang et al. 2000; Merrifield and Hol-

loway 2002; Niwa and Hibiya 2001). However, there are

significant uncertainties in these estimates of energy

conversion.

For example, over the Hawaiian Ridge, Egbert and

Ray (2000) estimate a total of 20 GW of energy loss

from the barotropic tide. The energy dissipated by bot-

tom friction is small (Garrett and St. Laurent 2002) so

that most of this energy must be transferred into the

internal tides. However, model estimates of conversion

and the resulting energy flux carried by internal tides

disagree by up to 50%. Niwa and Hibiya (2001) use an

s-coordinate three-dimensional ocean model and ob-

tain 15 GW of barotropic energy conversion over the

Hawaiian Ridge by the M2 tide [to compare with the 20

GW estimated by Egbert and Ray (2000)]. Merrifield
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and Holloway (2002) use the same type of model and ac-

count for about 10 GW of radiated energy away from

the ridge (with a 10% uncertainty in the estimate). In their

study Merrifield and Holloway do not report an esti-

mate of the model conversion at the ridge and argue that

the remaining unaccounted 10 GW may be dissipated

locally by other means (e.g., turbulent mixing). How-

ever, they are unable to verify this effect in the model run.

There are several explanations for differences among

model results. These include different parameteriza-

tions of unresolved physical processes, such as mixed

layer dynamics, bottom boundary layer schemes, and

small-scale instabilities. Because the conversion rate is

very sensitive to bottom topography and stratification,

the different density fields and topographies used in the

simulations may also play an important role.

Theoretical estimates of tidal conversion are a

complementary approach to the problem of tidal con-

version by a very steep ridge, but theoretical estimates

are beset by their own uncertainties, which differ from

those of models. It is our goal here to make a compari-

son between model and theoretical estimates of tidal

conversion at a steep ridge and in doing so develop

confidence in both approaches. Khatiwala (2003) has

taken a similar approach to understanding tidal conver-

sion by a “truncated sinusoidal bathymetry.” However,

the theoretical estimates in that work are based on the

weak topography approximation of Bell (1975). Recent

theoretical developments allow us to proceed beyond

this simple approximation and consider realistically

steep and tall bathymetry.

St. Laurent et al. (2003) proposed the “knife-edge

barrier” as a theoretical idealization of a very steep

ridge. Using a numerical method St. Laurent et al.

(2003) then computed the radiated power from this ob-

stacle and other abrupt topographies. Llewellyn Smith

and Young (2002) subsequently found an analytic so-

lution for the power radiated by a knife-edge barrier.

Idealizing a ridge of finite width by the zero-width

knife edge might seem implausible. However, using a

combination of numerical and analytic methods Pétrélis

et al. (2006) computed the power radiated by two dif-

ferent ridge profiles (a triangle and a polynomial; see

section 2) in which the width is a parameter. By varying

the width it is possible to pass continuously from the

knife-edge limit of St. Laurent et al. (2003) to the

complementary case of a gently sloping ridge. A main

conclusion of Pétrélis et al. (2006) is that the super- to

subcritical transition is continuous and that the knife-

edge model is indicative of both conversion rates and

the structure of the radiated wave field over much of

the supercritical parameter range.

The results of St. Laurent et al. (2003), Llewellyn

Smith and Young (2002, 2003), and Pétrélis et al. (2006)

are all obtained by ignoring diffusion, viscosity, and

nonlinearity. With this neglect, the solutions in the su-

percritical regime are singular all along the tidal beams.

Robinson (1969), who analyzed the structure of this

singularity in a related example, referred to the tidal

beam as a “singular characteristic,” and showed that

the narrow region surrounding the beam does not act as

a source of mass, momentum, or energy for the remain-

der of the flow. Thus, the singularity is milder than

other well-known hydrodynamic singularities (e.g., hy-

draulic jumps act as sinks of energy). Balmforth et al.

(2002) show how the singularity is approached as the

amplitude of subcritical sinusoidal topography is in-

creased until the critical condition (i.e., ray slope equals

topographic slope) is achieved. Thus, even subcritical

solutions exhibit an attenuated form of the singularity if

the ray slope is only slightly greater than the topo-

graphic slope. This singularity of the linear and inviscid

solution indicates missing physics and leads one to won-

der if the resulting theoretical estimates of tidal con-

version are compromised.

Polzin (2004) argues that there is an additional prob-

lem with the linear estimates of tidal conversion sum-

marized above. Polzin notes that in addition to simpli-

fication of the bottom boundary condition these calcu-

lations also neglect certain linear terms, namely, the

advection of perturbation velocity by the barotropic

tidal flow. This approximation is justified by scale

analysis, provided that the tidal excursion distance

(typically 100 or 200 m) is much less than the length

scale of the topography. However, neglect of the tidal

momentum advection is not a necessary approximation:

using a Lagrangian approach Bell (1975) retains these

tidal advection terms, and this is a chief source of alge-

braic complexity in Bell’s work. Comparison with Bell’s

results confirms that the neglect of tidal advection is

indeed justified for topography whose scale is greater

than the tidal excursion distance. Polzin’s main point is

that there is significant topographic roughness on a

scale of 100 or 200 m. On these small scales, neglect of

the tidal advection produces a large overestimate of

shear in the wave field radiated from small-scale topog-

raphy. Moreover, even without small-scale topography,

linear generation theories predict infinite shear in the

supercritical regime: for example, the solutions of

Balmforth et al. (2002) show how small-scale features

develop in the wave field as a single large-scale topo-

graphic sinusoid approaches critical slope. The devel-

opment of small scales, and infinite shear, is evident

also from Robinson’s (1969) analysis of the velocity

close to the tidal beam: Robinson shows that, as the
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singular beam is approached, the tangential velocity to

the beam becomes infinite with an algebraic singularity,

while the normal velocity is continuous. The tangential

shear, which is the normal derivative of the tangential

velocity, is strongly singular. Thus, we agree with Polzin

(2004) that shear cannot be reliably predicted by recent

linear solutions. Nonetheless, we argue that this prob-

lem with shear does not compromise the rest of the

solution and that the estimates of radiated energy are

reliable. A main goal of this paper is to support this

view with a successful comparison between linear

theory and a numerical model. The point is that the

linear solutions all indicate that the radiated energy is

heavily concentrated in the first two or three vertical

modes: both the model and the theory are reliable for

these large-scale motions.

In the next sections we present tidal conversion esti-

mates over ridges with different shapes, obtained using

a hydrostatic primitive equation ocean model that uses

a generalized s-coordinate system as the vertical coor-

dinate. These model estimates compare well with invis-

cid and nondiffusive theory in the sub- and supercritical

regimes. The agreement between model and theory in-

dicates that the prominent singularities in the inviscid

analytical solution do not compromise the estimates of

tidal conversion and that the linearization used in de-

riving the analytical estimates is valid. We also present

evidence that topographic misrepresentation errors as-

sociated with inadequate resolution of the topographic

features and with the smoothing required to run the

ocean model can lead to underestimation of the true

conversion rate up to 50%.

2. The model

The model used in this study is a hydrostatic s-coor-

dinate code: the Regional Ocean Modeling System

(ROMS; Haidvogel et al. 2000). ROMS solves the

primitive equations on a curvilinear horizontal grid and

on a generalized s-coordinate system in the vertical.

The model uses the Boussinesq and hydrostatic ap-

proximations. A detailed description of the model nu-

merics can also be found in Shchepetkin and McWil-

liams (1998, 2003).

a. Basic configuration

The “basic configuration” is a rectangular basin of

dimensions 1200 km � 100 km (x, y). The grid resolu-

tion is 1.5 km in the horizontal plane. In the vertical

direction, 40 levels are equally spaced to cover the total

depth of the ocean (H � 2000 m). In the basic configu-

ration, the model does not employ explicit horizontal

dissipation. In the vertical direction there is viscosity

and diffusivity, both equal to 10�5 m2 s�1; there is no

explicit mixed layer scheme. At the bottom a free-slip

condition is used with no bottom drag in order to iso-

late the energy conversion from a barotropic to baro-

clinic tide. The conversion estimates are computed over

a “polynomial” ridge:

h � hmax��1 �
x2

a2�2

if �x� � a

0 if �x� � a

,

with a � 10 and 30 km. The height of the bump hmax is

an input parameter of the model. Notice that h and

dh/dx are continuous at x � �a. The horizontal/vertical

resolution of the model is adequate to resolve these

ridge shapes; however, we also explored the effects of

topographic misrepresentation errors associated with

changes in the horizontal and vertical resolution, and

with smoothing (section 4). For all model calculation

we use a linear equation of state.

b. Initial and boundary conditions

The model is initialized with constant stratification

set by a uniform buoyancy frequency, N, which is set as

a model input parameter. The M2 tide is forced by add-

ing a body force in the horizontal momentum equa-

tions, Bu(t) � �Uo cos(� t) and B�(t) � fUo sin(� t).

With a flat bottom the resulting external tidal velocity

in the x direction is then U � Uo sin(� t) and V � 0,

where � � 2�/(12.4 h) is the frequency of the M2 tide.

We take Uo � 2 cm s�1. We concluded that in the x

direction the cleanest approach is to use periodic

boundary conditions instead of radiation conditions

(section 4 discusses some of the technical issues related

to the ill-posed boundary conditions).

With this setup the domain is closed and finite and

there is no issue with open boundaries and radiation

conditions. There is then no need to design a “sponge

layer.” However, the time span of the integration must

be limited so that the domain does not “fill up” with

energy. In other words, we must estimate the conver-

sion before the radiation has time to travel around the

reentrant domain and interfere with the generation

process at the ridge.

In the basic configuration the domain length in x is

1200 km. During the 12 tidal cycles (ncycle) of the model

integration a vertical mode 1, with M2 tidal frequency,

will propagate approximately �x � 500 km given a

buoyancy frequency of N � 2 � 10�3 s�1 (the maximum

value used in the simulations). Specifically,

�x �
Hncycle

�
,

where H � 2000 m is the depth of the ocean and 	 is the

slope of the internal beams given by
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� � � �2 � f 2

N2 � �2�1�2

.

For the Coriolis parameter f � 10�4 s�1 and the M2

tidal frequency � is

� � 0.1 for N � 1 � 10�3 and

� � 0.05 for N � 2 � 10�3.

Figure 1 shows a model simulation with double the do-

main size in the x direction (i.e., 2400 km) to clearly

show the extent of the internal tide propagation after 12

tidal periods. The model estimates of tidal conversion

obtained from the solution in Fig. 1 are exactly the

same as those obtained using the smaller 1200 km do-

main in the basic configuration. On the contrary, if we

make the domain very short in the x direction, for ex-

ample 150 km, the internal beams are allowed to propa-

gate back in the domain and the tidal energy conversion

saturates quickly, leading to a zero energy flux.

c. Diagnosing the conversion rate

To compare the numerical model tidal conversion

rate with theory we define the conversion rate in the

model as the sum of the baroclinic wave energy flux

radiated through sections to the west and east of the

ridge, located where the height of the ridge goes to zero

(�a):

Cmodel � Ef
a� � Ef
�a� � 2Ef
a�,

where the time, depth, and along-ridge average energy

flux Ef at location x is defined as

Ef
x� � �0

�

8	
�

2	n��

2	
n�4��� 1

h
x�Ly
�

�h


 �
�Ly�2

Ly�2

p�
x, y, z, t�u�
x, y, z, t� dy dz dt, 
1�

where 
0 � 1025 is the reference density, p� and u� are

the perturbation pressure and velocity, �(x, y, t) is the

model free surface, Ly is the along-ridge extent of the

model domain, and h is the absolute depth of the ocean.

The model is spun up for three tidal cycles, and the time

integral is evaluated over tidal cycles 4–8 (n � 4) and

8–12. We define perturbation quantities as the devia-

tion from the barotropic as follows:

p�
x,y,z,t� � �0g

 � 
B� � p
x,y,z,t� � p0
z� and

u�
x,y,z,t� � u
x,y,z,t� �
1

h
�

�h




u
x, y, z, t� dz ,

where the subscript B denotes the barotropic compo-

nent of the free surface; p is the total pressure field, not

including the free-surface contribution, and p0(z) the

pressure field of the fluid at rest. To accurately compute

and separate the barotropic component of the free sur-

face, Khatiwala (2003) separates the free-surface re-

sponse of the external tide from the internal tide by

preceding each model integration with a barotropic

model run (i.e., no stratification). However, in our com-

putation of the energy flux [Eq. (1)] we do not need to

compute the term 
0g(� � �B) in the perturbation pres-

sure. This term does not have a vertical dependence

and it vanishes when dotted with u� and integrated in

the vertical. By definition, u� has zero vertical integral.

In Khatiwala this term is retained because the actual

conversion is estimated using the perturbation pressure

at the bottom over the topography.

In this regard it is important to note a potential flaw

with the definition of p�. The barotropic tidal solution

will be slightly different for the unstratified and strati-

fied simulations. This is because the internal tide acts as

a drag mechanism on the barotropic tide. Thus, the

barotropic currents will be weaker in the stratified run

FIG. 1. Vertical sections of perturbation pressure (N m�2) after 12 tidal cycles with hmax � 1600 m and N � 2

� 10�3 s�1. The isopycnal displacements (black lines) are increased in magnitude by a factor of 10 to show the

internal tides. The model has periodic open boundary condition and is driven by a tidal body force.
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and introduce a source of error in p� associated with the

term 
0g(� � �B).

3. Comparison of theory and model

Pétrélis et al. (2006) provide a unified analytical ex-

pression for the conversion rate of a ridge that holds for

sub- and supercritical conditions as well as the transi-

tion regime. The conversion rate is expressed as

C �
1

4
	�0U0

2Nh max
2 �1 � 
 f���2 � M��a

H
,
hmax

H
�,


2�

where M is a dimensionless function that depends on

parameters 	a/H and hmax/H. We use the procedure of

Pétrélis et al. (2006), based on solving an integral equa-

tion, to obtain M. The dimensional factor on the right-

hand side of Eq. (2) has units of watts per unit meter of

along-ridge extent in the y direction. This factor con-

tains the strongest dependence of C on the external

parameters. The square-root term and M are both

weakly varying functions over the parameter range that

we explore.

We performed model simulations for the polynomial

ridge with different stratifications N � 1 � 10�3 and

2 � 10�3 s�1 and for two different ridge widths, a � 10

km and a � 30 km. For each regime we also investigate

different values of hmax/H by varying the height of the

bump. The model estimates are reported in Figs. 2 and

3, both as total conversion rate (W m�1) and using the

dimensionless function M, defined in Eq. (2). The di-

mensional representation on the left (W m�1) is very

forgiving of small differences between model and ana-

lytics: the results agree to within line widths over large

variations in the parameter hmax/H. Expressing the re-

FIG. 2. Model estimates of M for polynomial ridge (a� 10 km) with stratification (a), (b) N � 1 � 10�3 s�1

and (c), (d) N � 2 � 10�3 s�1. The tidal conversion per unit ridge in the alongshore direction (Ly � 100 km)

is reported in (b) and (d), and C is given in section 2c. The gray solid line is the analytical prediction from the

Pétrélis et al. (2006) theory, and the black line is from the knife-edge mode (St. Laurent et al. 2003). The black

vertical lines in each panel represent the transition from subcritical to supercritical regime, and H � 2000 m in

the model simulations.
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sults in terms of M (the right-hand panels in Fig. 2 and

Fig. 3) emphasizes the differences between the model

and theory. We regard the comparison as satisfactory.

The model estimates are smaller than the theoretical

estimates, typically by about –2.5% with standard de-

viation of 3.5%. This underestimate may be associated

with the nonzero dissipation in the model (in contrast

with the inviscid theory prediction) and with inad-

equate representation of the topography by the model’s

s-coordinate system for the polynomial ridge. The exact

algebraic expression for the polynomial ridge goes to

zero sharply at x � �a. The s coordinate is a terrain-

following coordinate system and enforces smooth tran-

sitions from one grid point to the other so that ROMS

can only approximate the discontinuous second deriva-

tives at x � �a of the polynomial ridge. The resulting

smoothing of the ridge always leads to a smaller con-

version rate [e.g., see Fig. 1 in Pétrélis et al. (2006),

which shows about a 5% reduction in M from the tri-

angular ridge to a comparable smooth ridge]. More de-

tail is provided in section 4 on this type of topography

misrepresentation error.

Because the model estimates are obtained using the

full nonlinear model, the relatively good comparison

with theory suggests that the linear assumption used in

the analytic studies is valid. We also performed model

calculations in which we drop the nonlinear terms in the

momentum equations while retaining them for the

bouyancy (we refer to these calculations as “linear

model,” as opposed to “nonlinear model,” which re-

tains all the terms in the equation). The conversion rate

estimates are not significantly different.

However, as the waves radiate away from the ridge,

the rate at which the energy is lost to dissipation is

different for the linear and nonlinear case. By evaluat-

ing the wave energy flux across different vertical sec-

tions away from the ridge we can estimate how much of

the initial wave internal energy is dissipated as a func-

FIG. 3. Model estimates of M for polynomial ridge (a � 30 km) with stratification (a), (b) N � 1 � 10�3 s�1

and (c), (d) N � 2 � 10�3 s�1. The tidal conversion per unit ridge in the alongshore direction (Ly � 100 km)

is reported in (b) and (d), and C is given in Eq. (1). The gray solid line is the analytical prediction from the

Pétrélis et al. (2006) theory, and the black line is from the knife-edge mode (St. Laurent et al. 2003). The black

vertical lines in each panel represent the transition from subcritical to supercritical regime, and H � 2000 m in

the model simulations.
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tion of the distance from the ridge (Fig. 4). For the

linear case 20% of the energy flux is lost within 200 km

from the ridge. (To estimate correctly the flux beyond

200 km we would need longer model integrations.) In

the nonlinear case, although the initial energy flux is

not significantly different from the linear case, the at-

tenuation is more rapid within the first 50 km. After 200

km of radiation from the ridge 30% of the initial energy

flux is lost. These estimates are insensitive to vertical

diffusivity and viscosity: increasing the coefficient from

10�5 to 10�4 or even 10�3 m2 s�1 makes no difference

(significant differences start occurring for 10�1 m2 s�1).

This is expected from dimensional analysis: with a dif-

fusivity of 10�3 m2 s�1 it would take approximately 28

days to diffuse density or momentum over the vertical

length scale of a model grid box (50 m). This time scale

is longer than the duration of the integrations (6 days).

Therefore, the decay of the radiated energy flux must

be associated to nonlinear interactions and to the im-

plicit numerical dissipation such as the time-stepping

scheme, the filter used to average the barotropic fast

time-stepping, and the advection scheme. Future stud-

ies that aim to correctly quantify the dissipation rate of

the radiated flux as a function of distance from the

generation site will need to assess the sensitivity to

these factors more rigorously. However, these effects

are unimportant in estimating the conversion and en-

ergy fluxes over, and in proximity (50 km) of, the ridge.

4. Numerical aspects

In this section we provide additional details about the

numerical setup for the open boundary conditions and

a discussion of the errors associated with misrepresen-

tation of the topography. The goal is to provide suffi-

cient information to enable an independent reproduc-

tion of the numerical estimates presented in the section

above.

a. Radiation condition plus tidal forcing at the open

boundary

A common approach used in s-coordinate models to

simulate tidal conversion over oceanic ridges such as

the Hawaiian Ridge is to use a radiation condition for

the baroclinic variables and to prescribe the M2 tidal

velocities and elevations at the open boundary through

a forced-gravity-wave radiation condition in the baro-

tropic variables (Niwa and Hibiya 2001; Merrifield and

Holloway 2002).

As an alternative to the periodic boundary conditions

used in the “basic configuration” we also performed

calculations using this type of boundary condition for

the barotropic variables combined with an existing im-

plicit radiation boundary condition for the baroclinic

variables implemented in ROMS by Marchesiello et al.

(2003).

We find that also with this configuration the model

M2 barotropic velocity is accurately reproduced, and

the conversion estimate leads to the same results as in

the periodic settings. Some spurious effects in proxim-

ity of the open boundary were observed but apparently

did not significantly affect our estimate of the radiated

energy flux.

b. Radiation condition plus body force

We also performed computation using the approach

of Khatiwala (2003), who combined radiation condi-

tions for the model variables with a body force, as the

one mentioned above for the periodic boundary case.

In ROMS, this approach was able to generate the ap-

propriate tidal velocity in the interior only during the

first tidal cycle. In subsequent tidal cycles the magni-

tude of the velocity is reduced and the oscillatory be-

havior of the tidal forcing disappears. We decided not

to investigate further this approach.

c. Cautionary remarks on the effects of topography

misrepresentation

A common practice in the use of a terrain-following

coordinate system is to smooth the topographic gradi-

ents to minimize the numerical errors associated with

FIG. 4. Energy flux as a function of distance from the ridge. The

energy flux has been rescaled by the energy flux adjacent to the

ridge. The curves are obtained by averaging all the experiments

for the polynomial ridges with different heights and stratifications.

The nonlinear case is the basic configuration (gray line). Experi-

ments that do not retain advection in the momentum equation are

referred as linear (black line).
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the computation of the pressure gradient term (Mellor

et al. 1994). Although all of the calculations presented

in the previous sections had enough resolution so that

no smoothing was required, more realistic calculations

often cannot avoid it. The criterion used to define the

amount of smoothing is to reduce the r factor, which is

an indicator of the topographic slope relative to the

model grid:

r � �hi�1 � hi

hi�1 � hi

�,
where h is the topography and the indices i indicate a

model grid point. A discussion of the r factor is pro-

vided in Haidvogel and Beckmann (1999). However,

there is no study that documents an objective method

to choose the appropriate r. Based on experience, mod-

elers smooth the bathymetry in order to keep the r �

0.2. Because the filters used for smoothing topography

will result in a reduction of the ratios hmax/a and hmax/

H, this implies that global estimates of conversion done

with s-coordinate models will always lead to an under-

estimate of the tidal conversion. The question is how

much.

Figure 5 shows a comparison of the shapes of the

ridge for different grid resolutions (0.8, 1.5, 2.5, and 4

km) before and after the smoothing. After the smooth-

ing the r factor is reduced to 0.2 for both cases (we used

a Shapiro filter for the smoothing). In the cases dx � 0.8

km and dx � 1.5 km no smoothing is necessary as the r

factor is already below 0.2. Instead, for dx � 2.5 km and

dx � 4 km the initial r factor is 0.29 and 0.43, respec-

tively. The resulting smoothed version of the ridge is

shown as the dashed line in the bottom panels of Fig. 5.

If we define the error percent in the tidal conversion

estimate as a deviation from the analytical prediction,

error �
Cmodel � Ctheory

Ctheory

� 100,

we find that, after the smoothing, the tidal conversion

was reduced in cases dx � 2.5 km and dx � 4 km by

12% and 17%, respectively. By performing this same

analysis using different initial values hmax/a and differ-

ent buoyancy frequency ranging from 0.001 to 0.01 s�1

we find that on average there is a 20% reduction in

conversion rate for a change in the r factor of 0.1. The

results of this analysis are shown in Fig. 6a where the

percentage reduction of conversion rate is plotted

against the dr change that occurred after the smooth-

ing. Reducing the r factor by smoothing may inadver-

tently reduce hmax. For simple analytical examples, such

as the polynomial ridge, this effect on the conversion

rate is obvious and can be quantified. However, for

more complicated topographies quantifying the reduc-

tion of the conversion rate is not straightforward. For

the model cases with resolution �1.5 km the r factor is

always �0.2, so there is no need to apply smoothing and

the estimates converge to the same value.

This is one example of topography misrepresentation

error. Alternatively one could decide not to apply any

smoothing. We therefore perform all of the model

simulations leaving the r factor unchanged and plot the

errors in the estimate as a function of the maximum r

factor (Fig. 6b). The figure shows marks with large er-

rors, but they do not appear to have a linear relation-

ship with r. Further analysis reveals that a better crite-

rion to distinguish the model error estimates is associ-

ated with how well the ridge is resolved by the model

grid size (horizontal resolution). We define this misrep-

resentation error as the percentage volume of the ridge

not accounted for by the model coordinate system:

resolution error �
�ridgeVmodel � ridgeVanalytical�

ridgeVanalytical

� 100.

In Fig. 6b most of the model simulations with resolution

error higher than 1% and 5% overestimate the tidal

conversion predicted from theory (by 15% and 35% on

average). This is expected because, if we decrease the

resolution without applying any smoothing, the effec-

tive shape of the ridge becomes rougher (i.e., looks

more like a staircase: Fig. 5d, thick black line).

The range of uncertainties that arise from model cal-

culation that use a smooth versus nonsmooth represen-

tation of the topography, in cases for which the grid

resolutions cannot fully resolve (within 1%) the shape

of the ridge, could play a major role in explaining some

of the discrepancies in global numerical estimates of

tidal conversion.

5. Summary, conclusions, and discussion

We compare and discuss theoretical and numerical

estimates of M2 tidal conversion over a steep oceanic

ridge to develop confidence in both approaches. The

analytical estimates of tidal conversion rate (St. Lau-

rent et al. 2003; Llewellyn Smith and Young 2002;

Pétrélis et al. 2006) are obtained by ignoring diffusion,

viscosity, and nonlinearity. With this neglect, the solu-

tions in the supercritical regime are singular. This sin-

gularity of the linear and inviscid solution indicates

missing physics and leads one to wonder if the resulting

theoretical estimates of tidal conversion are compro-

mised. However, comparisons with numerical estimates

of tidal conversion obtained with a nonlinear primitive

equation ocean model reveal very good agreement be-

tween theory and model (Figs. 2 and 3). The model
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predicts on average a 2.5% lower conversion rate than

theory (with a standard error deviation of 3.5%). Be-

cause of its finite resolution the model smooths the

singularities along the tidal beams. In other words, the

model will only represent the first few vertical modes

accurately, therefore leading to an underestimate of

tidal conversion when compared with the analytical

prediction. Figure 7 shows the perturbation velocity

fields and the isopycnals associated with the internal

waves for different heights of the ridge. As the height of

FIG. 5. Model grid representation of the polynomial ridge using different horizontal resolutions, dx: (a)

0.8, (b) 1.5, (c) 2.5, and (d) 4 km. The thick gray line is the analytic function for the ridge. The thick black

line is the model representation with no smoothing; the dashed thick line is after the smoothing. A

Shapiro filter is used for the smoothing (see text for more details).
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the ridge increases, we make a transition toward more

supercritical regimes and the slope of the isopycnals

becomes much steeper in proximity of the ridge. This is

consistent with the theoretical limit of a singularity

along the beams. Within 200 km of the ridge, dissipa-

tion in the model acts in reducing the slope of the iso-

pycnals with a loss of about 30% of the converted initial

energy (Fig. 4). A sensitivity analysis reveals that the

model predictions are insensitive to vertical viscosity/

diffusivity in the range from 0 to 10�3 m2 s�1, suggest-

ing that the numerical dissipation associated with the

differencing scheme is already sufficient to remove the

singularity in the solutions. To see significant reduction

of the conversion rate we needed to increase the ex-

plicit viscosity/diffusivity up to 10�1 m2 s�1.

These results are a successful mutual validation of

numerical models and analytical theory in quantifying

the conversion from barotropic to baroclinic tidal en-

ergy. However, they also reveal some of the limitations

associated with both approaches. Analytical estimates

are useful, as they provide the tidal conversion rate

over the ridge, but are unable to predict the decay of

FIG. 6. (a) Percent reduction in tidal conversion due to smoothing of the ridge. The amount of smoothing is

indicated on the x axis as the change (dr) in the r factor, which is an indication of the topographic slope. The

different lines are for different values of N. (b) Percent error deviation of model tidal conversion estimates from

the analytical prediction as a function of the r factor. The different symbols denote different levels of errors in

spatially resolving the ridge (see text in section 4 for definition).
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energy flux occurring beyond 50–200 km from the

ridge. Over this distance the model predicts a signifi-

cant reduction in the wave energy flux associated with

dissipation (30%). However, it is unclear if these dissi-

pative effects are representative of the actual physical

processes or an artifact of numerical dissipation. We

cannot distinguish in the model between numerical and

explicit dissipation in the range of viscosity/diffusivity

typical of the ocean. Although observations (Klymak et

al. 2006; Rudnick et al. 2003) are consistent with the

idea that a large fraction (20%–30%) of the converted

energy is dissipated within a few hundred kilometers

from the ridge, the physical processes responsible for

this (e.g., nonhydrostatic effects) are clearly not re-

solved and are crudely represented in the model.

As a result of the numerical simulations we also show

that the conversion estimates are sensitive to the cor-

rect representation of the topographic features. For ex-

ample, small amounts of topographic smoothing

needed to run s-coordinate general circulation ocean

models may lead to significant underestimates of the

tidal conversion. In section 4c we show that after

smoothing the topography and reducing the topo-

graphic slope, relative to the model grid, by 0.1 (the r

factor) we obtain an underestimate of tidal conversion

of about 20%. This ratio of smoothing over reduction of

tidal conversion is found to be robust for the stratifica-

tion range observed in the ocean (N � 10�3 to 10�2

s�1). As a provocative exercise we took the Sandwell

and Smith (1997) topography at 3.5-km resolution over

FIG. 7. Vertical sections of baroclinic U velocities (cm s�1) associated with the internal wave field for different heights of the bump:

(a) 240 m, subcritical; (b) 500 m, transitional regime; and (c) 1000 and (d) 1600 m, supercritical regime. The isopycnals (black lines) are

increased in magnitude by a factor of 10 to show the perturbations associated with the internal tides. The maximum barotropic tidal

velocity amplitude is 2 cm s�1, and the total extent of the domain in the x direction is � 600 km.
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a portion of the Hawaiian Ridge, which in places has an

r factor as large as 0.9 and is consistently greater than

0.2 in proximity of the steep portions of the ridge, and

smoothed it to keep the r factor below 0.2 (see section

4c for definition). This is a common requirement in

modeling studies that use a stretched vertical coordi-

nate system in order to reduce the error deriving from

the computation of the pressure gradient term (Mellor

et al. 1994) in the horizontal momentum equations. The

smoothing applied was a Shapiro filter and water

depths below 50 m were set to 50 m. We then used the

results from Fig. 6a to estimate the reduction in tidal

conversion (Fig. 8: the color axes are set from 0% to

�30%, although there are values below –50% in the

proximity of the maximum elevation of the ridge). The

results show that in the proximity of the ridge one

should expect an underestimate of more than 30%.

However, this percentage is very sensitive to the type of

filter used to smooth the topography and the resolution

of the model grid. In general one can test the effect of

the filter by using the analytical prediction for the poly-

nomial ridge before and after the smoothing. We also

find that not smoothing the topography and not having

adequate horizontal resolution can lead to significant

overestimates (e.g., by 35%). We therefore suggest that

topographic misrepresentation error is an important

component of the tidal conversion problem, and it may

explain some of the discrepancies in current numerical

estimates of conversion and internal tides energy flux

over realistic oceanic regions.
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APPENDIX

Computation of the Wave Energy Flux in the

Regional Ocean Modeling System Using

Sigma Coordinates

The energy flux [Eq. (1)] in sigma coordinates is pro-

portional to

Ef
x, t� � �
�1

0

p�
x, s, t�u�
x, s, t�Hz ds, Hz �

z


s
,

where Hz is the thickness in units of length of the sigma

layer. We have omitted the remaining terms and inte-

grals that do not need to be transformed in sigma co-

FIG. 8. Estimate of the percent reduction in tidal conversion as a result of smoothing the topography in a section

of the Hawaiian Ridge. The smoothing is often required to run ocean models that do not fully resolve the

topographic slopes (see text for details). Estimates are derived using the results from section 4 obtained by

smoothing analytical ridge shapes.
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ordinate. The computation of u�(x, s, t) is straightfor-

ward, as the model already provides the vertical inte-

gral uB:

u�
x, s, t� � u
x, s, t� � uB
s, t�.

To evaluate p�(x, s, t) we use the same numerical

scheme used in ROMS to compute the pressure. The

input arguments to compute pressure are

PRS � PRS��, z
s, 
, t��.

We first define the total pressure without the contribu-

tion of the free surface and the pressure of the state of

rest as follows:

pT
s, t� � PRS��
s, t�, z
s, 0, 0�� and

p0
s, 0� � PRS��
s�, z
s, 0, 0��.

We now define the baroclinic pressure p� associated

with the internal waves as

pI � pT � p0 and

p�
s, t� � pI � �
�1

0

pIHz ds.

Note that, by subtracting the integral of pI, this defini-

tion of p� does not include the contribution from the

free surface, for example, the term 
0g(� � �B) that

appears in the definition of perturbation pressure in

section 2c. This term is omitted because it vanishes in

the computation of the energy flux.
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