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Numerical and Experimental
Analysis of the Fluid-Structure
Interaction in Presence
of a Hyperelastic Body
In this study, a numerical algorithm is developed for simulating the interaction between a
fluid and a 2D/axisymmetric hyperelastic body based on a full Eulerian fluid-structure
interaction (FSI) method. In this method, the solid volume fraction is used for describing
the multicomponent material and the deformation tensor for describing the deformation
of the hyperelastic body. The core elements of the simulation method are the constitutive
law in the Cauchy stress form and an equation for the transport of the deformation tensor
field. A semi-implicit formulation is used for the elastic stress to avoid instability espe-
cially for solid with high stiffness. The strain rate has a discontinuity across the fluid/
solid interface. For improving the accuracy in capturing the interface, solid is treated as
a highly viscous fluid. The viscosity term has the effect of smoothing the velocity and
keeping the simulation stable. An experimental setup is used to validate the numerical
results. The movement of a sphere made of silicone in air and its impact on a rigid
substrate are investigated. The images are captured using a high speed CCD camera
and the image processing technique is employed to obtain the required data from the
images. For all cases considered, the results are in good agreement with those of the
experiment performed in this study and other numerical results reported in the literature.
[DOI: 10.1115/1.4027893]
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1 Introduction

FSI appears in many applications such as animation, biological
systems, and industrial processes. The FSI has been used in com-
puter graphics and motion picture arts for many years. It has also
been utilized in life sciences to account for the analysis of aneu-
rysm in arteries and artificial heart valves. Moreover, the FSI is a
crucial consideration in the design of many engineering systems,
e.g., aircraft wings, bridges, turbine blades, etc. where the excita-
tion forces between the fluid and the structure may cause severe
damages. Failing to consider the effects of FSIs can be cata-
strophic, especially in structures comprising materials susceptible
to fatigue.

The phenomenon of the FSI has been studied theoretically for
more than a century. These problems, however, pose a great chal-
lenge because they involve complex moving boundaries and need
the simultaneous solution of the equations for nonlinear elasticity
and nonlinear fluid mechanics. The equations to be solved are:
governing flow equations; equations of the deformable body; and
equations for tracking the fluid/solid interface. Further complexity
of the problem is due to the deforming fluid/solid interface
where accurate boundary conditions should be applied. Therefore,
computationally effective strategies for both the fluid and the
solid have to be considered. Computationally speaking, the fluid
dynamic problems are modeled in an Eulerian system of

coordinate, while the structure dynamic analyses are normally
performed in a Lagrangian system.

Numerical methods for solving the FSI are classified in three
major methods: Lagrangian–Lagrangian, Eulerian–Lagrangian,
and Eulerian–Eulerian. The Lagrangian–Lagrangian method treats
the fluid and the structure as two computational fields which can
be solved separately with their respective mesh discretization and
numerical algorithm. The interfacial conditions are used explicitly
to communicate the information between the fluid and the struc-
ture solutions. In this method, the fluid/solid interface is modeled
using a fitted unstructured grid which has the advantage that the
moving boundary condition is satisfied more accurately. Pure
Lagrangian methods provide flexibility in spatial meshing and can
conveniently catch the detailed physics along the fluid/solid inter-
face. The major drawbacks of these methods, however, are the dif-
ficulties in data exchange between the two domains of fluid and
solid along the interface, the lack of temporal convergence, and
especially the inconsistency between numerical codes used for the
fluid and solid. The pure Lagrangian method was employed by
Belytschko and Kennedy [1] and Donea et al. [2] to study hydro-
structural problems. A more accurate approach of this method is
called the arbitrary Lagrangian–Eulerian (ALE) [3,4], which is
less restrictive because of the moving grid that follows the de-
formable boundaries. A characteristic property inherent to the
ALE method is the ability to adjust to a surface of a body leading
to simulations results with a high-order of accuracy. This method
is used for applications such as blood flow [5], moving rigid
particles [6], and moving hyperelastic particles [7]. The main dif-
ficulty associated with the ALE method is that the whole compu-
tational domain has to be remeshed as the object moves or
deforms.
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In the Eulerian–Lagrangian methods, an Eulerian background
mesh is used for the fluid and a Lagrangian moving mesh for the
solid. In this method, the fluid is assumed to occupy the entire
computational domain with a fixed mesh. The solid, however, is
assumed as a certain volume in the fluid mesh and its development
is described with accurate constitutive equations. As the solid
moves in the computational domain, its corresponding mesh is
varying in time. The interfacial conditions are implicit in the solu-
tion procedure. In other words, Eulerian–Lagrangian methods
treat the boundary location and the related interface conditions as
constraints imposed on the equations. This method can be derived
from the theorem of Lagrange multipliers [8]; these multipliers in
most cases appear as source (or force) terms in the fluid equation.
Thus, in these methods, computation of the Lagrange multipliers
is essential and directly affects the accuracy of the fluid and solid
solutions. Most of these methods are based on the immersed algo-
rithms which are classified as the FSI methods that add force
terms to fluid equations to represent the FSI [9]. A well-known
algorithm called the immersed boundary method (IBM) was origi-
nally introduced by Peskin [10] to study the flow in a heart valve.
The idea was useful in solving the FSI problems with a free move-
ment of solid through a fluid domain. The interaction between the
fluid and the deformable body is treated through nodal forces
incorporated in the momentum equations. These forces (external
terms) that satisfy the boundary conditions on the surface are
applied over the computational domain through smoothed approx-
imation of the Dirac delta function. Inspired by the work of Peskin
[10], other researchers applied various forms of the IBM method
in a wide variety of FSI problems. Wang and Liu [11] proposed
extended immersed boundary method (EIBM) that has several dis-
tinct features in comparison with the IBM. The extensions in the
EIBM method were beneficial to the accurate modeling of com-
plex biological systems. Gilmanov and Acharya [12] utilized the
hybrid immersed boundary method to study the behavior of a cap-
sule in shear flow and the falling of rigid and flexible sphere in a
fluid zone. The IBM model uses the discrete delta function which
smears out a sharp interface into a thickness of order of the mesh
width. Le et al. [13] employed the immersed interface method
(IIM) to avoid smearing a sharp interface and maintain the accu-
racy by incorporating certain jumps in velocity and pressure into
the finite difference scheme near the interface. Based on these
conditions, the fluid and solid motions are coupled in the interface
by the no-slip condition and the balance of dynamic forces. This
method can handle rigid immersed boundaries, fluid-membrane
interactions and membrane–membrane interactions. Glowinski
et al. [14] introduced the fictitious domain method in which a
new Lagrange multiplier is presented for the direct numerical
simulation of flow with suspended solid particles. In the Eulerian–
Lagrangian methods, the restrictions inherent to pure Lagrangian
methods are absent; therefore, these methods are more stable com-
pared to the Lagrangian–Lagrangian methods. However, Eulerian–
Lagrangian methods are less accurate compared to the pure Lagran-
gian methods and require more sophisticated computational
programming.

In both pure Lagrangian and Eulerian–Lagrangian methods, to
predict the motion and deformation of a solid body, the solid dis-
placement is temporally updated in a Lagrangian manner.
Depending on the complexity and number of the solid objects, the
remeshing procedure in each time step may lead to extensive com-
putations. In order to alleviate this difficulty in the FSI simula-
tions, another method called the Eulerian–Eulerian method has
been proposed where a fixed mesh is used for both fluid and solid.
In contrast to the Lagrangian method where the solid deformation
is tracked based on the solid mesh displacements, in the Eulerian
approach, the mesh is fixed and a deformation tensor is employed
[15,16]. This deformation tensor is updated temporally and as a
result the remeshing is not necessary. In the Eulerian–Eulerian
method, stresses in the solid object are calculated from velocity
gradient instead of displacements. Sugiyama et al. [17] used a
FSI model based on an Eulerian framework to study biconcave

neo-Hookean particles in a Poiseuille flow [17]. In later publica-
tions, the same group used this model to study the deformation of
hyperelastic bodies in incompressible fluid flow for other applica-
tions [18–24]. These applications include: fluid flow in a pressure
driven hyperelastic wavy channel [18]; axisymmetric flow inside
a neo-Hookean tube subjected to a pressure gradient [21];
pressure-driven flow with the biconcave membrane capsules (red
blood cells) [22]; and blood flow including elastic membranes and
plateletlike elastic solids in capillary vessel [24].

The method of Sugiyama et al. [19] is capable of handling
unprescribed motion of the solid object in the fluid. Once the ini-
tial value of the solid volume fraction is known, this method
allows the FSI simulation without remeshing in each time step.
They used this method to compare their numerical results with
those of pure Lagrangian and Eulerian–Lagrangian numerical
methods. In the Sugiyama et al. method [19]; however, the strain
rate has a discontinuity across the interface which leads to a non-
physical dynamic condition especially for solids with high stiff-
ness or when the solid interacts with a fluid of low density.
Furthermore, in their model, the fifth-order weighted essentially
nonoscillatory method is used to advect the solid volume fraction
field that makes the interface numerically diffusive [19].

In this study, an improved numerical model based on the FSI
method of Sugiyama et al. [19] is used to simulate the interaction
between a fluid and a 2D/axisymmetric hyperelastic body. To
resolve the nonphysical dynamic condition at the fluid/solid inter-
face, a modification is presented in which a high viscosity is
attributed to the solid zone. This modification smoothes the veloc-
ity field in the solid object, and reduces the effect of elastic
stresses at the fluid/solid interface. Therefore, there is no need to
incorporate the jump conditions in velocity and pressure into the
finite difference scheme as applied in the IIM [13]. It should be
emphasized that in treating the solid object as a high viscous fluid
in this study, the elastic stresses are considered in the governing
equations; i.e., the solid body is treated as a deformable body.
This is in contrast to previous studies [25,26] where the solid
body was only treated as a high viscous fluid with no deformabil-
ity. The elastic stresses in the solid body are calculated by the con-
stitutive law of deformable solid object which have only nonzero
values in the solid zone. The constitutive equation of deformable
solid object is expressed as a function of the deformation tensor
which is temporally updated on each grid point using a transport
equation. The Youngs piecewise linear interface calculation
(PLIC) algorithm [27] is used for describing the multicomponent
geometry that suppresses the numerical diffusion; this algorithm
is frequently used in the multiphase flow simulations [25]. The nu-
merical results are also compared with those of the experiments
performed in this study for the movement of a sphere made of a
hyperelastic material (silicone) in air and its impact on to a rigid
substrate. The numerical model introduced in this study can easily
be applied to other fluid flow solvers dealing with unprescribed
motion of deformable solid objects.

2 Mathematical Model

The governing equations considered for the entire computa-
tional domain including both fluid and solid are

r � V ¼ 0 (1)

@V

@t
þ V � rV ¼

�rP

q
þ

1

q
r � l rV þ rVð ÞT

h i
þ
r � se
q

þ g

(2)

where V is the velocity vector, q is the density, P is the pressure,
l is the dynamic viscosity, se is the elastic stress, and g is the
acceleration due to gravity. As mentioned earlier, the deformable
solid body is treated as a fluid with a high viscosity where elastic
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stresses are also considered in the solid zone. The solid volume
fraction is advected using the volume of fluid (VOF) method by
means of a scalar field us, defined as

us ¼

0 in fluid

0 <;< 1 in fluid=solid interface

1 in solid

8
><
>:

(3)

The discontinuity in us is a Lagrangian invariant, propagating
according to

Dus

Dt
¼

@us

@t
þ V � rus ¼ 0 (4)

The density and viscosity in each cell are defined as

q ¼ 1� usð Þql þ usqs (5)

l ¼ 1� usð Þll þ usls (6)

The subscripts l and s stand for the fluid and solid, respectively.
The Youngs PLIC algorithm [27] is used to advect us based on
Eq. (4). The surface tension effects on the fluid/solid interface are
neglected.

For a hyperelastic material, the elastic stress se is associated to
the strain energy potential W that relies on the hyperelastic consti-
tutive law [28]. For example, the nonlinear Mooney–Rivlin law
[19] gives the expression of the hyperelastic stress for solid as

se ¼ 2C1Bþ 2C2 tr Bð ÞB� B � B½ � þ 4C3 tr Bð Þ � 3½ �B (7)

where B is the left Cauchy-Green deformation tensor and tr(B)
represents the trace of tensor B. Sugiyama et al. [19] proposed a
modification to the left Cauchy-Green deformation tensor as
eB ¼ u

1=2
s B to reduce instabilities in the fluid domain. Using this

modification, eB is temporally updated on a fixed mesh from the
transport equation as

@ eB
@t

þ V � reB ¼ rVT � eBþ eB � rV (8)

with the initial stretch-free condition eBðt0Þ ¼ u1=2
s I.

However, the strain rate has discontinuity across the fluid/solid
interface. This occurs especially when the fluid and solid
densities have a large difference or when the solid object has a
high stiffness. To improve the accuracy of the model in capturing
the interface, a high viscosity is attributed to the solid domain. It
has been discussed in more detail elsewhere [25] that the viscosity
force has the effect of smoothing the velocity field and maintain-
ing the simulation stable. The improvement in accuracy has been
reported in several studies in the literature [25,26,29].

In this study, two cases for a hyperelastic material are consid-
ered including neo-Hookean material and Saint Venant-Kirchhoff
material. For the neo-Hookean material [15] we have C1¼G/2,
C2¼C3¼ 0 and, therefore

se ¼ GB (9)

Venant-Kirchhoff material (with large deformations), the coeffi-
cients are [19]

C1 ¼ lsLame; C2 ¼ �
lsLame

2
; C3 ¼

ksLame þ 2lsLame

8
(10)

where lsLame and ksLame are the Lame constants related to the stiff-
ness of the Saint Venant-Kirchhoff material.

3 Numerical Method

For discretization of the governing equations, a multistep
projection method is used to update velocity based on the flow
equations (Eqs. (1) and (2)) and modified left Cauchy-Green
deformation tensor based on the transport equation (Eq. (8)).

Step 1:
In the first step, the convective and gravity terms in the momen-

tum equation are discretized using an explicit scheme where an
intermediate velocity field V* is obtained as

V� � Vn

Dt
¼ �ðV � rVÞn þ gn (11)

Step 2:
In the second step, a semi-implicit discretization scheme [25] is

used to model the viscous term of the momentum equation to
obtain an intermediate velocity Vnþ1/3 as

Vnþ1
3 � V�

Dt
¼ lr �

rVnþ1
3 þ rVTð Þ

nþ1
3

qn

" #
(12)

which is solved using the tridiagonal matrix algorithm (TDMA)
solver to obtain Vnþ1/3.

The semi-implicit treatment of the viscous term based on the
above equation allows using a large time step even for simulation
of fluids with high viscosities.

Next, based on the transport equation (Eq. (8)), an intermediate

deformation tensor eBnþ1=3 is obtained. For this purpose, the
second-order Adams-Bashforth method [20] is applied for
the advection term and the Crank–Nicolson method [20] for the
velocity gradient terms in the transport equation (Eq. (8)). Based

on these schemes, the intermediate deformation tensor eBnþ1=3 is
obtained as

eBnþ1
3 � eBn

Dt
þ
3

2
Vn � reBn �

1

2
Vn�1 � reBn�1

¼
1

2
rVT
� �n

þ rVT
� �nþ1

3

h i
� eBn þ

1

2
eBn � rVn þrVnþ1

3

h i

(13)

Based on the eBnþ1=3 and utilizing Eq. (7), the intermediate elastic
stress snþ1=3

e is obtained as

s
nþ1

3
e ¼ 2C1

eBnþ1
3 þ 2C2 tr eBnþ1

3

� �
eBnþ1

3 � eBnþ1
3 � eBnþ1

3

h i

þ 4C3 tr eBnþ1
3

� �
� 3

h i
eBnþ1

3 (14)

This term will be used in the next step to model the elastic term of
the momentum equation.

Step 3:
In the third step, the elastic term of the momentum equation is

discretized with a semi-implicit scheme. To avoid instabilities
associated with a high stiff solid object, the method of Ii et al.
[20,22] is employed in which a fourth-order Jacobian tensor is uti-
lized to overcome the difficulty associated with the difference
between the constitutive laws of the solid and fluid. Based on this
method, an intermediate velocity Vnþ2/3 is obtained as
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Vnþ2
3 � Vnþ1

3

Dt
¼

1

2
r �

s
nþ1

3
e þ s

nþ2
3

e

qn

" #
(15)

The elastic stress se
nþ2/3 is evaluated by introducing the fourth-

order Jacobian tensor J ¼ ½@seðeBÞ=@ eB� as

s
nþ2

3
e ¼ s

nþ1
3

e þ Jnþ
1
3 :

eBnþ2
3 � eBnþ1

3

� �
(16)

Based on the transport equation (Eq. (8)) and similar to Eq. (13),

the intermediate deformation tensor eBnþ2=3 is obtained as

eBnþ2
3 � eBn

Dt
þ
3

2
Vn � reBn �

1

2
Vn�1 � reBn�1

¼
1

2
rVT
� �n

þ rVT
� �nþ2

3

h i
� eBn þ

1

2
eBn � rVn þrVnþ2

3

h i

(17)

By subtracting Eq. (13) from Eq. (17), we will have

eBnþ2
3 � eBnþ1

3 ¼
Dt

2

n
rVT
� �nþ2

3� rVT
� �nþ1

3

h i
� eBn

þ eBn

� rVnþ2
3 �rVnþ1

3

h io
(18)

By substituting Eq. (18) into Eq. (16) and the resulting equation
into Eq. (15), a linear system for Vnþ2/3 is obtained as

Vnþ2
3 � Vnþ1

3

Dt
¼ r �

Dt

4qn
H Vnþ2

3; eBn; Jnþ
1
3

� �� �

�r �
Dt

4qn
H Vnþ1

3; eBn; Jnþ
1
3

� �� �
þr �

s
nþ1

3
e

qn

" #

(19)

where

H V; eB; J
� �

¼ J : rVT � eBþ eB � rV
� �

(20)

To solve the resulted system of equations (Eq. (19)), the TDMA
solver is used one more time to calculate Vnþ2/3. Equation (18) is
then can be used to compute the intermediate deformation tensor
eBnþ2=3.
Step 4:
In the four step, the pressure term of the momentum equation is

modeled implicitly as

Vnþ1 � Vnþ2
3

Dt
¼ �

rPnþ1

qn
(21)

The continuity equation is also satisfied for the velocity field at
the new time step

r � Vnþ1 ¼ 0 (22)

Taking the divergence of Eq. (21) and substituting from Eq. (22)
results in a pressure Poisson’s equation as

r �
1

qn
rpnþ1

� �
¼

r � Vnþ2
3

Dt
(23)

The resulting set of equations (Eq. (23)) is symmetric and positive
definite; a solution is obtained using an incomplete Cholesky-
conjugate gradient (LDLT) solver [30]. In Eq. (23), the density
remains within the divergence operator in order to have a smooth
pressure distribution across the cells which are in the fluid/solid
interface and which numerically are characterized by rq 6¼ 0.
The obtained pressure field can then be used to find the final
velocity field by applying Eq. (21). Based on the transport equa-
tion (Eq. (8)) and similar to Eq. (13) the final deformation tensor
eBnþ1 is obtained as

eBnþ1 � eBn

Dt
þ
3

2
Vn � reBn �

1

2
Vn�1 � reBn�1

¼
1

2
rVT
� �n

þ rVT
� �nþ1

h i
� eBn þ

1

2
eBn � rVn þrVnþ1

� 	

(24)

By subtracting Eq. (17) from Eq. (24), we will have

eBnþ1 � eBnþ2
3 ¼

Dt

2

n
rVT
� �nþ1

� rVT
� �nþ2

3

h i
� eBn

þ eBn

� rVnþ1 �rVnþ2
3

h io
(25)

The above numerical procedure in each time step of the calcula-
tion is also presented as a flowchart given in Fig. 1.

Fig. 1 Flowchart of the sequence of the computational cycle
for velocity, deformation tensor, and solid volume fraction
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4 Experimental Setup

To validate the numerical model, the simulation results are
compared with those of the simple experiment performed in this
study and those of the other models available in the literature. In
this study, a simple experiment was setup where the movement
of a hyperelastic solid sphere is photographed. A sphere made of
silicone as a hyperelastic material, moves in air and impacts on a
rigid substrate; it then bounces back and moves upward. A high
speed CCD camera, Grasshopper model, made in Point Grey
Company, Canada, was used for taking high quality images of
various positions of solid object. Figure 2 shows the schematic of
the experimental setup. The MATLAB software is employed for
image processing and the required information is obtained from
the images with a numerical code written in this software.

In the image processing method, first an image involving a
certain piece with known dimension is utilized for calibration
(Fig. 3(a)). The image is read in the MATLAB software and its con-
trast and brightness are modified to reduce the noises in the image.
The image is composed of many pixels which have different col-
ors (values). Using the commands in the toolbox of image proc-
essing, every pixel whose color value is larger than a threshold
value is set to be white color in the surrounded fluid (air). The
remaining pixels located inside the solid object and calibration
piece are set to be black color. Having known the size of the cali-
bration piece, the scale factor for all subsequent images (Fig. 3(b))
is found. The image processing method is then performed for
these images as follows. For the images of the sphere moving in

air (before or after the impact) using commands in toolboxes of
the MATLAB software, the pixels of maximum and minimum row
of the solid object are specified. Therefore, the position of the
center of the sphere volume can be obtained (Fig. 3(c)). For
the images of the sphere during its impact on the substrate, the
fluid/solid and solid/substrate interfaces are first detected to
obtain the contact radius of solid with the rigid substrate
(Fig. 3(d)). Having known the contact radius, the center of the
sphere volume is obtained using a command in the MATLAB soft-
ware that traces the sphere boundary. Following the above proce-
dure for all images taken during an experiment, the center
position of the solid object at all times is determined. Since the
time of each image is also known, the velocity of the object is
then calculated based on the subsequent center positions divided
by the corresponding time step.

To provide a brief uncertainty analysis of the experimental
measurement, the uncertainties associated with the equipments
used in this study are reported in Table 1. The maximum absolute
uncertainty for the position and velocity of the solid body meas-
ured in the experiments was calculated to be less than 7% in the
experiments. More details regarding the uncertainty analysis are
given elsewhere [31].

5 Numerical Results

In this section, first, to validate the numerical algorithm, the
numerical and experimental results for the motion of a hyperelas-
tic sphere in fluid (air) and its impact onto a rigid substrate are
presented. Next, the results of simulations are compared with
those of other studies available in the literature for various
FSIs. These cases include a soft wall deformed by a fluid flow, a
deformable solid motion in a lid-driven cavity, an oscillating soft
disk surrounded by a fluid, and a hyperelastic rectangle in a time-
varying shear flow.

In this study, a high viscosity is attributed to the solid zone
which resolves the nonphysical dynamic condition at the fluid/
solid interface. From extensive numerical simulations performed
in the course of this study, it was found that the ratio of solid-to-
fluid viscosities should be almost the same as the ratio of solid-to-
fluid densities.

5.1 Motion and Impact of a Hyperelastic Sphere Onto a
Rigid Substrate. A sphere made of silicone moves in air and
impacts onto a rigid substrate. The surface roughness of the
substrate and that of the sphere are not considered in the model.
Silicon has been reported to behave as a hyperelastic material
[32]; therefore, the silicon sphere is modeled based on the
neo-Hookean constitutive equation for which the hyperelasatic
treatment of Marckmann and Verron [33] can be used. The neo-
Hookean model involves only one unknown parameter and can be
used to predict the material responses with small deformations
under different types of loading conditions.

A schematic of the problem and its initial condition considered
for simulations are shown in Fig. 4. The initial conditions and the
properties are as follows:

Sphere radius: 19.2mm
Initial position of the sphere: 57.3mm
Initial velocity of the sphere: 1.22m/s
Solid density: 1106 kg/m3

The size of the computational domain, 45mm in radial and
90mm in axial direction, was large enough to encompass both
the initial sphere and its subsequent deformations. The discreti-
zation of the domain was performed using a uniform mesh. The
mesh size can be characterized based on the sphere radius using
a parameter called CPR (number of cells per radius). A mesh
refinement study was performed in which the grid size was
gradually reduced until no significant changes were seen in the
simulation results for the sphere deformation. The results of this
study are presented in Fig. 5 where the position of the center of
the sphere volume and the axial velocity are displayed. Before

Fig. 2 Schematic of the experimental setup for the motion and
impact of a hyperelastic sphere onto a rigid substrate

Fig. 3 Iamge processing technique using the MATLAB software
to obtain the position of the center of sphere volume: (a) image
of sphere and a certain piece with known dimension for calibra-
tion, (b) the image after being processed using a threshold to
reveal the sphere and the calibration piece by reducing the
color values into black and white, (c) the top and bottom pixels
of the sphere to obtain the position of its center while moving
in air, and (d) the detection of the fluid/solid and solid/substrate
interfaces to obtain the center during the impact
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the sphere impact onto the substrate, the sphere is moving as a
solid with the initial specified velocity. Therefore, no significant
differences are observed between the results for different mesh
sizes. After the impact and bouncing, however, the effect of
the mesh size is clearly observed. A close inspection of the sim-
ulations revealed that the differences in the results were due to
the elastic term of the momentum equation. When the sphere
impacts onto the rigid substrate its kinetic energy converts to
the elastic potential which is a functional of the left Cauchy-
Green deformation tensor. For a mesh size coarser than 35 CPR,
the calculation of this deformation tensor is not sufficiently
accurate which results in an under estimated bouncing velocity
of the sphere. However, as shown in Fig. 5, for a mesh size finer
than 35 CPR, no more significant changes are seen in the results
for both sphere position (Fig. 5(a)) and the axial velocity (Fig.
5(b)). A mesh size of 35 CPR, therefore, was selected for the
rest of simulations in this case.

Figure 6 shows the numerical and experimental results of the
sphere before, during and after the impact. Particulary, the results
during the imapct and rebound were of interest where there are
rapid changes in the velocity of both solid and surrounding fluid.
The rapid changes of the fluid velcoity leads to viscous dissipia-
tion which damps the solid velocity during a very short time after
the rebound. In Fig. 6, the numerical results are presented in both
3D views and 2D cross sections. In the cross-sectional views, both
the streamline (right of each image) and velocity vectors (left of
each image) are shown in different locations of the solid to give a
better insight of the air and solid motion. At t¼ 31.5ms, the
sphere has reached almost a zero velocity and the air between
the sphere and the substrate is pushed away. A better display of
the numerical results especially for comparison with those of the
experiments can be obtained by 3D views of the phenomenon;
this is accomplished by rotating the 2D results about axial direc-
tion (y-axis in Fig. 4). A good qualitative agreement is observed
in Fig. 6 between the results of simulations and experiments. It is

worth emphasizing that in the FSI treatment used in this study
although the solid body is modeled as a high viscous fluid, the
elastic stresses are considered in the simulations as explained
before. This leads to the fact the solid body is treated as a deform-
able body in the simulation and that is why the silicon sphere in
Fig. 6 bounces back after its impact on the rigid substrate. If the
solid body was only treated as a high viscous fluid with no further
considerations as introduced in previous studies in the literature
[25,26], the sphere after the impact would stay on the substrate
and would not bounce back.

Figure 7 displays a quantitative comparison between numeri-
cal and experimental results for the position of the center of
the sphere volume and the axial velocity. An excellent agree-
ment between numerical and experimental results is demon-
strated, showing that the present numerical method is able to
capture the motion of solid object in fluid (air). By a compari-
son of the numerical and experimental results, the unknown
coefficient of the solid is found to be: G¼ 0.18MPa. (G
denotes the modulus of the transverse elasticity for the neo-
Hookean material).

To examine the validity of the obtained coefficient
(G¼ 0.18MPa), two more cases given in Table 2 with different
initial positions and velocities are studied. The same value of G as
of the previous case is used in the numerical model. The compari-
son between simulations and measurements for these cases are

Fig. 4 Schematic of a sphere during its motion in air and the
initial and boundary conditions for the simulation

Fig. 5 The result of mesh refinement study for (a) the position
of the center of the sphere volume versus time and (b) the axial
velocity versus time. The mesh size is characterized based on
the number of CPR of the solid.

Table 1 Equipment and their uncertainties

Device Accuracy (unit) Uncertainty (unit)

Image CCD camera (grasshopper, Canada) 65 (pixel)/60.02 (mm) 1 (pixel)/0.001 (mm)
Length Digital caliper 6(0.02) (mm) 0.006 (mm)
Mass Digital balance 6(0.02) (g) 0.006 (g)
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displayed in Fig. 8 which indicates a good agreement between the
results of the model and experiments.

5.2 Deformation of a Soft Wall in a Fluid Flow. Wang and
Zhang [34] considered a cavity 2� 2 cm where the bottom up

to the height of 0.5 cm was occupied by a neo-Hookean solid
and the rest of the cavity was filled with a fluid. In their
simulations, the velocities were zero at all cavity boundaries
except the top lid, where the x component of the velocity
was

Fig. 6 The evolution of the motion and impact of a hyperelastic sphere with a radius 19.2mm and a density 1106kg/m3 in air onto
a rigid substrate from the present model for (a) cross-sectional images, (b) 3D views, and (c) experimental results performed in this
study

Journal of Fluids Engineering NOVEMBER 2014, Vol. 136 / 111107-7

Downloaded From: http://asmedigitalcollection.asme.org/ on 12/01/2014 Terms of Use: http://asme.org/terms



u ¼ 0:5

sin2
px

0:6

� �
x 2 ½0:0; 0:3�

1 x 2 ð0:3; 1:7Þ

sin2
pðx� 2Þ

0:6


 �
x 2 ½1:7; 2:0�

8
>>><
>>>:

(26)

The fluid and solid densities were considered the same equal to
one. The fluid dynamic viscosity was assumed ll¼ 0.2 and the
solid coefficient G¼ 0.2. They neglected the advection terms in

the Navier–Stokes equation [34]. The same case with exactly the
same geometry, same material properties and boundary conditions
were tested using the developed model in this study. The results
of this simulation along with those of Wang and Zhang [34] are
presented in Fig. 9. The deformed solid reaches a steady state at
t¼ 8 s, when a vortex is formed in the middle of the fluid domain.
The wall deformation and the streamlines shown in Fig. 9 reveals
a good agreement with the simulations performed in this study
and those reported by Wang and Zhang [34].

Fig. 6 (Continued)
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5.3 Motion of a Solid in a Lid-Driven Cavity Flow. Zhao
et al. [35] studied the simulation of a deformable solid motion in a
lid-driven cavity flow. The size of the cavity was 1� 1m and
initially the system was at rest. The unstressed solid object was a
disk with a radius of 0.2m centered at (0.6, 0.5). The no-slip con-
dition was imposed on the walls. At t¼ 0, to drive the fluid and
solid motions, the top wall started to move at a speed of
Vwall¼ 1m/s in x direction. The model used to treat the solid com-
ponent was that of a neo-Hookean material. The solid and fluid
properties were ql¼qs¼ 1, ll¼ 0.01, and G¼ 0.1. Figure 10 dis-
plays a comparison between the results of simulations performed
in this study for exactly the same scenario with those of Zhao
et al. [35]. The disk moves and deforms by the fluid flow, and as
it approaches the top wall, more deformation is exhibited. The
deformation of the solid object (disk) is not symmetric about its
vertical centerline. Therefore, downward force which called lubri-
cation force is produced in gap between the solid and top wall of
cavity [35]. This force acting on the solid prevents the object from
touching the top wall of the cavity. As observed in Fig. 10, a close
agreement exists between the shape and flow streamlines from
this study with those reported by Zhao et al. [35].

5.4 Oscillating Disk in a Preset Velocity Field. Robinson
et al. [36] considered a circular deformable body placed within a
fluid domain of dimensions 1� 1m with no slip boundary condi-
tions. An initial velocity was imposed in both the fluid and solid
body based on the stream function w¼ 0.05 sin(2px) sin(2py). A
neo-Hookean constitutive model was used for the solid with
G¼ 1. The fluid and solid properties were ql¼ qs¼ 1 and
ll¼ 0.001. The simulations were run for a period of 1 s. The disk
was initially stressed free and its undeformed shape was a circle.
The results of simulations along with those of Robinson et al. [36]
are shown in Fig. 11. The system gradually changes like a damped
oscillator without any external forcing. At t¼ 0.2 s, the maximum
deformation occurs. As seen in the figure at t¼ 0.5 s, two vortices
exist in the fluid flow in each quarter: one in the fluid domain and

the other at the fluid/solid interface. Figure 11 shows a good
agreement between the results of the present study with those
reported by Robinson et al. [36].

5.5 Hyperelastic Material in a Time-Varying Shear Flow.
When a hyperelastic material after being deformed in a fluid flow
is set free from stresses, it usually shows reversibility toward the
initial shape [19,23]. In this section, a hyperelastic rectangle is

Fig. 7 Comparison of the numerical results with those of the
experiments for (a) the position of the center of sphere volume
and (b) the axial velocity

Table 2 Initial velocities and positions (height) of the sphere
for two different cases

Case (1) Case (2)

Initial position (mm) 61.9 58.6
Initial velocity (m/s) 0.73 1.06

Fig. 8 Comparison of the numerical results with those of the
experiments for various initial positions and velocities of the
sphere: (a) the position of center of the sphere volume and (b)
the axial velocity

Fig. 9 The simulation results for a soft wall in a lid-driven cav-
ity flow from (a) present study and (b) those of Wang et al. [34].
(Reprinted with permission from Springer Science and Busi-
ness Media.)
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modeled in a time-varying shear flow similar to the case consid-
ered by Sugiyama et al. [19] to estimate the reversibility of the
hyperelastic material using an Eulerian method. In this case, a
Couette flow between two flat plates involving the Saint Venant-
Kirchhoff material with a dimension of 2.375� 1m is considered.
The solid object with properties qs¼ 1, ksLame ¼ 6, and lsLame ¼ 4
(i.e., C1¼ 4, C2¼�2, and C3¼ 1.75) immersed in a fluid with
ql¼ 1 and ll¼ 1. The upper and lower plates were located at
y¼ 2 and y¼ 0 and the computational extent in the x direction
was set to 8m. Initially, the system was at rest. Within a period of

0� t� 4 s, the upper and lower plates moved at a velocity of
Vupper
w ¼ 1m/s and Vlower

w ¼�1m/s in the x direction. After t¼ 4 s,
the moving plates are stopped to release the solid object from the
shearing force. Figure 12 displays the solid deformation in six
time instants from the simulations performed in this study and
those reported by Sugiyama et al. [19]. As the shear flow is
induced by the moving plates, the shearing force causes the solid
to extend in the horizontal direction. At t¼ 4 s, the left-top and
right-bottom corners of the solid object are largely deformed.
After this time, the fluid flow rapidly decays and the deformed
solid gradually recovers the initial shape. A good comparison is
seen between the results of the present study with those of
Sugiyama et al. [19].

6 Conclusion

A full Eulerian simulation method for solving FSI problems in
various 2D/axisymmetric scenarios was developed. The devel-
oped model uses an Eulerian approach for both fluid and

Fig. 10 The simulation results for a deformable solid motion in
a lid-driven cavity flow from (a) present study and (b) those of
Zhao et al. [35]. (Reprinted with permission from Elsevier.)

Fig. 11 The simulation results for an oscillating disk in fluid
from (a) present study and (b) those of Robinson et al. [36].
(Reprinted with permission from Elsevier.)
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deformable solid and the VOF method to obtain the position of
the solid object. The temporal change in solid deformation was
calculated by updating a deformation tensor. An implicit formula-
tion for the elastic stress was used through a fourth-order Jacobian
tensor to avoid the instability for high stiff solid objects. The elas-
tic stresses have discontinuities across the fluid/solid interface.
Therefore, the dynamic boundary condition was not completely
satisfied. For improving this boundary condition, the viscosity in
the solid object was increased which reduced the effects of the
elastic stresses in the fluid/solid interface resulting in a stable sim-
ulation. As a result, compared to other available methods for mod-
eling FSI, the presented algorithm is more efficient and needs less
computational time and effort.

For validating the numerical results, an experiment was per-
formed in which the movement of a spherical deformable solid
object in air and its impact onto a rigid substrate were studied. In
the experiment, a CCD camera was employed to capture images
from the movement of the sphere. Next, the image processing
technique was used to obtain the position of the sphere and its
velocity. The numerical results for the same problem compared
well with those of the experiments both qualitatively and
quantitatively.

Further validation of the model was performed by a comparison
of the simulation results for FSI scenarios for which other numeri-
cal results were available in the literature. These cases included
the deformation of a deformable wall by a fluid flow in a 2D cav-
ity; the motion of a deformable solid object in a 2D cavity; the
motion of a deformable disk in surroundings fluid by enforcing an
initial oscillating movement; and the motion of a hyperelastic
material in a time-varying shear flow. For all cases, the numerical
results were in good agreement with available results in the
literature.
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