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Abstract 

In these days, laser is a useful and valuable tool. Low input heat, speed, accuracy, and high 

controllability of laser welding have led to widespread use in various industries. Nickel-based 

superalloys are creep-resistant materials used in high-temperature conditions. Also, these alloys 

have high strength, fatigue, and suitable corrosion resistance. Inconel 625 is a material that is 

strengthened by a complex deposition mechanism. Therefore, the parameters related to laser 

welding affect the microstructure and mechanical properties. Therefore, in this study, the effect 

of fiber laser welding parameters on temperature distribution, weld bead dimensions, melt flow 
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velocity, and microstructure was investigated by finite volume and experimental methods. In 

order to detect the temperature history during continuous laser welding, two thermocouples were 

considered at a distance of 2 mm from the welding line. The heat energy from the laser beam 

was modeled as surface and volumetric heat flux. The results of numerical simulation showed 

that Marangoni stress and buoyancy force are the most important factors in the formation of the 

flow of liquid metal. Enhancing the laser power to 400 W led to the expansion of the width of the 

molten pool by 1.44 mm, which was in good agreement with the experimental results. 

Experimental results also showed that increasing the temperature from 500 °C around the molten 

pond leads to the formation of a coarse-grained austenitic structure. 

Keywords: laser welding; superalloy; temperature distribution; microstructure; mechanical 

properties 

 

1. Introduction 

Humans have long made various devices and equipment due to the desire to have a comfortable 

life. To build a complex mechanism, the need to connect different components has always been 

felt. In the past, due to lack of resources and sufficient knowledge in the use of resources, 

equipment, and technology used to connect materials has been very simple. However, over time, 

various methods of permanent and temporary connection emerged. One of the most essential 

methods used to connect parts permanently is welding and soldering. Various methods for 

welding parts have been proposed in recent years. However, with the advancement of technology 

in recent years, the use of high-power laser beams has been considered by researchers and 

artisans [1]. The laser welding method is suitable for welding various components due to the 

smaller heat-affected zone (HAZ), minimal thermal-mechanical distortion, low heat input, and 

good focusing characteristics. Also, reviewing the researchers’ results in recent years, it is clear 

that the quality of laser welding depends on various process parameters such as laser power, 

pulse duration, frequency, focal length, and welding speed [2, 3]. Also, the type of parts used in 

the laser welding process is very essential. One of the most widely used materials in recent years 

in all automotive, aerospace, food, oil and gas industries, and pollution control equipment is 

Inconel superalloys [4-6]. One of the most important and widely used Inconel superalloys is 

Inconel 625. This metal has excellent resistance to corrosion at high temperatures and acidic 
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environments. It is also a suitable metal for welding due to its unique mechanical properties [7]. 

In recent years, the study of metal bonding by numerical and experimental methods in the laser 

welding process has always been of interest to researchers [8-10]. 

Azari et al. [11] analyzed the temperature distribution and fusion zone microstructure in an 

Inconel 625 superalloy laser welding. The findings indicated that the temperature distribution 

changes of laser parameters such as welding speed, nozzle distance, beam displacement, and 

laser power, which led to a change in the molten pool’s depth and width. It was also found that 

increasing the power of the laser has a significant effect on increasing the temperature. Faraji et 

al. [12] investigated heat and mass transfer using numerical modeling of fluid flow in a 

dissimilar laser welding process of Ti6Al4V and Inconel 718. The findings proved that the 

proposed numerical model has a good agreement with experiments. Madhankumar et al. [13] 

analyzed the laser welding parameters’ effect on the tensile strength of Inconel 718 and duplex 

2205 stainless steel alloys. By examining the laser parameters, the desired ultimate tensile 

strength was obtained from the analysis of variance to gain the weld connection optimization. 

Thejasree et al. [14], in an experimental-numerical study, investigated the laser welding 

parameters effect on the molten pool and welding geometry of Inconel 625. With the simulation 

performed by SYSWELD software, it was found that the experimental and simulation results are 

very close according to the thermal, microstructural, and mechanical analysis. The effect of laser 

power and welding time was also reported as effective parameters. Ahmad et al. [15], in the fiber 

laser welding process of duplex 2205 and Inconel 625 alloys, investigated the effect of different 

heat inputs on the microstructure and welding geometry of the welding area. The results showed 

that by reducing the energy input, the molten pool’s width was reduced, and the mechanical 

properties of the joint area were improved. In a laser welding process, Voropaev et al. [16] 

investigated the effects of heat treatment on Inconel 718 alloy. The results showed a significant 

effect of heat treatment on the weld metal structure and complete phase transformations 

occurred. Srikanth et al. [17], in a laser welding process, studied the welding heat effect on the 

microstructure of Inconel 625. The results of the microstructure study in the fusion zone showed 

that the grain size was affected by the welding heat and the laser power. Cheepu et al. [18], in a 

laser welding process, investigated the effect of laser parameters on the mechanical properties of 

high tensile steel and Inconel 718. The results illustrated that laser power had a significant effect 

on the strength and weld’s mechanical properties. In a laser welding process, Sharma et al. [19] 
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surveyed the laser parameters’ effect on the melting zone. The results indicated that the height of 

the surface reinforcement and the surface of the weld melting zone decreased with increasing 

scanning speed. 

Ramkumar et al. [20] obtained the optimal process parameters for laser welding of Inconel alloy 

718 alloys and martensitic stainless steel. The outcomes showed that by using the desired 

welding speed (1500 mm/min), a fusion zone without porosity and an ideal keyhole could be 

achieved. Mishra et al. [21] investigated the joint area’s microstructure and mechanical 

properties of Inconel 625 and S.S 316 in a laser welding process. The results illustrated that the 

microstructure of the weld zone near Inconel 625 was columnar dendrites, while near the S.S 

316, metal was predominantly cellular. Li et al. [22] evaluated the quality of laser welding 

performed by fiber laser on Inconel 718. The results indicated that the welding quality and 

appearance could be bright and smooth by reducing the ambient pressure. Also, the study of 

plasma distribution proved that a smaller area of plasma led to an increase in the laser energy 

absorption efficiency, which ultimately led to an increase in the depth of penetration. Hernando 

et al. [23] developed a numerical model for predicting weld geometry and joint area 

microstructure of Inconel 718 in the laser welding process. The results proved that there was a 

good agreement between the experimental model and the proposed numerical model, and the 

most important parameters affecting the welding were the laser power and feed rate. In another 

study, Hernando et al. [24] simulated and predicted the parameters affecting the welding of 

Inconel 718 alloy concerning the wobbling strategy. This strategy showed that a wide range of 

welds could be covered by combining elliptical and linear motions. Jelokhani et al. [25] 

investigated the optimal parameters of the Inconel 625 laser welding process using the response 

surface method (RSM). The finding indicated that the maximum welding strength was obtained 

when the values of laser power, laser speed, and spot size were 260 W, 1.2 mm/s, and 180 μm, 

respectively. Ebrahimi et al. [26] used the Gaussian optics theory to investigate the thermal 

effects of Inconel 625 and 316 stainless steel welding in keyhole formation. The results 

illustrated that this volumetric model was suitable for simulating heat flux profiles and could 

depict the actual conditions well. Janasekaran et al. [27] evaluated the effect of overlap factor 

and laser welding speed on the laser welding of Inconel 600 and Ti6Al4V. The results indicated 

that the optimal parameters to achieve a suitable strength were equal to an overlap factor of 50%, 

speed of welding of 40 mm/s, and laser welding power of 250 W. Ren et al. [28] conducted a 
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comparative study between CO2 laser welding methods and fiber laser welding of Inconel 617 

alloy. The outcomes illustrated that to achieve a complete melting penetration in the welding 

process, fiber laser was more efficient, and the appearance of the weld bead geometry was also 

different. 

By examining the effect of continuous wave laser welding parameters on the temperature 

gradient in the molten pool, the thermal stress in the workpiece can be controlled, and the 

possibility of thermal fatigue can be reduced. For this purpose, in this study, an experimental and 

numerical study of Inconel 625 sheet laser welding was conducted. Due to the significant effect 

of melt flow and shear stress caused by Marangoni flow on the temperature gradient and 

dimensions of the weld bead, the finite volume method was used to discretize the conservation 

equation. 

 

2. Experimental procedure 

Fiber laser at Continuous mode with a maximum nominal output power of 500W and Raytools 

BW240 laser welding head with copper side delivery gas nozzle was used for welding 

experiments. Argon gas at a constant pressure of 35 psi was blew to the welding area to protect 

the welding region. The temperature measuring at the location of 2 mm away from the laser 

beam’s center was done by K-type thermocouples. The materials of welding were Inconel 625 

with 1.5 mm thickness. The Olympus optical microscope under the ASTM E883-11 standard 

was used for microstructure images metallurgical analysis preparation. The samples were etched 

under ASTM E3-11 standard, and the microstructure was analyzed with TESCAN MIRA3 

FESEM. The sample’s material chemical properties are illustrated in Table 1. 

 

Table 1. Chemical composition of Inconel 625 [11]. 

Composition C% Nb% Cr% Nb% Mn% Fe% Ti% Si% Mo% V% Si% W% Ni% 

Weight 0.082 3.5 22.85 3.5 0.11 4.81 0.19 0.1 8.1 0.01 0.1 0.014 59.6 

 

3. Numerical Simulation 
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The temperature gradient and liquid metal’s flow in the molten pool have a direct relation with 

the quality and mechanical properties of the welded metal. Therefore, predicting the parameters 

affecting the heat transfer and fluid flow can increase the welding quality and reduce the costs. In 

order to numerical simulation of continuous laser welding, a finite volume transient numerical 

model was used. A numerical code was also used to define the thermal model and the 

thermophysical properties with temperature variation. The number of grid elements after the grid 

study was considered to be 421875. Fig. 1 showed a schematic of the laser welding process and 

the dimensions of the pieces. In order to investigate the various laser welding parameters and 

validate the results, the time history of temperature, according to fig. 1, was obtained around the 

center of the beam. 

 
 

Fig. 1. Schematic configuration of the laser welding process. 

 
 

3.1. Governing equations 

The discretization of the equations was considered according to these assumptions: 

 The flow of fluid was considered incompressible, Newtonian, and laminar. 

 The molten pool’s surface was considered flat. 

 Vaporization of liquid metal was ignored. 
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 The initial temperature of 25 ° C was considered.  

Gaussian heat source and heat flux was utilized to simulate the absorbed energy. Fig. 2 showed 

the parameters and a schematic of the thermal model. 

 
Fig. 2.  Configuration of thermal modes a) heat flux, b) cylindrical heat source. 

 

The equations for the Gaussian heat flux and heat source shown in fig. 2 are as follows [29, 30]. 

 (1) 𝑞𝑠(𝑥, 𝑦) = 3𝑓1𝜂𝑝𝜋𝑟𝑠2  𝑒𝑥𝑝 (−3 (𝑥2+𝑦2)𝑟𝑠2 )   

(2) 𝑞𝑣(𝑥, 𝑦, 𝑧) = 6𝑓2𝜂𝑝𝜋𝑟𝑣2𝑑  𝑒𝑥𝑝 (−3 (𝑥2+𝑦2)𝑟𝑣2 ) ( 𝑚𝑧+𝑟𝑣𝑚𝑑+2𝑟𝑣)  

In Eqs. 1 and 2,  𝑞𝑠 , 𝑞𝑣 , 𝑝 and 𝑓1, 𝑓2 are the surface heat flux, cylindrical volumetric heat flux, 

laser power, and energy distribution coefficients, respectively. Also, 𝑑 indicates the height of the 

heat source, 𝑟𝑠 is the radius of Gaussian heat flux, 𝑟𝑣 is the radius of the cylindrical heat source, 

m is the coefficient of Gaussian damping, and  𝜂 is the coefficient of absorption. 

Continuity equation: 

(3) 
0).( 




U
t




 

 

Momentum equation: 
 

 

 (4) 
∂(𝜌�⃗⃗� )∂𝑡 + ∇. (𝜌�⃗⃗� �⃗⃗� ) = −∇p + ∇. (μ∇�⃗⃗� ) + 𝜌𝑔 − 𝜇𝐾 (�⃗⃗� )  

 

Energy equation: 
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(5) 
 

𝜕(𝜌𝐻)𝜕𝑡 + ∇. (𝜌�⃗⃗� 𝐻) = ∇. (𝑘∇𝑇) + 𝑞  
 

Where 𝜌,𝐻, 𝑡, 𝑝, �⃗⃗� , 𝑘, 𝑔 , 𝐾 and  𝜇 are density, total enthalpy, time, pressure, vector of velocity, 

coefficient of thermal conductivity, gravity acceleration, coefficient of Darcy resistance and 

dynamic viscosity, respectively. 

 

3.2. Boundary conditions 

 

The boundary condition at the surface: 

 

(6) 𝑘 𝜕𝑇𝜕�⃗� = −𝜀𝜎(𝑇4 − 𝑇∞4) − ℎ(𝑇 − 𝑇∞) + 𝑞𝑠  
 

Where ε is the coefficient of emission, σ is the coefficient of Stefan–Boltzmann, 𝑇∞ is the 

surrounding temperatures, and h is the coefficient of convection heat transfer. 

Shear stress due to surface tension gradient: 

 

(7) 𝜇 𝜕𝑢𝜕𝑧 = − 𝜕𝛾𝜕𝑇 𝜕𝑇𝜕𝑥  

(8) 𝜇 𝜕𝑣𝜕𝑧 = − 𝜕𝛾𝜕𝑇 𝜕𝑇𝜕𝑦  

 

 

The boundary condition on the lower and lateral surfaces was expressed as follow: 

 

 

 (9) 𝑘 𝜕𝑇𝜕�⃗� = −𝜀𝜎(𝑇4 − 𝑇∞4) − ℎ(𝑇 − 𝑇∞)  
 

 

3.3. Thermophysical properties 

 

High-temperature variations during laser welding of Inconel alloy 625 lead to significant changes 

in thermophysical properties. Therefore, the correct determination of the properties of the 

considered material could lead to accurate modeling of the laser welding process. For this 
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purpose, some thermophysical properties as a function of temperature were shown in fig. 3. Also, 

other thermophysical properties are listed in Table 2. 

 
Fig. 3. Thermophysical properties as a function of temperature [33-35]. 

 

Table 2. Thermophysical properties of Inconel 625 [33-40]. 

Nomenclature Symbol Value Unit 

Solidus temperature Ts 1563 k 

Liquidus temperature Tl 1623 k 

Ambient temperature 𝑇∞ 298 k 

Melting latent heat Lm 227 × 105 J kg−1 

Surface tension gradient Aσ -0.00011 N m−1k−1 

Stefan-Boltzmann constant σ 5.67 × 10−8 W m−2k−4 

Dynamic viscosity μ 0.0072 kg m−1s−1 

 
4. Results and Discussions 

After discretizing the continuity, momentum, and energy governing equations as a finite volume 

method and considering the suitable heat flux and boundary conditions, three-dimensional 

modeling of the welding speed effect and laser power on the temperature distribution, velocity 
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and weld bead dimension was done. The considered parameters to investigate the temperature 

history, velocity, and fusion zone during the continuous wave laser welding process are given in 

Table 3. In all cases, the focal position was considered at the surface of the pieces. 

Table 3. Laser welding parameters for numerical simulation. 

Sample 
Welding Speed (mm min⁄ ) 

Power (W) 

1 300 350 

2 400 350 

3 500 350 

4 300 300 

5 300 400 

 
4.1. Temperature distribution 

 

Predicting the temperature distribution and HAZ can help to control the primary microstructure. 

Hence, the temperature history was obtained at different welding speeds and laser powers. Fig. 4 

showed the time history of temperature at different welding speeds within 2 mm of the center of 

the beam. As can be seen, with increasing the speed of movement of the thermal model due to 

the reduction of power density absorption time, the temperature decreased significantly. So that 

with increasing the speed of movement laser head from 300 to 500 mm/min, the temperature 

decreased by approximately 160 °C. Also, the results obtained from numerical simulations were 

in good agreement with the results of experiments, which indicated the correct determination of 

the Gaussian heat source and heat flux and thermophysical properties. Fig. 5 indicated the 

temperature variation versus time at different laser powers. It can be concluded that, with 

enhancing the laser power by 100 W, the maximum temperature around the fusion zone 

increased by about 120 °C due to the enhanced power density. It is also concluded that by 

enhancing the power density, the maximum temperature was obtained at a higher time. 
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Fig. 4. Comparison of temperature distribution versus time in simulated and experimental results for 

different welding speeds. 

 
Fig. 5. Comparison of temperature distribution versus time in simulated and experimental results for 

different laser powers. 
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Considering that there is no change in the microstructure of Inconel 625 alloy up to a 

temperature of 700 °C and the starting the formation of γ (Ni3Nb) from 700 °C; by determining 

the temperature distribution on the workpiece’s surface, the range of the HAZ can be identified. 

Fig. 6 illustrates that the temperature contour at different welding speeds on the workpiece’s 

surface. As can be seen, as the speed of movement of the thermal model increased due to the 

reduction of heat energy absorption time, the heat penetration to the around decreased. In other 

words, as the welding speed increased, the isothermal line became an ellipsoid shape which led 

to a reduction in the HAZ and liquid volume of metal. Fig. 7 indicated the effect of laser power 

on the sheet surface at a distance of 25 mm from the beginning of the welding. Because the 

thermal conductivity coefficient of Inconel 625 is relatively low, this caused less heat penetration 

to other parts of the workpiece. On the other hand, the HAZ was increased because the heat 

concentration was higher in the areas close to the laser beam. As shown in fig. 7, increasing the 

continuous laser power has no effect on the shape of the temperature field, and only the 

workpiece experienced a higher constant temperature line. 
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Fig. 6. Temperature contour on the workpiece’s surface at different welding speeds, a) 300 mm/min,         

b) 400 mm/min, and c) 500 mm/min. 
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Fig. 7. Temperature contour on the workpiece’s surface at various laser powers, a) 400 W, b) 350 W, and 

c) 300 W. 

4.2. Velocity distribution 

 

Due to the active elements in the metals, their surface tension may increase or decrease at the 

molten pool’s surface with increasing temperature. So that if the surface tension gradient was 

negative, the flow would move from the high-temperature region to the low-temperature region, 

and a Marangoni flow will be formed. Inconel alloy is one of the metals that has a negative 

Marangoni coefficient. As can be seen in figs. 8 and 9, the flow has been created across the 

cross- section of the workpiece from the laser beam’s center to the mushy zone.  
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Fig. 8 showed that with increasing the speed due to decreasing temperature and Marangoni force 

on the workpiece’s surface, shear stress decreased, which led to a decrease in molten flow 

velocity. Fig. 9 indicated the vector of velocity in various continuous wave laser powers. As the 

laser power increased, due to the enhance of temperature gradient and surface tension gradient, 

the velocity of the molten flow increased and led to an increase in the role of convective heat 

transfer in the molten pool. 

 
Fig. 8. Vector of velocity at the cross-section of the workpiece at various welding speeds, a) 300 mm/min, 

b) 400 mm/min, c) 500 mm/min. 
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Fig. 9. Vector of velocity at the workpiece’s cross-section at various laser powers, a) 400 W, b) 350 W, 

and c) 300 W. 

 

4.3. Shape and dimensions of the molten pool 

 

Predicting the dimensions of the weld bead in different laser parameters can lead to the 

appropriate connection of the two sheets. Figs. 10 and 11 showed the mass fraction of the melt at 

different speeds of movement of the thermal model and laser powers, respectively. As seen in 

these figures, the amount of created melt was significantly reduced by increasing the speed and 

decreasing the laser power. In such a way that by enhancing the speed up to 500 mm/min, the 

melt has not penetrated to the depth of the workpiece. A comparison of the simulation results 

with the experimental results can be seen in Figure 12. At a speed of 300 mm/min, the 

penetration depth of the molten pool was created completely (figs. 12a and 12b), and as the 

welding speed enhanced, the molten pool’s depth and width decreased simultaneously (figs. 12c 

and 12d). Fig. 13 indicated the changes in the width of the molten pool concerning the different 

welding speeds and laser powers. It can be seen that the laser power variations had a more 

significant effect on the width of the weld bead. 
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Fig. 10. The molten pool’s shape at various welding speeds, a) 300 mm/min, b) 400 mm/min, and c) 500 

mm/min. 
 

 
Fig. 11. The molten pool’s shape at various laser powers, a) 400 W, b) 350 W, and c) 300 W. 
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Fig. 12.  Comparison of simulation results at welding speeds of a) 300 mm/min and c) 500 mm/min and 

experimental results of b) 300 mm/min and d) 500 mm/min for melt pool dimensions. 

 
Fig. 13. The molten pool’s width versus welding speed and laser power. 
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4.4. Microstructural changes of the molten pool 

 

Figure 14 showed the variation of microstructure from the base metal to the fusion zone due to 

changes in a temperature gradient. As can be seen in this figure, with increasing the temperature 

from 700 °C to the range of 1200 and 1800 °C, microstructural changes have occurred from the 

base metal to the HAZ region, resulting in the formation of the austenitic coarse-grained 

structure relative to the base metal austenitic structure. With further increase in temperature in 

the molten pool to 3200 °C, the shape, size, and direction of the grains in this area have changed 

completely. The shape and size of the grains and the microstructure change in the molten pool 

area consisted of a γ solid solution which increased in hardness in this area due to the intense 

thermal gradient. Thus, the melting of the material has led to forming a new microstructure in the 

fusion zone. 

 

Fig. 14. Microstructural changes with temperature gradients in the molten pool area,                  a) 

temperature distribution (simulation), b) melting flow (simulation), c) molten pool microstructure 

(experiment), d) HAZ microstructure (experiment), and e) base metal microstructure (experiment). 

 

 

 

5. Conclusions 
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In this study, the welding speed and laser power effects during the continuous wave laser 

welding process of the Inconel 625 sheet were investigated by finite volume and 

experimental methods. In order to model the energy absorbed in the workpiece, surface and 

volumetric heat flux were used. Also, due to the high-temperature gradient during the 

welding process, the thermal conductivity, density, and specific heat capacity were defined as 

a function of temperature. The results are as follows: 

 

 By enhancing the laser power from 300 to 400 W, the peak temperature in the laser 

beam’s center at 25 mm from the beginning of the workpiece increased to 697 °C. The 

simulation results also showed that reducing the laser power to 300 W led to no 

penetration of the melt into the depth of the workpiece. 

 As the welding speed increased, the constant temperature lines on the surface of the part 

became ellipsoid which led to a decrease in the HAZ and the melting ratio. 

 Marangoni flow played a key role in determining the shape and dimensions of the molten 

pool so that by reducing the welding speed to 200 mm⁄min, the melt flow rate increased 

by 29 mm⁄s. 

 By increasing the temperature from 700 °C to the range of 1200 and 1800 °C, 

microstructural changes have occurred from the base metal to the HAZ region, resulting 

in the formation of the austenitic coarse-grained structure relative to the base metal 

austenitic structure. 
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