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ABSTRACT 27 

A set of shallow-water equations (SWEs) based on a ̂ˆk  Reynold stress model is established 28 

to simulate the turbulent flows over a complex roughness bed. The fundamental equations are 29 

discretized by the second-order finite-difference method (FDM), in which spatial and temporal 30 

discretization are conducted by staggered-grid and leap-frog schemes, respectively. The 31 

turbulent model in this study stems from the standard ̂ˆk  model, but is enhanced by replacing 32 

the conventional vertical production with a more rigorous and precise generation derived from 33 

the energy spectrum and turbulence scales. To verify its effectiveness, the model is applied to 34 
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compute the turbulence in complex flow surroundings (including a rough bed) in an abrupt 35 

bend and in a natural waterway.  The comparison of the model results against experimental data 36 

and other numerical results shows the robustness and accuracy of the present model in 37 

describing hydrodynamic characteristics, especially turbulence features on the complex 38 

roughness bottom.  39 

Keywords: Energy spectrum, Roughness bed, SWE model, Shallow flows, Turbulent flows 40 

 41 

1 Introduction 42 

Large and small turbulent swirling flows are often clearly observable when dealing with 43 

hydraulic structures in rivers and coastal areas and they are a key factor that influence the 44 

frequency and magnitude of natural processes such as the sediment transport, mixing of 45 

pollutants and/or riverbed deformation. Therefore, to better manage the rivers and design 46 

reliable hydraulic structures, it is fundamental to understand these features and facilitate their 47 

predictions. However, certain external factors (e.g. various and inconsistent boundary 48 

conditions) make the characterizations of turbulent flows very challenging. To the author’s 49 

knowledge, there is not yet a fully accurate, time-convenient, or general numerical model to 50 

completely replicate the turbulent flows and their impacts over a natural roughness bed. Despite 51 

that, effective simulations of the turbulent flow for some specific scenarios have been made due 52 

to the rapid progress on the numerical modeling techniques and the computing powers.  53 

 54 

The nature of turbulence is fundamentally three-dimensional (3D). Historically, 3D approaches 55 

on the turbulence modeling mainly included the Direct Numerical Simulation (DNS), Large-56 

Eddy Simulation (LES), and Reynolds-Averaged Navier-Stokes (RANS) modeling [1-4]. 57 

Along the rivers and coastal regions, the flow domain is quite complex and spacious, and hence 58 

to characterize the flow structures it would be excessively time-consuming to apply any of these 59 

three approaches, which would require a large number of grid nodes in order to provide the 60 

accurate results [5]. The two-dimensional (2D) Shallow Water Equations (SWE) coupled with 61 

the benchmark turbulence closure model is much faster and enables the interpretation of 62 

turbulent characteristics using a smaller vertical length scale (z) as compared with the two 63 

horizontal ones (x and y) in those regions [6-9]. Furthermore, to obtain more accurate and 64 

repeatable results, it is also critical to select the appropriate coefficients in these turbulence 65 

closure equations. 66 

 67 
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2D shallow-turbulence flow models have been extensively developed over the last decades. 68 

Most of the available ones are based on the Boussinesq approximations. For example, the depth-69 

averaged eddy viscosity model suggests that eddy viscosity is the simple product of the bed 70 

shear velocity and water depth [10] and the depth-averaged mixing length model accounts for 71 

the influence of vertical turbulence [11]. Rastogi and Rodi [12] established the 2D standard 72 

depth-averaged ̂ˆ k  turbulence model based on the 3D version described by Launder and 73 

Spalding [13]. To widen the range of practical applications, some coefficients in the model 74 

developed by Rastogi and Rodi were modified and new ̂ˆ k  models were introduced, as 75 

presented in the other studies [14-18]. The standard ̂ˆ k  model has been demonstrated to 76 

provide satisfactory results after numerous comparisons with the measured data [11,14] and it 77 

is also relatively simple to use and very fast. Despite this, more progresses have been made in 78 

this field and recently, Cea et al. [11] established a depth-averaged algebraic stress turbulence 79 

model (DASM) to solve a single transport equation for each Reynolds stress without requiring 80 

an isotropic assumption.  81 

 82 

For the shallow turbulent flows on a roughness bed, the vertical velocity gradient distribution 83 

is the main source of turbulence. The accuracy of its depth-averaged process directly determines 84 

the numerical performance of the aforementioned ̂ˆ k  models. To date there is still area for 85 

improvement due to the fact that preliminary results of the standard ̂ˆ k  model only partially 86 

agree with the experimental data [12]. According to Rastogi and Rodi [12], this may be related 87 

to the bottom shear stress, via the friction velocity, under the assumption of similarity in the 88 

vertical velocity profiles. The depth-averaging process is a consideration only of the 89 

macroscopic effects of the bottom roughness on the turbulent generations. In the classic 90 

“cascade” theory of energy introduced by Richardson [19], the turbulent motion is a process of 91 

energy transfer among various scales including not only the macroscale, but also various 92 

microscales [2, 20, 21]. The contribution of these features should be rigorously and precisely 93 

replicated within turbulent closure models. 94 

 95 

The turbulent structure of various scales based on the framework of energy cascade can be 96 

divided into the energy-containing, inertial, and dissipative regions, respectively. The kinetic 97 

energy, produced in the energy-containing region, is considered to be transferred by inertial 98 

forces to smaller scales until the energy is typically dissipated by the molecular viscosity [2]. 99 

The energy spectrum in the inertial region has a universal statistical form, i.e. the Kolmogorov 100 

-5/3 spectrum [22], and can be applied to larger or smaller wave numbers as the Reynolds 101 

number increases [8]. Nezu and Nakagawa [20] analogized the energy transfer processes to 102 
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open-channel flows and divided the whole water depth into the three regions: wall, 103 

intermediate, and free-surface zones. A universal log-law in the intermediate region was 104 

verified by the extensive experimental and numerical results and they confirmed this can be 105 

applied to a wider range of bed roughness and Reynolds numbers.  106 

 107 

Taking into considerations all of these previous works and the new insights that have been 108 

provided, this study aims to improve the performance of the standard ̂ˆ k  model to 109 

characterise the generation of turbulent conditions at various scales over complex roughness 110 

beds. The numerical SWE model utilised in this work includes a second-order leap-frog finite-111 

difference method (FDM) and it is built into a staggered-grid system. This model was initially 112 

developed by Cho [23] to calculate the evolution of the long waves and was further extended 113 

by Lin [24] to simulate the turbulent structures within an experimental zone. Lately this 114 

turbulence model has been widely used to compute the complex flows induced by irregular 115 

geometries and the results obtained have proven that it is a robust numerical technique [25-27]. 116 

In the present study, we emphasized the improvement of the model for application to the 117 

complex roughness beds. 118 

 119 

The paper is organized as follows: Section 2 presents the description of the mathematical and 120 

numerical shallow turbulence model considered for this study, clarifying various assumptions 121 

and hypothesis: the governing equations are presented in Section 2.1, then the vertical turbulent 122 

production is formulated in Section 2.2 by incorporating the energy transfer information 123 

between various scales into PkV and PεV based on the two universal semi-theoretical formulas 124 

of Kolmogorov -5/3 scaling law and log-law. Section 3 includes the validation of the numerical 125 

model against the experimental data collected on a flume, where varying roughness on the bed 126 

was tested with a complex sharp bend. Finally, to further demonstrate the potentials of the 127 

model, its performance was more vigorously examined in the transport of moraine along the 128 

Yangtze River under dry seasons, and the results are explained in Section 4. Section 5 provides 129 

a brief summary and concluding remarks of the whole study. 130 

2 Numerical Model  131 

2.1 Governing equations 132 

This section presents the governing equations and the boundary conditions utilised in this study. 133 

2.1.1 Shallow-water equations 134 

The time-dependent SWEs are the fundamental hydrodynamic equations described in this 135 
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section. By integrating the Reynolds Averaged Navier-Stokes (RANS) equations along the 136 

entire water depth and assuming the vertical flow to be nearly-uniform and pressure 137 

distributions to be hydrostatic, the SWEs can be given as follows [25-27]: 138 
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where  bzH   is the water depth, in which   and bz  are the free surface and bed elevation, 142 

respectively (Fig. 1);  HUP   and  HVQ   are components of unit volume flux, in which 143 
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averaged turbulent energy; 
xyyxyyxx TTTT and,,,  are the depth-averaged effective stresses 146 

expressed as follows [25-26]: 147 
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where t ˆand  are the kinematic viscosity and the depth-averaged turbulent viscosity, 151 

respectively, as defined in Eq. (4).  152 

 153 

f  in Eq. (1) is the bed friction factor defined according to parameters for the smooth and rough 154 

beds previously obtained [26, 28], such as Chézy-Manning’s and Altsul’s formula: 155 

31

28 
H

gm
f                                                                                                                                  (3a) 156 
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where m  is Manning’s roughness coefficient; sk  is bed roughness height, which in this study 159 

it is considered to be the median diameter of the bed material; R  is the hydraulic radius (the 160 

water depth, in this study); and Re is the Reynolds number. 161 

2.1.2 Depth-averaged ̂ˆ k  closure equations 162 

The depth-averaged velocity field in Eq. (1) can be solved when t̂  is determined. The 163 

specification of t̂  is assumed to be mathematically analogous to the turbulent viscosity t  in 164 

the standard k  model [25], and can be expressed as follows: 165 
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where   21 and,,, CCC k
 are the empirical constants and their values, as recommended by 170 

Launder and Spalding [13], are 171 

92.1,44.1,3.1,0.1,09.0 21    CCC k
                                                                    (6) 172 
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 176 

2.2 Vertical turbulent production kVP  and VP  177 

kVP  and VP  in Eq. (5) are the components generated by turbulence and can be defined as the 178 

tensor product of the horizontal Reynolds stress and vertical velocity gradient, respectively. In 179 

the context of homogeneous, open-channel turbulence, they represent all the turbulent energy 180 

produced. The corresponding expressions to calculate their magnitude were deduced by Rastogi 181 

and Rodi [12], although their derivations seemed to have overgeneralized the generation of 182 

vertical turbulent features.  183 

 184 

According to the theory of cascade energy, which has been proven and validated against 185 

extensive experimental studies, the turbulent motion is a one-way energy transfer process from 186 

large scale eddies to smaller ones [2]. The theory can also be applied to the transfer of energy 187 

from the bottom of the river to the free surface [20]. To rigorously and precisely quantify the 188 

energy transfer across various scales, this study presents an additional model that estimates the 189 

generation of vertical turbulent features in a different manner, considering the interaction 190 

between points at different levels and the total energy spectrum. Bottom roughness elements 191 

markedly affect the amount of turbulence. Turbulence tends to be isotropy as the bed roughness 192 

and Reynolds numbers increase [2, 20,29]. Cea et al. [11] found a similar degree of accuracy 193 

between the ̂ˆ k model, which is based on the concise isotropic hypothesis, and the DASM 194 

model, which includes complex model structures considering anisotropy. Based on this 195 

assumption, below are listed the steps selected to deduce the expressions of kVP  and VP . 196 

2.2.1 Mean velocity profiles 197 

For a uniform and fully-developed turbulent flow in a wide open channel, the Reynolds 198 

equation in the z-direction (as derived from the Navier-Stokes equations) is reduced to: 199 
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where dzud  is the viscous stress; wu    is the Reynolds stress;   bu *  is the 201 

friction velocity, in which b  is the bed shear stress at 0z . 202 

 203 

By considering the Prandtl’s mixing-length hypothesis,   can be expressed as the product of a 204 

velocity scale *u  and a length scale ml , in which *u  is specified as 21* wuu  . From Eq. (8), 205 
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the following equation could be obtained: 206 
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where *uuu   and * kz zu    are the dimensionless velocity and z-coordinate 208 

normalized by the viscous length *k u   , respectively; *m m kl l u    is the dimensionless 209 

mixing-length. If appropriate specification of 
ml  over the whole depth can be obtained, Eq. (9) 210 

can be easily integrated to yield the distribution of u . 211 

 212 

In various regions from 0z  to z , the effect of dzud  and wu    on the 213 

velocity distribution is different. According to their contribution to the turbulent structure, the 214 

vertical turbulence fields of u  are divided into two regions: the inner region and the outer 215 

region [20]. It is assumed that the viscous effect dominates the inner region (in general, 216 

 2.051.0 Hz ), so the length scale can be denoted by  . The component w  tends 217 

towards unity and 
ml  can be specified as   zlm   in this region, so the solution to Eq. (9) (the 218 

“log-law”), can be obtained as follows: 219 

Azu   ln1


                                                                                                                   (10) 220 

where 0.40 0.43   and 2.5B  are the empirical constants [2, 30]. 221 

 222 

It is assumed that the viscous contribution in the outer region (generally,  2.051.0 Hz ) to 223 

the turbulent structure is negligible, and that 
ml  no longer depends on  . It is challenging to 224 

solve Eq. (9) because there is no universal representation of 
ml . The wake law provided by 225 

Coles [31], is typically used to extend the log-law to the outer region. The profile of u  in this 226 

region can be approximated as follows: 227 
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where   is Coles’s wake-strength parameter. П has been investigated in various studies where 229 

its value has been suggested to be around 0.08-0.20. П also shows no distinct value for flows 230 

with different bed roughness conditions [32]. Considering the comparisons made by Pope [2] 231 

and Nezu and Nakagawa [20], the profile of u  can be effectively approximated by Eq. (11) 232 

over the whole depth except in a small region near the bed. In the core region of closed-bed 233 
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flow (e.g., 26z ), 
ml  is strongly affected by the Reynolds number and bed roughness, so 234 

u  is likely to remain the complex profile. In this study, we considered the distribution of u  235 

in this region to be determined by using Eq. (11). 236 

2.2.2 Depth-averaged vertical production 237 

Based on Kolmogorov’s scaling theory outlined at [22], the dissipation rate   could be related 238 

to u  by using the macroscale of turbulence described in [20, 21] as follows: 239 

xL

u
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0

232 kLCK x
   is a turbulent coefficient which is greatly influenced by the 241 

Reynolds number, C is a universal Kolmogorov constant, xL  is the longitudinal integral 242 

macroscale, 0k  is macroscale of turbulence. Nakagawa et al. [33] suggested that *uu  can be 243 

approximated as the power function of Hz : 244 
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Further, under an assumption of isotropy, Nezu and Nakagawa [20] found that the correlation 246 

coefficients of turbulence intensities are nearly constant as long as z  is sufficiently large. This 247 

can be approximately represented by: 248 

21, CuvCuw                                                                                                     (14) 249 

where 21 and CC  are empirical constants. 250 

 251 

For stationary and homogeneous turbulence, the turbulent production  zuwuPk   is 252 

balanced approximately by the sum of the turbulent diffusion      k kD d dz dk dz      253 

and dissipation   independently of the molecular diffusion. In the inertial subrange, energy 254 

transfer is the only significant process; there is no energy production or dissipation. Thus, 255 

kP . The dynamic equilibrium of turbulent energy can then be expressed as follows: 256 

const.dk

dz
                                                                                                                           (15) 257 

in which  2C k    is the turbulent viscosity. Substituting Eq. (12) into   (where 
xL  is of 258 

the same order as H ) and making use of Eq. (14) (where u is of the order of *u ) yields the 259 
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following approximation of  : 260 

3
*

1
Hu

k
                                                                                                                              (16) 261 

Substituting Eq. (16) into Eq. (15) with the integral from 0 to z yields the distribution of k : 262 









H

z
CD

u

k
k2exp2

*

                                                                                                          (17) 263 

where 
kCD and  are the constants. Applying Eqs. (14) and (17) provides the profiles of u, v264 

, and w : 265 











H

z
CD

u

u
ku exp

*

                                                                                                        (18a) 266 










H

z
CD

u

v
kv exp

*

                                                                                                        (18b) 267 










H

z
CD

u

w
kw exp

*

                                                                                                       (18c) 268 

where 
kwvu CDDD and,,,  are the empirical constants; their values are 2.30, 1.27, 1.63, and 269 

1.0, respectively [20].  270 

 271 

By closely examining the turbulence intensities presented by Nezu and Nakagawa [20], we 272 

found close agreement between Eq. (18) results and the experimental values throughout the 273 

whole depth apart from a thin layer near the bed. Surprisingly, any deviation between them 274 

gradually decreased as Re and 
sk  ( *s k

k u  ) increased. To some extent, Eq. (18) is 275 

successful in displaying the vertical distribution of turbulence intensity. Integrating Eq. (18) 276 

with the given empirical constants allows the depth-averaged turbulent energy k̂  to be obtained: 277 
2

*07.2ˆ uk                                                                                                                              (19) 278 

The constant used in Eq. (19) has been found by combining Du, Dv, and Dw at Eqs. (18a) – (18c), 279 

suggested in Nezu and Nakagawa [20]. The formulation of k is described in Eq. (37). According 280 

to the theory of cascade energy, at the end of the sequence of processes, the dissipation of 281 

turbulent energy is accomplished primarily by molecular viscosity. In other words, the energy 282 

of open-channel flows is predominantly dissipated in the free surface region. Observed   283 

values in this region are less accurate due to the constraints of free-surface fluctuations. In the 284 

comparison made by Nakagawa et al. [33], it is very difficult to obtain a universal formula for 285 

 . In this study, we used   as a replacement for   to determine 
kVP  and 

VP . 286 

 287 
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 
   

*1
sin

z H Hu

H z z H

 
 

  
                                                                                                  (20) 288 

Eq. (20) is found from substituting Coles’ law at Eq. (11) into Eq. (8). By integrating Eq. (20) 289 

from the bed to free surface, we obtained the depth-averaged turbulent viscosity ˆ
t  as follows: 290 

*ˆ 0.06t Hu                                                                                                                           (21) 291 

The constant in Eq. (21) comes from depth-averaging Eq. (20) from bed to free-surface, using 292 

described values of   and   in section 2.2.1. In stationary and homogeneous flows, 
kVP  and 293 

VP in the ̂ˆ k  transport equations are balanced only by their dissipation terms H̂  and 294 

kHC ˆˆ2
2  , respectively. 

kVP  and 
VP  can be obtained by rearranging Eq. (5) and combining 295 

Eqs. (4), (19) and (21):  296 
3

*42.71 uCPkV                                                                                                                   (22a) 297 

H

u
CCPV

4
*

2
216.2464                                                                                                       (22b) 298 

where   822
* VUfu  . These Eqs. (22a) and (22b) have been derived from the standard 299 

̂ˆ k  formulations of kVP  and eVP  terms as showing at Eqs. (7a) and (7b).  300 

 301 

2.3 Numerical implementation 302 

In this study, we discretized the fundamental equations using the explicit leap-frog FDM which 303 

has second-order accuracy in both time and space [25-26]. As plotted in Fig. 2, all of the vectors 304 

( VUQP and,,, ) were evaluated at the faces of the grid; all of the scalars (  ˆand,ˆ,,, kzH b
) 305 

were defined at the center of the grid. The defined location of the normal stresses (e.g., 306 

yyxx TT and ) is the same as the scalar; the shear stresses (e.g., 
yxxy TT and ) were calculated as 307 

shown in the right-top corner of the grid. 308 

2.3.1 Continuity equation 309 

According to the spatial staggered grid system and the temporal leap-frog scheme, the 310 

continuity equation is explicitly discretized as follows: 311 

   n

ji

n

ji

j

n

ji

n

ji

i

n

ji

n

ji QQ
y

t
PP

x

t
HH 21,21,,21,21

21
,

21
, 

 







                                             (23) 312 

2.3.2 Momentum equations 313 

Without loss of generality, only the discretized form of x-momentum equation is presented here 314 

in detail: 315 
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  (24) 316 

where the convection terms are respectively discretized as follows by applying the upwind 317 

scheme: 318 
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                                        (25a) 319 
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                             (25b) 320 

2.3.3 Turbulent transport equations 321 

The ̂  and k̂ equations are respectively discretized by applying a semi-implicit scheme: 322 
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                    (26b) 324 

 325 

Similarly, the upwind scheme can be used to discretize the convective term XF̂  (the 326 

differences of YkFXkFYF ˆand,ˆ,̂  are similar to XF̂ ) as follows: 327 
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 329 

The central difference method was applied to discretize the diffusion term XVIS̂  (the 330 

difference forms of YkVISXkVISYVIS ˆand,ˆ,̂  are analogous to XVIS̂ ) as follows:  331 
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The horizontal velocity-gradient production term 
hP  can be discretized as: 333 
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According to the expression of Eq. (22b), the vertical velocity-gradient production term 
VP  335 

(the difference form of kVP  is the same as 
VP ) can be discretized as: 336 
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2.4 Boundary conditions 338 

To perform the staggered-grid difference method, ghost cells are typically imposed around the 339 

outmost computational domain. The boundary of all scalar variables, e.g., B , Bk̂ , and B̂  340 

(where the superscript B denotes the boundary) is set at the center of the ghost grid; the 341 

boundary of all vector variables, e.g.,
 

BP  and BQ , is located at the center of the adjacent 342 

surface between the ghost cell and the outermost computational grid [27]. The boundary 343 

conditions selected for this study mainly include open boundaries and no-slip boundaries. 344 

 345 

Open boundary conditions are applied mainly to inflow and outflow. For the tests conducted, 346 

subcritical flow is the most frequent, hence the boundary conditions assumed include a specific 347 

flow rate assigned at the upstream boundary location; in addition, uniform water depth is 348 

applied as the downstream boundary condition. The inflow boundary condition can be 349 

expressed as follows: 350 
B
2

B
1

B
2

B
1

B
2

B
1

B
25

B
23

B
2

B
1 ˆˆandˆˆ,,,   kkQQPP                                                   (31a) 351 

The outflow boundary condition can be expressed follows: 352 

B
1

BB
1

BB
1

BB
23

B
21

B
1

B ˆˆandˆˆ,,, -nn-nn-nn-n-n-nn kkQQPP                                                       (31b) 353 

No-slip boundary conditions are applied on the side where there is the solid-wall. The flux on 354 

the solid boundary is zero, i.e., 0B
21

B
21   ll QP , where the subscript 21l  denotes the 355 

adjacent surface between the water and solid-wall cells and l  denotes the corresponding center 356 

of the wall cell. The boundary conditions for k̂  and ̂  at the location l  are also necessary. 357 

 358 

According to the boundary-layer theory, if the distance s between l  and 21l  is sufficiently 359 

small, the shear stress and the turbulent production at l  can be balanced approximately with 360 

the wall shear stress and the dissipation at 21l , respectively [13]. The depth-averaged 361 

statistic characteristics in the small region near the wall are assumed to be analogous to the 362 

turbulent features in the core region near the bed. In other words, per Eqs. (8), (11), and (15), 363 
Bˆ
l  can be expressed approximately as follows: 364 

s

u

yd

Ud
ul 


3

*W2
*W

Bˆ 



                                                                                                  (32a) 365 

where ydUd   is the depth-averaged velocity gradient in normal coordinates near the solid 366 

wall. Based on the specifications of ˆ
t  and Eq. (4),  Bˆ

lt  can be expressed as   *W
Bˆ su
lt   ; 367 

Bˆ
lk can be written as follows: 368 
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C

u
kl

2
*WBˆ                                                                                                                     (32b) 369 

*Wu  must satisfy the following equation [24]: 370 

W*

W*

1 ln for hydraulically smooth wall

1 30ln for hydraulically rough wall
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                                                   (33) 371 

where 0.9E  is the constant; U   is treated as a depth-averaged shear velocity at l ; both s  372 

and y  are approximated by half of the normal space step at l . 373 

 374 

To secure stable numerical results, the Courant-Friedrichs-Lewy (CFL) number Cr was 375 

considered as the stability criterion within the proposed model and to enable its incorporation, 376 

the following double stability conditions were imposed for Cr as suggested by the literature  377 

[24]: 378 
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                (34b) 380 

where Δt is set as the minimum of the Δt values calculated by using Eqs. (34a) and (34b). 381 

3 Model Validations 382 

To validate the model previously described to quantify complex turbulence, its performance 383 

has been verified against experimental turbulent flows obtained under various circumstances: 384 

1) a uniform gravel bed, 2) a 90 bend, and 3) a suddenly expanding section. Numerical results 385 

were then compared against measured datasets as well as the calculated values from the 386 

standard ̂ˆ k  model and other numerical schemes. To distinguish among the different 387 

models’ results, “PF” and “RRF” are used to represent the model constructed by the proposed 388 

formula and by Rastogi and Rodi’s formula, respectively. 389 

3.1 Turbulent flow in a straight channel with gravel bed 390 

To verify the accuracy of the proposed model in replicating bed roughness and Reynolds 391 

number effects on the formation of turbulent features, a series of experiments on open-channel 392 

flows over rough beds conducted by Wang et al [38], were used for comparison. The 393 
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experiments were conducted in a straight flat glass flume 13.5 m long, 0.60 m wide, and 0.60 394 

deep [38]. The roughness elements on the bottom of the flume were composed of gravel with 395 

median diameter d50 ranging from 2 to 40 mm. Throughout all measurements, the simultaneous 396 

high-frequency velocities in the middle of the flume were obtained with an acoustic Doppler 397 

velocimeter (ADV). 398 

 399 

According to the ensemble averages terms used in this study, velocity samples were gathered 400 

to determine the mean flows and turbulent fields in the system. The mean velocities in x-, y-, 401 

and z-directions were estimated as follows [24]: 402 
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where N  is the number of samples. The root-mean-square (marked as r.m.s) values of the 404 

velocity fluctuations are defined by the sample standard deviation: 405 
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The turbulent kinetic energy k  can be calculated from the above definitions as follows: 407 

      222 r.m.s.r.m.s.r.m.s.
2
1

wvuk                                                                             (37) 408 

 409 

The corresponding depth-averaged k̂  can be obtained by depth-averaging the vertical profiles. 410 

The depth-averaged data calculated from vertical measured regions was taken to represent the 411 

entire depth at the corresponding horizontal coordinate due to the operation constraints of the 412 

ADV. The deviations between the depth-averaged velocities obtained by this method and those 413 

calculated by the logarithm profile in whole depth are around 5% [24]. 414 

 415 

The calculating dimensions in the numerical experiments were m0.6m0.6m4.0  , which 416 

are consistent with the turbulent regime used by Wang et al. [38]. The roughness heights of the 417 

glass wall and the gravel bed were set to ks = 0.02 mm and ks = d50, respectively [39]. sk  is the 418 

same in the glass bed as the wall. A uniform grid size m02.0 yx  and time step of 419 

0.002 s were used in the computation. Eleven typical cases of different gravel 50d  and Reynolds 420 

numbers (Table 1) were analyzed. Considering the weight balance between the boundary 421 

conditions and fully turbulent development in regards to the effects of the turbulent structure in 422 
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the numerical flume, the inflow unit volume flux and outflow water depth were set to H0U0 and 423 

H0, respectively.  424 

 425 

According to the measurement results, k̂  was strongly dependent on the flow conditions when 426 

sk  was constant and it increased as Re increased. It is demanding to make any definite 427 

conclusion regarding the effects of sk  on k̂ , however, because it is too difficult to keep Re or 428 

Fr neatly constant in any experiment. The ADV operation limitations and geometrical 429 

inhomogeneity over the gravel bed were likely to be responsible for this phenomenon. 430 

 431 

The numerical results of the models derived from different expressions of 
kVP  and 

VP  are also 432 

presented in Table 1. The PF values deviate slightly from the measured data, but there is 433 

reasonable agreement between them for the given ranges of sk  and Re. The RRF results 434 

contained larger error than PF considering the whole range of results. The average of the error 435 

for all the test cases C1 to C11, for the PF and RRF models are, respectively, 49.67 and 436 

108.45%. With low bed roughness, mm5s k , both sets of results deviate gradually from the 437 

experimental values as sk  decreases. This behaviour can be attributed to the anisotropic 438 

tendency under which turbulent energy is redistributed over a smooth bed more slowly than 439 

over a rough one, which may be enhanced as roughness size decreases. Overall, the results 440 

show that the proposed model can effectively simulate turbulent flows over most of the gravel 441 

bed. 442 

3.2 Turbulence of open-channel flow in a 90 bend 443 

Furthermore, the performance of numerical models PF and RRF and other models presented 444 

by Cea et al. [11] was compared against turbulent flows in open channel with a 90  bend based 445 

on the experimental conditions described by Bonillo [40]. The experimental setup was identical 446 

to that described by Cea et al. [11], as shown in Fig. 3. The flow domain was made of two 447 

straight flat sections linked by a 90  bend. The length and width of the first section were 4.835 448 

m and 0.86 m, respectively; those of the second section were 4.43 m and 0.72 m, respectively. 449 

The bed of Segment 1 is 0.013 m higher than the bottom of Segment 2. The bottom and two 450 

sidewalls of the open channel are made of smooth concrete. 451 

 452 

For calculation convenience and comparability among similar models, the flow region was 453 

discretized using a uniform grid of m0.02 yx . The Manning’s coefficient of the bed 454 

surface selected was the same as Cea et al.’s [11] 31ms016.0 . The roughness height of the 455 
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sidewall surface was assumed to be m001.0s k  [39]. The time step was fixed to s005.0t  to 456 

maintain numerical stability. The resulting k̂  values at three different cross sections are shown 457 

in Fig. 4. The values calculated by two classical turbulence models [11], the KE model and 458 

RSM model, are also included. Cea et al. [11] also developed a finite volume model to solve 2D 459 

SWEs, in which two famous turbulence models were used for comparison. The KE model is 460 

based on the assumption of isotropic eddy viscosity to solve the Reynolds stresses, while the 461 

RSM model directly solves each Reynolds stress without any restrictive hypothesis. Though 462 

the KE model equations are very similar to those of the RRF model, the location of H  in the 463 

diffusion term and the value of   in the former differ from those of the latter. 464 

 465 

As shown in Fig. 4, the PF results are very close to the experimental data in both the left sidewall 466 

area (0 ≤ x ≤ 4.955) and right sidewall region (5.195 ≤ x ≤ 5.555), where B is the width of the 467 

channel. There are varying degrees of deviation in the numerical curves of the other three 468 

models. In short, the flow features in both regions can be captured adequately by the PF model. 469 

In the intermediate region (4.955 ≤ x ≤ 5.195), none of the numerical curves matched the 470 

measured data. This may be because the basic assumption of the shallow water equations is 471 

difficult to satisfy in the strong shear and bend zone, which includes intense 3D turbulence. The 472 

proposed model yielded accurate results overall despite some data scattering in the shear region. 473 

3.3 Turbulent characteristics in an expanding section 474 

An additional experiment was conducted to determine whether the proposed model can 475 

simulate the turbulent flows on an expanding channel [24]. The experiment was carried out in 476 

a flat expanding flume at the Hydraulic Engineering Laboratory at National University of 477 

Singapore. The length, width, and depth of the flume are respectively 15 m, 0.6 m, and 0.6 m. 478 

As shown in Fig. 5, the widths of the channel upstream and downstream of x = 0 are 0.3 m and 479 

0.6 m, respectively. The steady flows were strictly controlled by two pumps and a tail gate 480 

during the experiment; boundary conditions were the discharge at upstream (0.024 m3/s) and 481 

the flow depth at downstream (0.015 m), respectively. 137 regular points of the intersection 482 

were set between the longitudinal coordinates x = -0.10, 0.25, 0.50, 0.75,1.00, 1.25, 1.50, 1.75, 483 

2.00, 2.25, 2.50, 2.75, and 3.00 m and the lateral coordinates y = 0.05, 0.10, 0.15, 0.20, 0.25, 484 

0.30, 0.35, 0.40, 0.45, 0.50, and 0.55 m to observe velocity profiles and further inspect 485 

turbulence changes. 486 

 487 

The three-dimensional flow velocities were measured with a SonTek/YSI 16-MHz MicroADV 488 

with the sampling rate of 50Hz and the outputs of SNR and correlation factor from the 489 
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instrument were monitored following procedure already published in literature [24]. Similar to 490 

the process in Section 3.1, the depth-averaged data ( ̂and,ˆ,, kVU ) were further obtained. 491 

 492 

We used identical numerical settings and discretization as Lin [24] to simulate turbulent flows 493 

in this study. The computational analysis was performed in a rectangular region of 494 

m0.6m0.9  and differentiated by a 180x30 uniform grid with increments of m05.0x  495 

and m02.0y ; the length and width of the narrow channel upstream were 2.0 m and 0.3 m, 496 

respectively. The upstream and downstream boundary conditions were unit volume flux of 497 

sm0.08 2  and water depth of 0.15 m, respectively. The Manning coefficient of the bed was 498 
31ms0.01m  and the sidewall was considered to be smooth. The time step used was 499 

s0.001t . 500 

 501 

The computed longitudinal velocities at different transverse sections were non-dimensionalized 502 

by the approach velocity 0U  and compared against the experimental results as shown in Fig. 6. 503 

In the upstream region without extension, i.e., Xa=-0.1 m, the U-velocity distribution was highly 504 

uniform. The sudden expansion in the profile of the sidewall induces strong non-uniformity to 505 

the velocity profiles, which was clearly observable per the flow separation and wake region in 506 

the detached flow. A recirculation zone (i.e., 80  Bx ), which was generated mainly due 507 

to the stagnant effect of the right sidewall of the building and the southern boundary of the 508 

channel, could also be clearly seen. In the downstream section, the longitudinal velocities 509 

gradually tended towards uniformity. By contrast, the maximum forward and backward 510 

velocities for both methods closely matched experimental data after the change in channel width, 511 

especially in the circulation region. 512 

 513 

Similar to the U-velocity profiles, the non-dimensional transversal velocities calculated by the 514 

two models are shown in Fig. 7. In the main flow region (the area between y = 0.3 and 0.6 m), 515 

the computed results agree fairly well with experimental data. A steep velocity gradient 516 

occurred downstream of the building due to the strongly deflected flow. In the circulation zone 517 

(from y = 0.0 to 0.3 m), the velocity changes computed via RRF method do not agree very well 518 

with the experimental data. The proposed method agrees slightly better with the experimental 519 

data but still underestimates the actual velocity by an average of about 50%. In that region, the 520 

distribution of horizontal velocities is quite skewed over the full depth. The improved 521 

turbulence model does not sufficiently offset the defect of the hydrodynamic assumption in the 522 

deflected zone. 523 

 524 



20 

Figure 8 shows a comparison among computed 2
0

ˆ Uk  values and experimental data. The 525 

proposed method yielded close agreement in the transverse section located Xa=-0.1 m upstream 526 

of the abrupt extension, in which the statistical turbulence features are similar to the turbulent 527 

characteristics in the open-channel uniform flow. The RRF results, by contrast, overestimated 528 

by about 10%. At the upper-right corner of the building, where the flow separation began, 529 

sizable boundary irregularities were a source of turbulent energy in the horizontal direction. 530 

The horizontal bursts of turbulent activity propagated downstream and expanded on both sides, 531 

forcing the k̂  values towards uniformity. Despite some scattering in the circulation zone, PF 532 

yielded slightly more accurate results than RRF overall. 533 

 534 

The dimensionless profiles of turbulent dissipation ̂  calculated by the two models were 535 

compared against experiment data as shown in Fig. 9. In the main area and circulation zone, 536 

the PF results were a better fit to the data than the RRF results. In the transitional region between 537 

them, especially near the corner of the building, high levels of energy dissipation were produced 538 

due to large-scale eddies and a steep velocity gradient. The proposed method better reflected 539 

this phenomenon than the RRF, but still overestimated it by around 80%. The difference is 540 

mainly attributable to experimental error due to ADV operation limitations and partly by the 541 

strong 3D flow structure in corresponding regions. These results altogether indicate that PF can 542 

better describe the hydraulic and turbulent structure in the abrupt expanding channel than RRF. 543 

4 Turbulent Flows near Two Groins in a Natural Waterway 544 

To further investigate the performance of the model developed and illustrate its engineering 545 

application, it was used to compute complex turbulent flows and the correspondent navigation 546 

conditions in natural waterways and waterways after the construction of two buildings. 547 

4.1 Site description and numerical setup 548 

The Yangliu moraine is located in a relatively straight gorge on the upper reach of the Yangtze 549 

River, approximately 1017.8 km upstream of Yichang City, a prefecture-level city in Hubei 550 

Province, China. The length and width of the moraine are respectively 1800 m and 400 m, as 551 

shown in Fig. 10. The top level of the moraine near the mid-channel, where the highest point is 552 

5 m above the designed water level, is higher than the shoreline. To this effect, the unique bed 553 

structure forms a concave basin. The water level in the river must be at least 1 m higher than 554 

the designed level to satisfy the necessary flow conditions. Under the restriction of the moraine, 555 

the main channel was squeezed to only 250 m in width. Another upstream moraine section of 556 

the main reach, the Huangjia moraine, is affected by a shorter lateral flow area with 300 m. A 557 
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transitional shallow zone (width 500 m) was formed between the two moraines. 558 

 559 

The transitional region, in which the flow is relatively slow, has a flat and straight geometric 560 

bed. There is no erosion of river bed material along the ship route during the dry seasons due 561 

to hydrodynamic limitations, hence there is only a small water depth for navigation during this 562 

period. The minimum depths were recorded in 1993 and 2006, 2.3 m and 2.5 m, respectively. 563 

Under these hydraulic conditions, it is very challenging to satisfy the class Ⅲ navigation 564 

conditions necessary for free travel of ships with dimensions m7.2m50m560  . 565 

 566 

To guarantee class Ⅲ navigational standards throughout the entire year, the local waterway 567 

bureau constructed two groins on the left side of the shallow region in 2008 (Fig. 10). Groin 1 568 

was built at the upstream reach with a 60  angle between its axis and the main stream for 569 

smooth flow transition. Groin 2 was constructed at the downstream end with a corresponding 570 

angle of 75 . The length of the two groins are respectively 281 m and 313 m; both of their 571 

hook heads are 87 m. 572 

 573 

The local waterway bureau measured the bed topography of the reach, the water surface 574 

elevation on the shipping route, and the flow velocity in three streamlines on January 15th, 2010, 575 

to investigate the effects of the two groins on the waterway (Fig. 10) and the consequent 576 

riverbed erosion. For this specific date, the total discharge recorded at the upstream section was 577 

3120 m3/s and the average water level at the downstream section was 253.44 m, values derived 578 

by a nearby hydrological station and a water gauge, respectively. 579 

 580 

According to the geological analysis conducted to characterise the properties of the soil in the 581 

two boreholes (N1 and N2, as shown in Fig. 10), the bed materials of the transitional shoal 582 

region are mainly composed of boulders, sand-cobbles, and brick red sandstones. The mixture 583 

of boulders and sand-cobbles typically forms a covering layer 2.3 m thick above the base layer 584 

composed by sandstones. The maximum boulder particle-size is 0.9 m and the mass percentage 585 

of sand-cobble with 0.03-0.2 m diameter is about 65%. The sieving results at N1 and N2 586 

indicate that d50 in the reach is approximately 0.04 m. 587 

 588 

The river section that was simulated within the model developed to verify its applicability is 589 

1964 m long and 924 m wide, based on the topographic features of Yangliu and Huangjia 590 

moraines (Fig. 10). The region that was computed was discretized by applying a uniform 591 

Cartesian grid size with dimensions m4 yx . The median particle size of the bed 592 
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material was set at d50 = 0.04 m and the time step was set at s002.0t . A flow rate of 3120 593 

m3/s and an averaged water surface elevation of 253.44 m were respectively assigned to the 594 

inflow and outflow boundaries according to the simplified methods presented by Zhang [41]. 595 

4.2 Results and performance  596 

Figure 11 shows the comparisons between observed and simulated water levels along the ship 597 

route. The average discrepancy between observed data and PF results is 0.124 m, while the 598 

discrepancy between observed data and RRF results is 0.127 m. Although PF slightly 599 

outperforms RRF, especially in the transition section, both have discrepancies from the 600 

measured data. This is mainly due to the uniform roughness coefficient that was imposed in the 601 

whole river, which does not replicate accurately the natural variety of roughness along the 602 

system. In fact, the bed material is uneven in both longitudinal and transverse directions and 603 

the bed structure is irregular in such a natural channel hence the bed resistance status could not 604 

be characterised by a uniform median size as assumed in this study. Therefore, there is huge 605 

potential to greatly improve the results if 50d  was obtained at each specific site for the 606 

numerical calculations. 607 

 608 

The flow velocity along three different streamlines was computed and compared against the 609 

measured values as shown in Fig. 12. Overall, the calculated curves agree well with the 610 

experimental data except in the transition region of Streamline 2, where the maximum absolute 611 

deviation was about 0.3 m/s. Similar to the measured water surface elevations, the surveyed 612 

points of Streamline 2 were mainly distributed on the route. The 50d  in the transitional area 613 

was generally underestimated. Although there were no significant differences between the two 614 

numerical results at most points, PF was more accurate than RRF near the two groins (the groins 615 

are approximately at x = 900 and x = 1200 m, PF model is more accurate between x ~ 800-1300 616 

m). Because the turbulence parameters were not measured, we only depict the numerical k̂  at 617 

two cross sections symbolically to reflect the relevant turbulence characteristics (Fig. 13). The 618 

two sections, A-A and B-B (displayed as dash lines in Fig. 10 and their results presented in Fig. 619 

13), are located downstream of the two groins where the longitudinal distance to the root of the 620 

groin is approximately equal to the length of the corresponding groin (Fig. 10). As shown in 621 

Fig. 13, the numerical values of RRF are about 2 times the PF results in the mainstream area 622 

and approximately 1.5 times PF’s in the circulation zone behind the groin. Furthermore, for 623 

each method, the numerical values at B-B were larger than those at A-A. 624 

 625 

To further explore the navigation scenario discussed above, we calculated the water depth by 626 

the proposed model as shown in Fig. 14. In the transitional region of a straight waterway, the 627 
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water depth was at least 3.5 m and the width of the water surface was greater than 80 m. To this 628 

effect, the river would satisfy category III navigation conditions during the dry season. Our 629 

results altogether showed that flow behavior in a natural river can indeed be captured with a 630 

reasonable accuracy by the proposed method. 631 

5 Conclusions 632 

This study focused on developing a second-order numerical scheme of spatial staggered-grid 633 

difference and temporal leap-frog discretization for simulating the turbulent flows on a complex 634 

roughness bed. The model is based on the 2D SWE model and the ̂ˆ k  turbulent closure 635 

model. The depth-averaged vertical turbulent generation from the universal notions of the 636 

Kolmogorov -5/3 spectrum and the log-law was derived and used as a substitute for the vertical 637 

velocity gradient term of the standard ̂ˆ k  model. The proposed ̂ˆ k  model reflects the 638 

vertical turbulent production of various scales more robustly than the standard model. 639 

 640 

Extensive comparisons were conducted against complex turbulent flows between the proposed 641 

model, standard ̂ˆ k  model, and measurement data. The proposed method effectively 642 

captured the experimental hydrodynamic features, especially the turbulence characteristics, and 643 

improved the simulation accuracy over the standard ̂ˆ k  model. The proposed model also 644 

showed better global performance than other 2D shallow numerical schemes. 645 

 646 

Furthermore, the turbulent flows over the roughness bed in a natural river were simulated and 647 

analyzed. Results showed that the depth-averaged turbulent energy increases as Reynolds 648 

number increases when the roughness height is constant. Additionally, the numerical results for 649 

Yangliu moraines reach showed that the river navigation conditions are satisfied after 650 

constructing the two groins under the flow conditions we considered. 651 

 652 

3D simulations will even more adequately disclose the fundamental physics of flows. In this 653 

present model application, a large flow domain (Yangliu moraines reach) was considered hence 654 

fully 3D computations would have not been very cost-effective. By using the proposed 2D 655 

Shallow Water Equations with improved turbulence modelling techniques, it was possible to 656 

achieve reasonably engineering accuracy but with a much lower CPU cost. Despite that, 657 

considering that 3D analysis would provide a more accurate predictive tool for the flow 658 

problems and promote a deeper understanding of the physics of the fluid motion, future work 659 

will target the development of an enhanced quasi-three-dimensional shallow flow solver. 660 

 661 
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Per the large amplitude and gradient of turbulent energy near the structures, local scouring may 662 

occur in rainy seasons and gradually alter the bottom configuration, affecting the stability of 663 

the groins. To safeguard the regulation buildings, an effective sediment transportation model is 664 

necessary to investigate the bed deformation and future research should incorporate more cases 665 

to replicate accurately a variety of scenarios to achieve a universal model that can be reliable 666 

for each situation.  667 
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Notation 676 

f                  = bed friction factor (-) 677 

g                  = gravitational acceleration (ms-2) 678 

H                 = water depth (m) 679 

k                   = turbulent energy (m2s-2) 680 

k̂                   = depth-averaged turbulent energy (m2s-2) 681 

sk                 = equivalent sand roughness (m) 682 

ml                  = length scale of turbulent flow (m) 683 

m                  = Manning’s roughness coefficient (sm-1/3) 684 

QP,              = unit volume flux in x - and y -directions, respectively (m2s-1) 685 

R                  = hydraulic radius (m) 686 

Re                = Reynolds number (-) 687 

yyxx TT ,          = depth-averaged normal stress in x - and y -directions, respectively (Pa) 688 

xyyx TT ,          = depth-averaged shear stress in x - and y -directions, respectively (Pa) 689 

*u                  = velocity scale of turbulent flow (ms-1) 690 

*u                  = friction velocity (ms-1) 691 

WVU ,,        = depth-averaged velocity in x -, y - and z -directions, respectively (ms-1) 692 
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wvu ,,          = instantaneous velocity in x -, y - and z -directions, respectively (ms-1) 693 

wvu ,,         = ensemble-averaged velocity in x -, y - and z -directions, respectively (ms-1) 694 

wvu  ,,        = fluctuating velocity in x -, y - and z -directions, respectively (ms-1) 695 

wvu ,,  = mean velocity in x -, y - and z -directions, respectively (ms-1) 696 

wvu  ,,  = turbulence intensity in x -, y - and z -directions, respectively (ms-1) 697 

zyx ,,           = streamwise, spanwise, and vertical coordinates, respectively (-) 698 

bz                  = bed elevation (m) 699 

                   = turbulent dissipation (m2s-3) 700 

̂                   = depth-averaged turbulent dissipation (m2s-3) 701 

                   = free surface elevation (m) 702 

                  = turbulent viscosity (m2s-1) 703 

k                  = kinematic viscosity (m2s-1) 704 

t̂                  = depth-averaged turbulent viscosity (m2s-1) 705 

                  = fluid density (kgm-3) 706 

                   = total shear stress (Pa) 707 

b                  = bed shear stress (Pa) 708 

 709 
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 805 

 806 

Figure 1 - Scheme illustrating an example of irregular bed elevation and free surface water 807 

depth. 808 
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 810 

 811 

Figure 2 - Scheme of staggered grid which includes the locations of the variables considered in 812 

a single cell. 813 
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 815 

 816 

Figure 3 – Scheme of the experimental channel with a 90  bend: front view (top) and top view 817 

(bottom). 818 
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 820 

 821 

Figure 4 – Comparison of turbulent kinetic energy measured experimentally and calculated 822 

numerically at three sections (a) A-A, (b) B-B and (c) C-C. 823 
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 825 

 826 

Figure 5 - Plan view of flume with an expanding section and the observed points. 827 
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 829 

 830 

Figure 6 - Comparisons of non-dimensionalized U between numerical results and experimental 831 

data (Red crosses: experimental data; Dashed green line: RRF’s results; Solid black line: PF’s 832 

results). 833 
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 835 

 836 

Figure 7 - Comparisons of non-dimensionalized V between numerical results and experimental 837 

data (Red crosses: experimental data; Dashed green line: RRF’s results; Solid black line: PF’s 838 

results). 839 
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 841 

 842 

Figure 8 - Comparisons of non-dimensionalized k̂  between numerical results and experimental 843 

data (Red crosses: experimental data; Dashed green line: RRF’s results; Solid black line: PF’s 844 

results). 845 
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 847 

 848 

Figure 9 - Comparisons of non-dimensionalized ̂  between numerical results and experimental 849 

data (Red crosses: experimental data; Dashed green line: RRF’s results; Solid black line: PF’s 850 

results). 851 
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 854 

Figure 10 - Bed topography of Yangliu moraine reach and location of observation points. 855 
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 857 

 858 

Figure 11 - Water level comparison between observed data and computed results on the ship 859 

route. 860 
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 863 

Figure 12 - Flow velocity comparison between measured values and calculated results in the 864 

three streamlines: (a) streamline 1, (b) streamline 2 and (c) streamline 3. 865 
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 867 

 868 

Figure 13 - Comparisons of the numerical results between PF and RRF at the sections of A-A 869 

and B-B behind the two groins. 870 
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 873 

Figure 14 - Water depth calculated by the proposed model. 874 
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Table 1. Hydraulic data collected with the experiments and numerically calculated. 877 

Case sk  
 

mm 

H  
 

cm 

0U  
 

cm/s 

Re Fr k̂ acquired 
from 

measurements 
223 /sm)10(   

k̂ simulated by PF k̂ simulated by RRF 

Results 
223 /sm)10( 

 

Relative 
Absolute 
Error % 

Results 
223 /sm)10( 

 

Relative 
Absolute 
Error % 

C1 0.02 50.2 34.0 170,680 0.15 2.83 0.33 88.3 0.77 72.8 

C2 2 42.0 36.2 152,040 0.18 2.36 0.70 70.3 1.40 40.7 

C3 5 24.8 65.3 161,944 0.42 3.41 3.20 6.2 5.83 71.0 

C4 10 19.6 46.3 90,748 0.33 1.85 2.04 10.3 3.51 89.7 
C5 10 30.7 57.8 177,446 0.33 3.81 2.84 25.5 5.02 31.8 
C6 10 19.4 101.0 195,940 0.73 5.27 8.48 60.9 14.69 178.7 
C7 20 31.8 42.7 135,786 0.24 2.35 1.84 21.7 3.12 32.8 
C8 20 28.1 63.5 178,435 0.38 2.45 4.14 69.0 6.96 184.1 
C9 40 28.8 35.4 101,952 0.21 0.89 1.55 74.2 2.49 179.8 
C10 40 29.5 62.5 184,375 0.37 3.24 4.70 45.1 7.60 134.6 
C11 40 17.5 110.5 193,375 0.84 7.22 12.63 74.9 20.00 177.0 

sk : gravel median diameter 50d , H  and 0U : average vertical distance from gravel bed to 878 

water surface and bulk free-stream velocity in the middle section of the experimental flume, 879 

respectively. 880 
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