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,e inspiration for this study is to explore the crucial impact of viscous dissipation (VISD) on magneto flow through a cross or
secondary flow (CRF) in the way of streamwise. Utilizing the pertinent similarity method, the primary partial differential
equations (PDEs) are changed into a highly nonlinear dimensional form of ordinary differential equations (ODEs). ,ese
dimensionless forms of ODEs are executed numerically by the aid of bvp4c solver. ,e impact of pertinent parameters such as the
suction parameter, magnetic parameter, moving parameter, and viscous dissipation parameter is discussed with the help of plots.
Dual solutions are obtained for certain values of a moving parameter.,e velocities in the direction of streamwise, as well as cross-
flow, decline in the upper branch solution, while the contrary impact is seen in the lower branch solution. However, the influence
of suction on the velocities in both directions uplifts in the upper branch solution and shrinks in the lower branch solution. ,e
analysis is also performed in terms of stability to inspect which solution is stable or unstable, and it is observed that the lower
branch solution is unstable, whereas the upper branch one is stable.

1. Introduction

,e investigations of CRFS started after the pioneering
research by Blasius [1] and Prandtl [2] on the laminar flow
from a flat surface through a miniature viscosity. Prandtl [3]
seemed to be a primary researcher to give the result for the
regular depress gradient flow through a yawed infinite
cylinder. ,e study through cross-flow or secondary flow is
significant in many engineering applications such as a flow
of wind phenomena, mechanical, aerospace, and rotating
disk. Jones [4] discussed the vital results involving the
problem of CRF, where he scrutinized the influence of

sweepback on the boundary layer flow (BOUNLF). ,e
three-dimensional flow past flat surface, as well as curved
surfaces, was explored by Mager [5]. Bhattacharyya and Pop
[6] examined the dissipation impact on forced convective
flow in the way of CRF. Weidman [7] found the outcomes of
the flow over an exponentially stretching surface involving
the power law at which CRFS is shaped via the activity of the
transverse wall shearing. Haq et al. [8] scrutinized the CRF in
the direction of streamwise (STW) from a heated moving
surface comprising the influence of viscous dissipation
(VISD). Itu et al. [9] utilized the finite element technique to
improve the rigidity of circular composite surfaces via radial
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ribs. Khan et al. [10] considered the combined impacts of a
chemical reaction (CHEMR) and activation energy (ACTIE)
comprising nanoparticles through a CRF and STW direction
with nonlinear radiation. ,ey reported the dual nature of
solutions. Recently, Nisar et al. [11] explored the nonlinear
radiation impact on MHD flow of titanium and aluminum
alloy particles in the CRF and STW flow direction.

,e investigations of the properties of magnetic assets
also named magnetohydrodynamics (MHD) flow on elec-
trically conducting liquids conferred its importance in in-
dustrial and engineering fields such as heat insulation,
geothermal systems, boilers, saltwater, nuclear process,
energy storage, and biological transportation. Abbas [12]
obtained the equation of frequency for radial vibrations
through a poroelastic cylinder in a porous lid by utilizing
Biot’s theory for wave propagation. Groza and Pop [13]
explored the fractional problems of linear multipoint as well
as two-point boundary value and obtained the numerical
solution by implementing the Haar wavelet technique.
Niculita et al. [14] used the finite element technique by
utilizing the skin panel for the adaptive wing. Ali [15] found
the dual outcomes of magnetoviscous flow through a
nonlinear permeable shrinking surface. Mabood et al. [16]
analyzed the influence of CHEMR on magnetorotated liquid
from a vertical surface entrenched in a permeable medium
with a heat source. Kumar et al. [17] scrutinized the fric-
tional heating impact on magneto flow (MAGF) comprising
Ferro liquid in the existence of radiation. Bhatti and Rashidi
[18] explored the entropy analysis on magnetonanoliquid
through a stretching sheet. Abbas andMarin [19] established
the generalized thermoelasticity through a pulsed laser and
obtained the analytic solution. ,e stimulus of thermal and
exponential space-dependent heat sources on MHD nano-
liquid through a rotating disk was observed byMakinde et al.
[20]. Riaz et al. [21] considered the impact of bioheat on the
3D flow of non-Newtonian fluid in a peristaltic motion
through a rectangular cross-section. Mabood Shateyi [22]
deliberated the time-dependent MAGF with heat and mass
transport embedded in a porous stretching sheet with ra-
diation. Recently, Ahmad et al. [23] investigated the mag-
netic field on time-dependent squeezing flow between two
horizontal surfaces involving non-Newtonian liquid.

,e fluctuating destruction of the velocity gradients
through the viscous stresses is signified as viscous dissipa-
tion. ,is fractional irreversible process is frequently re-
ferred to as the conversion of kinetic energy into internal
energy of the liquid (heating up the liquid owing to viscosity
because dissipation is elevated in the regions through great
gradients). ,e concept of VISD was first considered by
Brinkman [24]. He utilized the viscous dissipation (VISD)
concept in the capillary flows. Gebhart [25] scrutinized the
impact of VISD in free convective liquid flows. ,e stimulus
of VISD on free convective flow in the non-Darcy regime
was explored by Murthy and Singh [26], and they explored
the ten percent decrement in three split regions of fluids.
Tunc and Bayazitoglu [27] utilized the technique of integral
transform to solve the problem containing viscous dissi-
pation along with the transfer of heat in microtubes. ,e
influences of thermal radiation (THERMR) and VISD on

time-dependent magneto flow through a heated infinite
vertical surface were inspected by Cookey et al. [28]. Partha
et al. [29] discovered the VISD influence on mixed con-
vective flow through an exponential stretched sheet. Ibrahim
et al. [30] studied the combined effects of THERMR and
VISD on time-dependent flow involving micropolar fluid.
,e BOUNLF and the transfer rate of heat involving Sisko
liquid from an expanded or stretched cylinder through
erratic thermal conductivity and VISD were inspected by
Malik et al. [31]. Recently, Hussain et al. [32] discussed the
impact of VISD onMAGF of a non-Newtonian liquid over a
nonlinear heated stretched surface.

As discussed earlier, the problem containing combined
effects of the magnetic field and viscous dissipation is not yet
explored. ,erefore, we are examining the viscous dissipa-
tion effect along with the magnetic field in the cross-flow and
streamwise directions with the characteristic of heat
transport. Another important contribution regarding the
problem is the complex dual nature of solutions and the
stability analysis which of most researchers missed out. ,is
assessment added an innovative methodology for the re-
searchers, engineers, and scientists to find out the key
features of the transfer rate of heat in the STW direction of
CRF. ,e subsequent model is numerically handled using
bvp4c software. ,e effects of the important parameters are
contested with the assistance of graphs. ,e problems in-
volving cross-flow taken here are exceptional in that the
transversemotion is believed to be fully developed. In several
engineering conditions, the cross-flowing stream may be
dependent strongly on the orientation and position of a
second leading edge.

2. Problem Formulation

,e current proposed model is measured using the ap-
proach of streamwise (STW) and cross-flow (CRF) direc-
tions within the boundary layer. ,e Cartesian coordinates
and their corresponding velocities are symbolically denoted
by (x, y, z) and (u, v, w), respectively. Based on the sec-
ondary flow phenomena, to deal with the three-dimen-
sional (cross-flow and streamwise directions) flow over a
heated surface under the variable applied magnetic field,
B(x) � B0/

���
2x

√
. ,ey accomplish a motion along with an

unchanged velocity −λU1 into and out of the origin located
at a position x equal zero, where the coordinate x is run in
the path of a flat surface, while the dimensionless moving
parameter and the unchanged velocity are denoted by λ and
U1, respectively. Also, Tw and T∞ are the uniform wall and
ambient temperature of the liquid, whereas the constant
and ambient or free-stream concentration of the liquid are
symbolically signified by Cw and C∞, respectively. ,e
problem is schematically captured in Figure 1. Also, it is
presumed that the CRF has a range that is extended widely
in the spanwise direction. So, the components of the
momentum, energy, and concentration equation did not
depend upon the z coordinate. ,e exercising of the
aforementioned conventions along with the Boussinesq
approximation and the BOUNDL scaling the leading PDEs
is [6, 8, 11]
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ux + vy � 0, (1)

uux + vuy − ]fuyy �
σfB

2

ρf
U1 − u( ), (2)

uwx + vwy − ]fwyy �
σfB

2

ρf
w1 − w( ), (3)

uTx + vTy − αfTyy �
μf

ρcp( )
f

uy( )2 + wy( )2( ), (4)

uCx + vCy � DBCyy, (5)

with the corresponding boundary conditions

u(x, 0) � −λU1,

v(x, 0) � v0,
w(x, 0) � 0,

T(x, 0) � Tw,
C(x, 0) � Cw,
u(x, y)⟶ U1,

w(x, y)⟶ w1,

T(x, y)⟶ T∞,

C(x, y)⟶ C∞ asy⟶∞.

(6)

Here, the component velocities in the respective direc-
tions of x−, y−, and z−axes are signified by u(x, y), v(x, y),
andw(x, y), respectively, while the subscript such as x and y
of the velocity components is called the partial derivatives.
,e other symbols involved in equations (1)–(6) are ab-
breviated as the dynamic viscosity μf, density ρf, temper-
ature of the liquid T, thermal diffusivity αf, effective heat
capacity (ρcp)f, concentration C, Brownian diffusion co-
efficientDB, and thermal conductivity kf. For simplicity, the
technique for solving the problem here by introducing the
similarity transformations is as follows:

η � y
�����
U1

2xυf

√
,

ψ �
�������
2xU1υf

√
f(η),

w � w1g(η),

ϕ(η) � C∞ − C
C∞ − Cw

,

θ(η) � T∞ − T
T∞ − Tw

.

(7)

,us, equation (1) is true identically, while equations
(2)–(5) are worked out by the similarity variables. ,e
governing dimensional form of ordinary differential equa-
tions become as follows:

d3f

dη3
+ f d2f

dη2
+M 1 − df

dη
( ) � 0, (8)

d2g

dη2
+ f dg

dη
+M(1 − g) � 0, (9)

d2θ

dη2
+ Prf

dθ

dη
+ Pr Ec1

d2f

dη2
( )2

+ Ec2
dg

dη
( )2  � 0, (10)

d2ϕ

dη2
+ Lef dϕ

dη
� 0. (11)

,e converted boundary conditions are

f(η) � S,

df(η)
dη

� −λ,

g(η) � 0,

x (chordwise)

y (spanwise) W (y)
Y

X

Z

Z

k

θ
Chordwise

direction

χ

Uext

B0

Figure 1: Diagram of the problem.
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θ(η) � 1,

ϕ(η) � 1, at η � 0,

df(η)
dη
⟶ 1,

g(η)⟶ 1,

θ(η)⟶ 0,

ϕ(η)⟶ 0 as η⟶∞.
(12)

In the aforementioned equations, the dimensionless
sundry parameters are mathematically expressed as follows:
M � σB2

0/ρfU1, Pr � ]f/αf, Le � αf/DB, Ec1 � U2
1/cp

(Tw − T∞), and Ec2 � w2
1/cp(Tw − T∞) are, respectively,

called the magnetic parameter, Prandtl number, Lewis
number, and Eckert numbers.

2.1. Skin Friction. ,e coefficient of skin friction over the
STW (Cfx) in the x-direction and CRF (Cfz) in the z-di-
rection is written as

Cfx �
μf uy( )

y�0

ρfU1

� f
′′(0)����
2Rex

√ ,

Cfz �
μf wy( )

y�0

ρfw
2
1

� g′(0)����
2Rex

√
w1/U1( ).

(13)

2.2. Nusselt Number. ,e local rate of heat transfer in di-
mensionless form is written as

Nux �
x −kfTy( )

y�0

kf Tw − T∞( ) � − θ′(0)����
2Rex

√ . (14)

2.3. Sherwood Number. ,e local Sherwood number in di-
mensionless form is written as

Shx �
x −Cy( )

y�0

Df Cw − C∞( ) � − ϕ′(0)����
2Rex

√ , (15)

where the correlation of the Reynolds number is
Rex � xU1/]f.

3. Stability Analysis

Within this section, the linear stability analysis of the so-
lutions achieved is carried out to test their stability. Because
of such purpose, we cited the work concluded through the
study of Merkin [33]. Considering the time-dependent form
of equations (2)–(5) along with BC (6), we may write

ut + uux + vuy − υfuyy �
σB2

ρf
U1 − u( ), (16)

wt + uwx + vwy − υfwyy �
σB2

ρf
w1 − w( ), (17)

Tt + uTx + vTy − αfTyy �
μf

ρcp( )
f

uy( )2 + wy( )2( ), (18)

Ct + uCx + vCy � DB Cyy( ), (19)

subject to the boundary conditions

u(x, 0, t) � −λU1,

v(x, 0, t) � v0,
w(x, 0, t) � 0,

T(x, 0, t) � Tw,
C(x, 0, t) � Cw,
u(x, y, t)⟶ U1,

w(x, y, t)⟶ w1,

T(x, y, t)⟶ T∞,

C(x, y, t)⟶ C∞ asy⟶∞.

(20)

By letting the fresh time-dependent similarity variable τ,
the old transformations (7) may be in mathematical form as
follows:

η � y
�����
U1

2xυf

√
,

ψ �
�������
2xU1υf

√
f(η),

w � w1g(η),

θ(η) � T − T∞
Tw − T∞

,

ϕ(η) � C − C∞
Cw − C∞

,

(21)

where τ � U1t/2x and η � y
�������
U1/2xυf

√
.

Using (21), equations (16)–(19) along with the appro-
priate BC (20) reduce to the simplest form as follows:

z
3f(η, τ)
zη3

+ 2τ
zf(η, τ)

zη

z
2f(η, τ)
zτ zη

− z
2f(η, τ)
zτ zη

( )

+ f(η, τ) z
2f(η, τ)
zη2

+
σfB

2
0

ρfU1

1 − zf(η, τ)
zη

( ) � 0,

(22)
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z
2g(η, τ)
zη2

+ 2τ
zf(η, τ)

zη

zg(η, τ)
zτ

− zg(η, τ)
zτ

( )
+ f(η, τ) zg(η, τ)

zη
+
σfB

2
0

ρfU1

(1 − g(η, τ)) � 0,

(23)

1

Pr

z
2θ(η, τ)
zη2

+ Ec1
z
2f(η, τ)
zη2

( )2

+ f(η, τ) zθ(η, τ)
zη

+ Ec2
zg(η, τ)

zη
( )2

− zθ(η, τ)
zτ

� 0,

(24)

z
2ϕ(η, τ)
zη2

+ Lef(η, τ) zϕ(η, τ)
zη

− zϕ(η, τ)
zτ

� 0, (25)

along with the corresponding BCs

f(η, τ) � S,

zf(η, τ)
zη

� −λ,

g(η, τ) � 0,

θ(η, τ) � 1,

ϕ(η, τ) � 1 at η � 0,

zf(η, τ)
zη
⟶ 1,

g(η, τ)⟶ 1,

θ(η, τ)⟶ 0,

ϕ(η, τ)⟶ 0 as η⟶∞.

(26)

,e key physical dimensional constraints involved in the
above equations are the same and are defined earlier. ,e
stability analysis of the free time-dependent solution
f(η, 0) � f0(η) and g(η, 0) � g0(η) for the momentum
equation in both directions and further θ(η, 0) � θ0(η) and
ϕ(η, 0) � ϕ0(η) signify the corresponding energy and con-
centration equations. Let

f(η, τ) � f0(η) + e
− βtF(η, τ),

g(η, τ) � g0(η) + e
− βtG(η, τ),

θ(η, τ) � θ0(η) + e
− βtΘ(η, τ),

ϕ(η, τ) � ϕ0(η) + e
− βtΦ(η, τ),

(27)

where β highlights the eigenvalues. Using (27) into
(22)–(26), we may achieve the following linearized eigen-
value problem:

F‴ + f0F″ + Ff0
″ + βF′ −MF′ � 0, (28)

G″ + f0G′ + Fg0′ + βG −MG � 0, (29)

Θ″ + Pr f0Θ′ + Fθ0′ + Ec1 2f0
′F″( )2 + Ec2 2g0′G′( )2 + βΘ[ ] � 0,

(30)

Φ″ + Le f0Φ′ + Fϕ0′( ) + βΦ � 0. (31)

along with the appropriate BCs

F(η) � 0,

F′(η) � 0,

G(η) � 0,

Θ(η) � 0,

Φ(η) � 0 at η � 0,

F′(η)⟶ 0,

G(η)⟶ 0,

Θ(η)⟶ 0,

Φ(η)⟶ 0 at η �∞.

(32)

,e eigenvalue outcome of the linearized-type problem
provides the class of eigenvalues. Because of the approach of
linear stability analysis, the initial deceleration of distur-
bance, which is a physically reliable outcome (stable), is
observed because of the positive coarse eigenvalue, while the
initial development of disturbance is occurred owing to the
negative coarse values which provide the unstable outcome.
Furthermore, it is easy to note all of the positive smallest
eigenvalues which indicates that the results achieved are
stable and physically consistent. ,erefore, in the current
problem, equations (28)–(32) are solved for the eigenvalue β
with the new BC F′′ � 1 by relaxing the condition that
F′⟶ 0 as η⟶∞.

4. Results and Discussion

In this current section, the numerical results of the
streamwise and cross-flow problem governed by the set of
nonlinear partial differential equations (PDEs) are pre-
sented. To solve the nonlinear PDEs (2)–(5), the similarity
variables are first introduced to transform the problem into a
system of highly nonlinear ODEs (8)–(11). ,ese ODEs are
very difficult to solve exactly; therefore, it can be tackled
numerically by using the scheme of finite difference for
boundary value problem based on the three-stage Lobatto
IIIA. For the computations, the fixed values assigned to the
parameters are S � Le � 0.5, λ � −3.5, M � 0.1, Ec1 � 0.1,
Ec2 � 0.2, and Pr � 6.2.,e dual or multiple solutions of the
problem under consideration are obtained for the specific
range of the stretching and shrinking constraints. In our
results, the upper branch solution and the lower branch
solution is depicted graphically with the solid and dotted
lines, respectively.

4.1. Effects of Magnetic Parameter. ,e influence of the
magnetic parameter M is captured in the STW and CRF
directions in Figures 2(a) and 2(b), respectively. ,e
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solutions obtained for f′(η)and g(η) satisfy the initial and
boundary conditions. ,e velocity profiles in the STW and
CRF directions decrease in the first branch solution and
increase in the second branch solution. Physically, this is
happening due to a larger amount of M which can slow
down the liquid motion; this occurs due to retarding force
known as Lorentz force. Figures 3(a) and 3(b) explain that
the skin friction in both directions increases owing to the
constraintM in the first branch solution, while the changed
behavior is observed in the second branch solution. On the
other hand, the rate of heat and mass transfer decreases in
the first branch solution and enhances the second branch
solution as portrayed in Figures 4(a) and 4(b), respectively.
,e hugemagnetic limit develops the force called drag which
is also entitled as Lorentz force. ,is force controls as
mediators that resist the fluid flow and craft progress in the
local transfer rate of heat and mass along with the local
coefficient of skin coefficient.

4.2. Influence of Suction Parameter. In the porous medium,
the mass suction/injection parameter is important and is de-

finedwith the expression S � −v0
�������
2x/]fU1

√
. In case of suction,

(S> 0) and for injection, (S< 0). If (S< 0), the dual nature of
solutions cannot be obtained. However, the dual solutions exist
in the case of mass suction. In Figures 5(a) and 5(b), the
variation of the suction parameter S on both the velocity

profiles in the STWdirection in terms off′(η) and the CRF in
terms of g(η) is displayed. ,ese results suggest that the ve-
locity of liquid augments due to increasing values of S in the
upper branch solution which in turn reduces the velocity
BOUNLF thickness, while there is a decline in the lower branch
solution in the STW and CRF directions. Generally, because of
S, the heated liquid is shoved toward a surface of the wall where
the forces can retard the liquid owing to lofty control of the
viscosity. ,e skin friction coefficients in both directions are
displayed in Figures 6(a) and 6(b). ,ese figures show that the

1.2

1

0.8

0.6

0.4

0.2

0

–0.2

–0.4

f′
 (
η

)

M = 0.1, 0.2, 0.3

0 1 2 3 4 5 6 7 8 9 10
η

(a)

1.2

1

0.8

0.6

0.4

0.2

0

–0.2

M = 0.1, 0.2, 0.3

0 1 2 3 4 5 6 7 8 9 10
η

g 
(η

)

(b)

Figure 2: (a, b) Impact of M on f′(η) and g(η).

2

1.5

1

0.5

0

–0.5

–1

–1.5

–2

–2.5

(R
e x

/2
)1

/2
 C
f x

–0.5 0 0.5 1 1.5

λ

M = 0.1, 0.2, 0.4

λc = 0.89789

λc = 0.92463

λc = 1.06188

(a)

(R
e z

/2
)1

/2
 C
f z

M = 0.1, 0.2, 0.4

λc = 0.89789

λc = 0.92463

λc = 1.06188

λ

1.5

1

0.5

0

–0.5

–1

–1.5

–2

–2.5

–3
–0.4 –0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

(b)

Figure 3: (a, b) Impact of M versus λ on (2Rex)1/2Cfx and (2Rex)1/2Cfz.

6 Mathematical Problems in Engineering



0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

(R
e
x
/2

)1
/2

 N
u
x

M = 0.1, 0.2, 0.4

λc = 1.06188

λc = 0.92463

λc = 0.89789

λ

–0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1 1.2

(a)

(R
e
x
/2

)1
/2

 S
h
x

M = 0.1, 0.2, 0.4

λ

λc = 1.06188

λc = 0.92463

λc = 0.89789

4

3.5

3

2.5

2

1.5
–0.5 0 0.5 1 1.5

(b)

Figure 4: (a, b) Impact of M versus λ on (2Rex)1/2Nux and (2Rex)1/2Shx.

1.2

1

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

f′
 (
η

)

0 1 2 3 4 5 6 7 8 9 10

η

S = 0.5, 1.0, 1.5

(a)

0 1 2 3 4 5 6 7 8 9 10

η

S = 0.5, 1.0, 1.5

1.2

1

0.8

0.6

0.4

0.2

0

–0.2

g 
(η

)

(b)

Figure 5: (a, b) Impact of S on f′(η) and g(η).

4

3

2

1

0

–1

–2

–3

(R
e x

/2
)1

/2
 C
f x

S = 1.0, 1.2, 1.5

–0.5 0 0.5 1 1.5 2

λ

λc =1.06188

λc = 1.29291

λc = 1.67900

(a)

3

2

1

0

–1

–2

–3

–4

–5

–6

–7

–8

(R
e z

/2
)1

/2
 C
f z

S = 1.0, 1.2, 1.5

–0.5 0 0.5 1 1.5 2

λ

λc =1.0618

λc = 1.2929

λc = 1.6790

(b)

Figure 6: (a, b) Impact of S versus λ on (2Rex)1/2Cfx and (2Rex)1/2Cfz.

Mathematical Problems in Engineering 7



upper branch solution increases while the second branch result
decreases as the mass suction parameter increases. ,e vari-
ation of S on the local transfer rate of heat and mass is pre-
sented in Figures 7(a) and 7(b), respectively. Figure 7(a) depicts
the values of the local rate of heat transfer decline due to
augmenting S in both branches of solutions, whereas the
Sherwood number augments with S in the upper and lower
branch solutions as revealed in Figure 7(b).

4.3. Effects of EckertNumbers. ,e Eckert parameters appear
in the energy equation due to the viscous dissipation term.
,e Eckert numbers have a direct impact on the rate of heat
transfer. As the Eckert numbers upsurge, more heat is
transferred from the surface due to which the thermal
boundary layer increases. ,is impacts of Ec1 and Ec2 on
temperature θ(η) is displayed in Figure 8(a). However, the
increases in Eckert numbers show a decrease in Nusselt

number (Figure 8(b)). ,is is predictable since the imple-
mentation of the Eckert number proposes the ratio of kinetic
energy and enthalpy. ,us, an augment in Ec1 and Ec2
suggests that the heat dissipated is stored in the liquid via
fractional heating that enhances the liquid temperature and
consequently declines the heat transfer rate.

4.4. Effects of LewisNumber. Lewis number Le appears in the
concentration equation and is a ratio of the kinematic
viscosity and the Brownian diffusion coefficient. ,e in-
fluence of Le on concentration ϕ(η) is demonstrated in
Figure 9(a). ,e graphical result shows that the concen-
tration profile decreases for both solutions. ,is implies that
the heat will disperse more quickly than concentration. ,e
concentration boundary layer becomes steeper as Le en-
hances. Moreover, the increase in Le shows an increase in the
Sherwood number (Figure 9(b)).
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4.5. Effects of Stretching and Shrinking Parameters. In
Figures 10(a)–10(d), the variations of stretching/shrinking
parameters on the velocities f′(η) and g(η) in both
directions are displayed. ,e effect of the stretching
parameter (Figures 10(a) and 10(b)) shows that the lower
branch solution decreases while the upper branch so-
lution increases. On the other hand, the altered behavior
is noted for the shrinking parameter, as illustrated in
Figures 10(c) and 10(d). It is also examined from these
figures that, in the phenomenon of the lower branch
solution, initially, the velocity profiles are negative, and
then as the value of η progresses, it starts to augment and
then becomes positive. Physically, this trend happens due
to the contrary directions of shrinking and stretching
velocities.

5. Conclusions

In the current investigation, the impact of VISD on MAGF
near a stagnation point in the directions of STW and CRF
through a moving surface is scrutinized. ,e leading PDEs
are converted into nonlinear ODEs via suitable variables.
,ese converted ODEs are worked out by utilizing bvp4c
software based on 3-stage Lobatto IIIA. ,e influences of
pertinent constraints on the flow fields such as concentra-
tion, velocity, and temperature are illustrated graphically
and numerically scrutinized. ,e core finding of this ex-
ploration can be precised as follows:

(i) Because of some amount of moving parameter,
multiple solutions are achieved

(ii) ,e velocity of liquid decays owing to M in the
upper branch solution and upsurges in the lower
branch solution in the STW and CRF directions

(iii) ,e friction factor in the STW and CRF directions
augments because of the larger value of M in the
upper branch solution, while the rate of mass and
heat transfer decelerates in the upper branch so-
lution and augments in the lower branch solution

(iv) ,e mass suction parameter enhances the velocity
and friction factor in the upper branch solution and
drops in the lower branch solution, whereas the rate
of heat transfer declines and the Sherwood number
upsurges in the first and second branch solutions

(v) ,e temperature distribution enhances due to the
Eckert number, while the transfer rate of heat
declines due to the Eckert number in the upper and
lower branch solutions

(vi) ,e concentration profile decelerates with in-
creasing values of Le in the first branch (upper)
solution and the second branch (lower) solutions

(vii) ,e values of the Sherwood number uplift in both
branches of solutions due to Le

Finally, this paper can be expanded by taking a time-
dependent flow or mixed convective flow. Also, the non-
Newtonian fluid or hybrid nanofluid may be added due to
numerous applications.
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B0: Magnetic field intensity
C: Concentration
C∞: Ambient fluid concentration
Cw: Wall concentration
Cfx andCfz: Skin friction coefficients
DB: Brownian diffusion coefficient
Ec1 andEc2: Eckert numbers
f andg: Dimensionless velocities
kf: ,ermal conductivity
Le: Lewis number
M: Magnetic parameter
Nux: Nusselt number
Pr: Prandtl number
Rd: Radiation parameter
Rex: Local Reynolds number
S: Suction
Shx: Sherwood number
T: Temperature
T∞: Free-stream temperature
Tw: Temperature of wall
U1: Constant velocity
w0: Transverse velocity
(u, v, w): Velocity components
(x, y, z): Cartesian coordinates
αf: ,ermal diffusivity
β: Eigenvalues
λ: Moving parameter
μf: Dynamic viscosity
ρf: Density
(ρcp)f: Effective heat capacity
θ: Dimensionless temperature
υf: Kinematic viscosity
ψ: Stream function
τ: Time-dependent similarity variable
’: Derivative w. r. t. η.
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