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Abstract: This paper examines the influence of the equipment considered as a DVA (Dynamic
Vibration Absorber) upon the mode of vertical vibrations of the car body in high-speed vehicles.
The car body is represented as an Euler-Bernoulli beam to minimize flexible vibration. The DVA
approach is used to find the appropriate suspension frequencies for various types of equipment. A
vertical mathematical model with a flexible car body and equipment is developed to investigate the
effect of equipment mass, suspension stiffness, damping, and mounting location on car-body flexible
vibrations. A three-dimensional, rigid-flexible coupled vehicle system dynamics model is developed
to simulate the car body and equipment’s response to track irregularities. The experimental result
was considered to verify the theoretical analysis and dynamic simulation. The mathematical analysis
demonstrates that the DVA theory can be used to design the suspension parameters of the equipment
and that it is suitable and effective in reducing the flexible vibration of the car body in which the
vertical bending mode is greatly affected. Heavy equipment should be mounted as close to the car
body’s center as possible to achieve significant flexible vibration reduction, whereas light equipment
contributes very little flexible vibration reduction.

Keywords: underframe equipment; suspension parameters; modal frequency; car-body bending
frequency

1. Introduction

The vehicle vibrations due to track irregularities are considered when the vehicle ride
quality is investigated. The track vibrations reach the car body (CB) due to irregularity
inputs via rail wheel interaction, primary suspension system, and secondary suspension
system. With the fast progress of high-speed rail vehicle technology, train operating speed
increases while weight decreases to conserve energy. However, the high running speed
expands the rail vehicle vibration frequency range, and the light structure allows the flexible
modes to be more easily triggered by wheel/rail interaction [1]. It was found that the CB
vibration is a more flexible movement compared to rigid movement. Therefore, to create
innovative technologies to enhance the dynamic response of rail vehicles at higher speeds,
there is a necessity to understand the function of CB flexibility [2].

Recent studies suggest that optimization design based on being lightweight may
decrease cost, reduce the force between wheel and rail to protect them, achieve energy
savings, and reduce emissions [3–10]. The stochastic vibration is obtained at the structure
because the CB is adversely affected by track irregularities and wind pressure while the
vehicle is moving. Low CB stiffness will reduce its natural frequency, leading to a low order
natural frequency in the track’s excitation frequency range [11,12]. In this situation, the train
will vibrate more, fatigue life will be shorter, and riding comfort will be less. As a result,
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the train’s operation quality will decrease significantly. Vibrations of the car body may be
classified into two types: rigid and flexible. The rigid body modes that affect vertical ride
comfort are bounce, pitch, and roll, which normally lie in a relatively low frequency range
around 1 Hz [13,14]. The flexible modes are twisting and bending deformations of the car
body. Typical flexible modes that affect ride comfort most are the first flexible modes that
frequently occur close to the frequency range from 4 to 10 Hz, to which human beings tend
to be sensitive [12,14].

Tomioka et al. [15] conducted extensive research on the structural dynamics of a rail
vehicle’s CB. Through computations and observations, the investigations examine the struc-
tural flexibility of the CB and its effect on ride comfort. The energy and frequency bands of
the track excitation generally rise as vehicle running speed increases, making them more
ideal for delivering adequate energy to generate the flexural vibrations of the CB. Diana
et al. [16] conducted a sensitivity analysis on the parameters that primarily influenced
comfort performance for car bodies and discovered that specific track wavelengths and
vehicle speeds could substantially impact the vibration levels of CB modes. Sun et al. [17]
investigated the links between riding comfort and static displacement of suspension equip-
ment. However, just a single device installed at the CB center was considered in those
models. None of them offered a particular suspension technique [18–23].

However, rail vehicle coaches contain a variety of equipment under the chassis, which
varies depending on the functional requirements of the coach [20–36]. As a result, the
suspension characteristics of the equipment should be considered. Hence, this work aims
to examine how resonant vibration of a flexible railway CB occurs. First, a 3D rigid-flexible
coupled vehicle system dynamics model was created by combining MBS theory with FEM
to simulate the behavior of the CB and equipment. A mathematical formulation was
also developed to obtain the optimum suspension frequency of DVA. The experimental
finding was used to validate the mathematical model and dynamic simulation. Then, the
relationship between eigenmodes of the passenger CB and equipment under the chassis is
analyzed. Finally, an optimized dynamic vibration absorber (DVA), taking account of the
geometric filtering effect, is proposed to suppress the CB resonant vibration.

2. Mathematical Model of the Rigid-Flexible Coupled Vehicle System

A full-size ICF coach of an Indian railway is considered for the modeling and sim-
ulation analysis. The rail vehicle’s mathematical model includes the CB, two bogies,
four-wheel sets, and suspended equipment, as shown in Figure 1. They are mechanically
linked in the primary and secondary suspension systems via springs and dampers [37]. An
Euler-Bernoulli type free-free equivalent beam describes the CB with a constant section and
evenly distributed mass.

Figure 1. Schematic model of the passenger rail vehicle ICF coach.
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2.1. Modeling of Flexible Car Body

The CB is represented as a beam of Euler-Bernoulli type, with evenly distributed mass.
The beam parameters are defined in terms of the vehicle’s body, where mc (37,960 kg) is the
vehicle body mass, the elastic modulus is E, and the moment of inertia for the section is
I (= 1,473,430 kg m2) [38]. The bounce and pitch CB vibration modes, as well as the first CB
bending eigenmode in a vertical plane [39], are considered, and the vehicle body equation
of motion for the general form is given in (Equation (1)).

EI
∂4wc(x, t)

∂x4 + µI
∂5wc (x, t )

∂x4∂t
+ ρc

∂2 wc(x, t)
∂t2 =

2

∑
i=1

Fciδ(x− li) +
n

∑
k=1

Fek δ( x− lek) (1)

where δ (.) is the Dirac delta function, li is the distance (I = 1; 2), Fci stands for the forces
derived from the secondary suspension corresponding to bogie i, and Fek represents the
forces coming from the suspension of equipment (Equations (2) and (3)).

Fci = −2cc

(
∂wc(li, t)

∂t
− .

zbi

)
− 2kc(wc(li, t)− zbi) (2)

Fek = −2cek

(
∂wc(lek, t)

∂t
− .

ze

)
− 2kek(wc(lek, t)− zek) (3)

where cc (0.035 MN-s/m) and kc (35 MN/m) are the damping and stiffness coefficients of
the secondary suspension system [38]. The CB vertical movement wc(x; t) comes from the
superposition of the two rigid vibration modes, namely bounce and pitch, with the first
bending mode [39]:

wc ( x, t ) = zc (t) +

(
x− Lc

2

)
θc(t ) + Xc (x) Tc(t ) (4)

where Tc (t) is the time coordinate of the first bending eigenmode in a vertical plan, and
Xc(x) stands for its eigenfunction.

Xc ( x ) = sin β x + sinh β x − sin β Lc − sinh βLc

cos β Lc − cosh β Lc
( cos βx + cosh βx) (5)

With β = 4
√

w2
c ρc /(E I) and cos βLc cosh βLc − 1 = 0.

When using the modal analysis approach and considering the eigenfunction’s orthog-
onality property in the vertical bending of a vehicle body, Equation (1) becomes three
two-order deferential equations with ordinary derivatives, representing the bounce, pitch,
and bending movements in the CB [40–47].

mc
..
zc =

2

∑
i=1

Fci+
n

∑
k=1

Fek (6)

Jc
..
θc =

2

∑
i=1

Fci

(
li −

Lc

2

)
+

n

∑
k=1

Fek

(
lek −

Lc

2

)
(7)

mmc
..
Tc + cmc

.
Tc + kmcT2 =

2

∑
i−1

FciXc(li) +
n

∑
k=1

FekXc(lek) (8)

where mmc, kmc, cmc are CB modal mass, damping, and stiffness, which are shown in
Equation (9).

kmc = EI
L∫

0

(
d2Xc

dx2

)2

dx, cmc = µI
L∫

0

(
d2Xc

dx2

)2

dx, mmc = ρc

L∫
0

X2
c dx (9)
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2.2. Modeling of Bogies

For each bogie, a single mode of vibration is considered, namely bounce zbi with i = 1; 2.
The pitch movement of the bogie is neglected since it is not transmitted to the vehicle’s CB
in this model. The equations for the bounce movements of the bogies are

mb
..
zb1 =

2

∑
j=1

Fbj − Fc1 (10)

mb
..
zb2 =

4

∑
j=3

Fbj − Fc2 (11)

where Fbj stands for the forces coming from the primary suspension corresponding to axle
j as follows:

Fb1,2 = −2cb(
.
zb1 −

.
η1,2)− 2kb(zb1 − η1,2) f or j = 1, 2 (12)

Fb3,4 = −2cb(
.
zb2 −

.
η3,4)− 2kb(zb2 − η3,4) f or j = 3, 4 (13)

where cb (0.0589 MN-s/m) and kb (0.42375 MN/m) are the damping and stiffness coeffi-
cients of the primary suspension system. The suspended equipment has bounce movements
that are described in the following equation:

mek
.
zek = −

n

∑
k=1

Fek (14)

The system equations can be written as the following

M
..
p + C

.
p + Kp = P

..
η + Rη (15)

The inertia, damping, and stiffness matrices are M, C, and K, respectively, while the
track displacement and velocity input matrices are P and R.

3. Finite Element Analysis of Car Body
3.1. Finite Element Model of Car Body

A 3D finite element model of CB created in the ANSYS software (Figure 2) was used
for modal analysis of the ICF vehicle. A total of 1658 shell elements and 1325 beam elements
were used to discretize the geometry. The contact regions were identified: an interface
between the car body and the center pivot top and an interface between the center pivot top
and bottom. Moreover, other equipment are connected. There are a total of 598,273 nodes
and 112,477 items in this structure. A mesh quality check employing orthogonal and
skewness quality, as well as a mesh metric, is shown in Figure 3.

Figure 2. Mesh model of ICF passenger coach in ANSYS.
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Figure 3. Mesh quality check using orthogonal and skewness quality.

A mesh metric was validated using orthogonal quality and skewness quality. A
significant (approximately 70%) number of the total elements lie in the ‘perfect’ zone,
followed by the remaining (approximately 27%) number in the ‘good’ zone and a meager
amount (approximately 3%) in the acceptable zone. A negligible number of elements fall in
the ‘bad zone’, i.e., from 0.01–0.001. Since there are no elements in the ‘unacceptable zone’
of 0.001–0, the minimum value obtained is 0.0117. Thus, the mesh quality has passed the
orthogonality test.

The skewness quality of the discretized elements is expressed in terms of the per-
centage of volume/area of the total elements. The skewness quality of nearly 50% of the
elements is ‘excellent’. In contrast, nearly 28% of the elements have ‘very good’ skewness
quality, followed by nearly 12% with a ‘good’ skewness quality tag. Nearly 9% are tagged as
ones with ‘acceptable’ quality levels. A mere 1% fall into the category of ‘bad’, with highly
negligible elements at an ‘unacceptable’ level of ‘1’. Thus, the skewness quality of the
elements is to be hailed. The bulk of the elements is in the perfect zone, with only a minor
percentage in the unpleasant zone, as can be shown. As a result, the mesh’s orthogonal and
skewness quality tests were both passed.

3.2. Modal Analysis of the Car Body

Modal analysis is employed to solve the linear system’s motion equations without
damping and to find the system’s natural frequency [48–50]. Analytical approaches could
not precisely determine the natural frequency due to the complicated construction of the
CB [37,51–62]. However, finite element methods might be used to solve it [3]. The solution
of the free vibration of the system (See Equation (15)), ignoring the structural damping on
the modal frequency, is given by:

x = δ sin(ωt + φ0) (16)

where φ0 and ω are the initial phase and circular eigenfrequency, respectively, and δ is a
magnitude vector. Equations (15) and (16) are solved to seek non-zero solutions. For such
solutions, ∣∣∣K−ω2M

∣∣∣ = 0 (17)

The eigenvalues and corresponding eigenvectors of Equation (17) gave the fundamen-
tal modes of the system.
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4. DVA Theory for Euler-Bernoulli Beam

The CB and suspended equipment formed a linked system, which varies from a single
CB. It was critical to incorporate the additional mass, which may be considered DVA, while
designing the CB as considered by Shi et al. [13]. Because the spring-mass model could not
manage the flexible vibration of the CB, the Euler-Bernoulli beam model was adopted [20].

4.1. Modal Analysis of a Uniform Euler-Bernoulli Beam

In Figure 4, L is the length of the beam, EI represents the flexural rigidity, ρA is the
mass per unit length in which ρ represents the density, and A represents the cross-sectional
area [63]. The micro-element movement equation and the beam moment equilibrium
equation are as follows.[

τf (x, t) +
∂τf

∂x
dx
]
− τf (x, t) + p(x, t) = ρAdx

∂2z
∂t2 (18)

[
M(x, t) +

∂M
∂x

dx
]
−M(x, t) +

[
τf (x, t) +

∂τf

∂x
dx
]

dx + p(x, t)dx
dx
2

= 0 (19)

Figure 4. Euler-Bernoulli beam modal analysis [13].

Equation (20) is considered to explain the proper differential equation for the uniform
Euler beam:

∂2

∂x2

[
EI

∂2z(x, t)
∂x2

]
+ ρA

∂2z(x, t)
∂t2 = p(x, t) (20)

The external force is zero for determining the eigenfrequencies, hence p (x, t) = 0.
Assuming that the solution is harmonic,

z(x, t) = Y(x) sin(ωt− α) (21)

where ω was the angular frequency and α was some phase constant, for Equation (22) gives:

∂2

∂x2

[
EI

∂2Y(x)
∂x2

]
sin(ωt− α) + ρA(−ω2)Y(x) sin(ωt− α) = 0 (22)

Substituting β4 =
ρAω2

EI
(23)

The following fourth-order differential equation for the vibration of the beam was
obtained by decreasing the sin (ωt-α) terms:

d4Y(x)
dx4 − β4Y(x) = 0 (24)
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When r = ±β or r = ±iβ, a solution for Equation (24) in the form Y(x) = erx would
satisfy the differential equation [13]. Equation (24)’s general solution yielded the following
shape function:

Y(x) = Asinh(βx) + B cosh(βx) + C sin(βx) + D cos(βx) (25)

The boundary conditions determine the eigenfrequencies. If x0 = 0 or x0 = L, the
endpoints of the beam have no momentum nor shear force in the free-free situation.

− EI
∂2z(x, t)

∂x2

∣∣∣∣
x=x0

= 0,− ∂

∂x

[
EI

∂2z(x, t)
∂x2

]∣∣∣∣
x=x0

= 0 (26)

Boundary conditions could be written as:

z′′ (0, t) = 0
z′′ (L, t) = 0
z′′′ (0, t) = 0
z′′′ (L, t) = 0

⇒
Y′′ (0) = 0
Y′′ (L) = 0
Y′′′ (0) = 0
Y′′′ (L) = 0

 (27)

where the prime denotes a partial derivative of x and L denotes the length of the beam. The
above equations become the following with Equation (25) inserted as:

0 1 0 −1
sinh(βL) cosh(βL) − sin(βL) − cos(βL)

1 0 −1 0
cosh(βL) sinh(βL) − cos(βL) sin(βL)




A
B
C
D

 =


0
0
0
0

 (28)

By increasing the determinant provided in Equation (28), an algebraic equation known
as the frequency equation was discovered. The frequency equation of the final form
becomes the following after various simplifications.

1− cos(λ) cosh(λ) = 0 (29)

where λ = βL. The lowest solution corresponds to a rigid CB movement since the beam was
free-free; that is, floating in space. λ1 was the bending mode. The results might be broadly
represented as:

λi ≈
(

n +
1
2

)
π, n ≥ 1 (30)

Combining Equations (25) and (28) yields the form function, which is described as:

Yi(x) = cosh βix + cos βix−
cosh λix− cos λix
sinhλix− sin λix

(sinhβix + sin βix) (31)

where βi = λi/L.
The beam’s normal modes are orthogonal and have been normalized in such a way that:

L∫
0

Yi(x)Yj(x)dx =

{
L
0

i = j
i 6= j

}
(32)

It can be shown that:

L∫
0

(
d2Yi
dx2

)
dx = βi

4L (33)
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4.2. Optimum Suspension Frequency of DVA

Based on the DVA principle, the equipment m was represented as a vibration absorber.
The absolute coordinate of the motion of the absorber mass was z2, and the suspension
stiffness was k [11–14]. The beam and a simple mass were then connected to form a coupled
system, as shown in Figure 5. The distance between the suspended equipment and the
car body end is assumed to be x, and the displacement is represented by z(x, t). Figure 5
depicts the overall model’s dimension and coordinate definition [13,39,64]. T and U denote
the kinetic and potential energy of the linked system, respectively.

Figure 5. Model of the DVA applied on a flexible beam [13].

T = 1
2 m

.
z2 +

1
2 ρA

L∫
0

.
z2
(x, t)dx,

U = 1
2 k[z(x, t)− z2]

2 + 1
2 EI

L∫
0

(
d2z
dx2

)2

dx

 (34)

The virtual work done by a harmonic externally force p(x) eiωt is:

δW =

L∫
0

p(x)eiωtδzdx (35)

Here, only one simple mode of beam flexure will be considered such that:

z(x, t) = Y1(x)z1(t), (36)

where Y1(x) is the classical beam mode associated with the first natural frequency of the
beam, and z1(t) is the corresponding modal coordinate. Substitution of Equation (36) into
Equations (34) and (35) gives the appropriate differential equation of T, U, and δW as

T = 1
2 m

.
z2

2
+ 1

2 ρAz1
2

L∫
0

Y1
2(x)dx,

U = 1
2 k[Y1(x)z1 − z2]

2 + 1
2 EIz1

2
L∫

0

(
d2Y1
dx2

)
dx,

δW = δz1

L∫
0

p(x)Y1(x)dxeiωt


(37)

where ε indicates the strength constant of the vertical force:

ε =
1
2

m
.
z2

2 +
1
2

ρALz1
2 (38)
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Moreover, using Equations (32), (33) and (38), the integrals of Equation (37) can be
evaluated so that the energies become:

T = 1
2 m

.
z2

2 +
1
2 ρALz1

2,
U = 1

2 k[Y1(x)z1 − zz]
2 + 1

2 EIβ1
4Lz1

2,
δW = εeiωtδz1

 (39)

If z1 and z2 are considered generalized coordinates, and their associated generalized
forces are designated as τf 1 and τf 2, then:

δW = τf 1δz1 + τf 2δz2 (40)

When Equation (40) is compared to Equation (39), the equation of generalized force is
denoted as:

τf 1 = εeiωt, τf 2 = 0 (41)

The coupled system’s Lagrange equation is written as:

Γ = T −U =
1
2

m
.
z2

2 +
1
2

ρAL
.
z1

2 − 1
2

k[Y1(x)z1 − z2]
2 − 1

2
EIβ1

4Lz1
2 (42)

Substitution of relations Γ, τf 1, and τf 2 into the second Lagrange’s equation gives:

d
dx

(
∂Γ
∂

.
zi

)
− ∂Γ

∂zi
= τf i, i = 1, 2 (43)

Now, a set of differential equations is obtained in matrix form:(
ρAL 0

0 m

){ ..
z1..
z2

}
+

(
kY1

2(x) + EIβ1
4L −kY1(x)

−kY1(x) k

)
x
{

z1
z2

}
=

{
ε
0

}
eiωt (44)

The amplitude-frequency characteristics R (ω) might be determined between the
generalized coordinate’s z1 and the generalized force τf 1 = εeiωt as a result of the vibration
analysis of amplitude-frequency characteristics of discrete vibration systems.

R(ω) =
k−mω2

ρALmω4 −ω2[ρALk + mkY1
2(x) + mEIβ1

4L] + kEIβ1
4L

(45)

To generalize the analysis, dimensionless quantities can be defined as follows.

Dimensionless frequency g2 = ω2/
(

EIβ4
1

ρA

)
Mass ratio u = m/ρAL

Tuning ratio f 2 =
(

k
m

)
/
(

EIβ4
1

ρA

)
Equation (45) may be replaced with these dimensionless parameters to get the dynamic

amplification factor of generalized coordinate z1 to generalized force τ1.

A(g) =
1

EIβ1
4L

[
f 2 − g2

g4 − g2{1 + f 2[1 + uY1
2(x)]}+ f 2

]
(46)

The exception that the mass ratio has been substituted by uy2
1. (x), the approximate

frequency response function described in Equation (46), was of the same shape as that
studied by Snowdon [65]. The optimal tuning ratio in this scenario is as follows:

fopt =
1

1 + uY2
1 (x)

(47)
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5. Validation of Numerical Modeling

An on-track vibration test was designed and carried out to understand the vibration
transition between the two suspension systems and the coupled vibrating between the
car body and its suspended equipment. Accelerations on the wheelset axle-box, bogie
frame, and connections between the car body and its suspended equipment were measured
through accelerometers and displacement sensors connected to the data acquisitions system
in the equipment cabin through cables [66–69]. The on-track vibration test was designed for
long-term and continuous vehicle dynamics recording. Based on the long-term dynamic’s
performance test for the prototype coach, the vibration characteristics of the equipment are
analyzed and shown in Figure 6. The lateral and vertical accelerations of the equipment
and the car body under different bogie running performances are measured, and then the
spectrum composition and the vibration source are analyzed. The rolling stock is run on a
nominated section of the IR track between Mathura and Palwal at maximum speeds of 10%
higher than operating speeds. The oscillation trials were performed on a maintained track
at speeds ranging from 110 to 180 km/h, respectively [70–74].

Figure 6. Field test line diagram of ICF coach. (a) ICF coach; (b) sensor location.

The sampling frequency of the frame acceleration is 2 kHz, and the passband frequency
range is 0.5–12 Hz. The sampling frequency of the equipment acceleration is 1 kHz, and
the passband frequency range is 0.1–200 Hz. The numerical model is validated through the
oscillation trial conducted by RDSO on the actual condition. In particular, the ride comfort
for passengers of the proposed numerical passive model is compared with the experimental
results obtained by RDSO. The oscillation trials are on track tests with a prototype coach
equipped and instrumented for recording acceleration, displacement, speed, and events.

During oscillation trials, the maximum vertical and lateral ride index in empty and
loaded conditions were found. The ride index was calculated with ORE C 116 and RDSO
methods. The value of the ride index as per ORE C 116 was less than 2.75 and 3.25 (prefer-
able) or 3.50 maximum as per RDSO criteria. The riding behavior of the same was found
satisfactory. However, the ride index values need to be improved. Numerical simulation
is performed using both the methods, i.e., ORE C 116 and RDSO Sperling index, by con-
sidering the RDSO test track condition for empty and loaded vehicles. Figure 7 shows the
comparison between the experimental and numerical ride index under empty and fully
loaded conditions, respectively. Moreover, it can be seen that the results obtained from the
numerical analysis of the proposed model have reached a good overall agreement with
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the experimentally measured results. The variation in the ride index is mainly due to the
elements not considered to reduce the complexity of the mathematical model.

Figure 7. Comparison of numerical and experimental analysis for loaded conditions.

6. Result and Discussion

A passenger rail vehicle CB consists of different equipment suspended under the
chassis, consisting of tons of kilograms. Hence the relationship between suspended equip-
ment and CB modes is developed. The vertical motion equations of the coupled system
were given in Section 2 and are considered to analyze the response of the system and the
influence of suspended equipment parameters on the CB modes.

6.1. Car Body Modes

The influence of suspension parameters on the modal vibration of the CB was analyzed
using FEA and MATLAB. Both the rigid and elastic suspension cases were investigated to
depict the vibration regularity clearly and intelligibly. The rigid way of attaching types of
equipment to the CB could be performed by altering or welding the hardware underneath
the CB. Moreover, the flexible way is to utilize detachment segments, such as the rubble
component, to join these two sections. The deformation of suspended equipment was then
obtained using FEA for rigid and flexible structures. The eigenmode obtained from the
finite element model of the passenger CB showed the deformation at each mode given in
Figure 8. The deformation of the CB was mainly affected by its frame and side walls and its
suspension parameters. The comfort level and stability of a passenger coach were affected
by its deflections. Mode shape was obtained up to a frequency of 25 Hz. The various mode
shapes and corresponding frequencies are shown in Table 1.

Table 1. Modal frequency and mode shapes for passenger CB with the initial location of the equipment.

Mode
Number Mode Shape Description Frequency

(Hz) Effect

1 Lateral swaying of sidewalls 8.64 It affects the lateral direction due to the deflection
of sidewalls

2 Rhombic mode or diagonal distortion 8.79 It affects the sidewall via displacement due to
excitation frequencies

3 Vertical bending mode 12.14 It is an effect in the vertical vibration of the CB

4 Lateral shell breathing with rear and front walls swaying 14.25 It affects the end and shell of the longitudinal walls was
also breathing, which caused an opposed motion

5 Lateral and rolling swaying at central length 16.87 It affects the rolling motion of the CB
6 Torsion and longitudinal diagonal distortion of front wall 19.87 Coupled lateral and longitudinal vibration together
7 Torsion and longitudinal diagonal distortion of rear wall 20.24 Coupled lateral and longitudinal vibration together
8 Shell breathing in longitudinal and lateral directions 22.14 A high rolling motion was experienced by a CB
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Figure 8. Modal frequency and mode shapes for passenger car body of ICF coach.

6.2. Optimum Suspension Frequency of Equipment’s

The CB chassis has various kinds of equipment suspended, i.e., waste discharge unit- I
(E1), battery Box (E2), transformer (E3), braking Unit (E4), water Tank (E5), pump equipment
(E6), and waste discharge unit (II) (E7). Their masses and positions were different and
connected to the CB chassis via rubber elements whose properties were discrepant for various
equipment. The stiffness of rubber elements would affect the suspension frequency directly,
which should be designed according to Equation (47), and the shape function of the CB could
be calculated from Equation (25). The location of the equipment’s comparison from the CB
center (Lc) before and after optimization is shown in Figure 9.

Figure 9. Location of the equipment’s comparison from the CB center (Lc) before optimization and
after optimization.
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Before the calculation, the FEM was applied to obtain the modal modes of the CB
without any equipment mounted. For example, taking an ICF passenger coach, there were
mainly five mounted devices on the chassis with assorted positions. The devices weigh
about 4.15 to 0.16 tons (see Figure 10), varying from the heaviest to the lightest and mass
ratio, shape function, and optimized position from CB center and frequency ratio and
optimum frequency of different equipment from E1 to E7. It was found that equipment
suspension frequencies were close to the bending mode frequencies of a CB.

Figure 10. Mass and mass ratio of the suspended equipment.

6.3. Effect of Suspension Equipment on Car Body Transmissibility and Vertical Bending Frequency

The effect of suspended equipment, i.e., elastic, on CB mode is evaluated and shown in
Figure 11a,b. The rigid suspended equipment is equal to increasing the mass of the CB with-
out reducing its rigidity. This reduces the first-order bending frequency while increasing
transmissibility. As the suspension frequency rises, so does the bending frequency, and the
low-order bending frequency approaches that of the absence of suspended equipment. The
high-order bending frequency approaches infinity and finally equals the bending frequency
under stiff suspension. However, when the suspension frequency changes, so does the
transmissibility. When the suspension frequency increases, the LF transmissibility increases
while the high-frequency transmissibility decreases.

Figure 11. Elastic suspended equipment effect on CB mode due to equipment mass. (a) Transmissi-
bility, (b) VBF.
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6.4. Effect on Car Body Mode Due to the Optimal Frequency of Suspended Equipment

The dominating elastic deformation occurred up to a frequency range of 20 Hz. Hence,
it was crucial to optimize these modes to get the better ride quality of the vehicle and
ride comfort for human passengers. The relationship was developed between CB modal
frequency and suspension parameters of underframe equipment to optimize those. The
optimum suspension frequency of the equipment for suspension parameters is shown in
Figure 12. The effect of that suspension parameter played a significant role in reducing the
flexible vibration of the CB. Heavy equipment was mounted in the center and followed by
light equipment, as heavy equipment played an essential role in surpassing the vibration.
However, since excitation frequencies were likely to be in the range of 5–9 Hz, the modal
analysis revealed two frequencies, i.e., 8.64 and 8.79 Hz. Moreover, the third mode was a
vertical mode at a frequency of 12.14 Hz. Those modes showed a possibility of resonance
in the vertical direction. Hence, the frequency needs to alter away from 5–9 Hz to avoid
resonance. DVA equipment was optimized to improve the model frequency of the 1st, 2nd,
and 3rd modes from 8.64 to 9.57 Hz, 8.79 to 10.63 Hz, and 12.14 to 14.06 Hz, respectively, to
avoid the possibility of resonance, as shown in Figure 12. Moreover, it concluded that the
% change in the model frequency of CB due to suspended equipment was about 13.65% for
vertical bending (mode 3).

Figure 12. Effect of suspension parameter on the modal frequency of a CB.

Optimizing the DVA parameters showed an effect on avoidance of the vibrating
resonance. Moreover, the optimization showed a change of about 9.71% in the first mode
and 17.30% in the second mode of diagonal distortion and shell breathing in a lateral
direction, respectively. A significant effect of 13.65% in mode frequency improvement is
seen in the vertical mode. Similarly, improvement in the flexible variation was obtained by
optimizing various equipment locations under the CB frame; about 23.68%, 26.87%, and
25.68% of the fourth, fifth, and sixth modes, respectively. Those optimized locations give
aid in designing lighter structures for the passenger CB.

7. Conclusions

This paper presented a rigid-flexible 3D rail vehicle model that analyzed the impacts
of different equipment suspended under the chassis based on the CB mode’s mass, location,
and frequency. The proposed model was applied to study the effects of car body flexibility
on the dynamic performances of a rail vehicle. Moreover, the rigid-flexible rail vehicle
model was validated by experimental investigation. The analysis shows that equipment
with a considerable mass should be suspended near the center of the CB to optimize the
frequency of high-frequency bending. The optimization of DVA shows a significant im-
provement in terms of resonance, i.e., 9.71% for the first mode, 17.30% for the second mode,
and 13.65% for the first vertical mode. The weight of the equipment has a significant impact
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on the first bending frequency. The frequency of heavy, hanging equipment should be low
enough to promote high-frequency transmissibility and improve vibration characteristics.
The frequency of suspended equipment should be lower than the bending frequency of
the CB.
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