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Abstract. This article deals with the identification of elastic parameters (engineering constants) in sandwich honeycomb or-

thotropic rectangular plates. A non-destructive method is introduced to identify the elastic parameters through the experimental

measurements of natural frequencies of a plate undergoing free vibrations. Four elastic constant are identified. The estimation

of the elastic parameter problem is solved by minimizing the differences between the measured and the calculated natural fre-

quencies. The numerical method to calculate the natural frequencies involves the formulation of Rayleigh-Ritz using a series of

characteristic orthogonal polynomials to properly model the free edge boundary conditions. The analysis of the results indicates

the efficiency of the method.

Keywords: Identification of parameters, sandwich plates, optimization

1. Introduction

Nowadays, composite structural systems are exten-

sively adopted as solutions to many engineering appli-

cations such as automobiles, railways or aerospace ve-

hicles. This situation is a direct consequence of their

superior characteristics in the structural response.

Elastic parameters, like stiffness or the Poisson’s ra-

tio, play a crucial role in analyzing, designing, manu-

facturing and controlling structural systems. The con-

ventional techniques of identification of those param-

eters relies on static tests which do not seem to be ad-

equate for non conventional materials or structures as,

for instance, laminates or any general sort of compos-

ites. They often present an orthotropic or transversal

isotropic behavior and thus require more reliable and
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robust identification approaches that lead to the estima-

tion of all involved constants. Besides, those materials

present a great dispersion on their behavior when dif-

ferent specimens are observed, at least when they are

compared to standard materials. This demands the ex-

ecution of several experiments in order to obtain more

reliable results. Therefore, cheap, simple and non de-

structive experiments are mandatory.

Motivated by this, a methodology for the estimation

of elastic constants involving modal analysis combined

with optimization processes is presented here. This ap-

proach fits in the so called model up-date which seeks

matching experimental results to analytical modeling.

The proposed technique has turned out to be appro-

priated for composites and was applied here to a hon-

eycomb sandwich plate with aluminum core and face

sheets.

In the present research, laminated plates have been

chosen as basic structure for identification [1]. Those
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structures are submitted to standard modal tests, from

which natural frequencies are obtained. In the second

step of the estimation, those experimental results are

compared to their counterparts obtained from analytical

models. Hence an optimization algorithm is used to

fit those analytical models in order to yield the sought

elastic constants. This approach was assessed by means

of a number of different situations and has come to very

satisfactory results.

Indeed, similar approaches have been used recently

and they are extensively presented in literature [3,5–8,

10,11]. In most of the cases the classical plate theory

is employed and natural frequencies are used as basic

information to the identification process. Although,

there are several and crucial different aspects among

them, like, for instance, the numerical algorithms, the

type of experiments, the adopted boundary conditions

(supports of the plates) and the way used to generate the

discrete model. Anyway, the good results obtained by

all those approaches represent an additional motivation

to explore more and more those techniques in order to

complement or substitute conventional static tests in

the determination of material constants. Nevertheless,

no one of the above mentioned authors deal with the

identification of elastic constants for sandwich panels

using, simultaneously, optimization approach, modal

analysis and plate theory. Saito et al. [11] adopted

the optimization approach but the theoretical model is

based on orthotropic Timoshenko beam theory, so they

could only identify two elastic parameters.

2. Experimental analysis [1]

A standard modal test has several different ways to

be performed. They differ in how the structure is sup-

ported, what the excitation sources are and how the re-

sponse is measured. Here, a plate was chosen as the

basic structure, as previously mentioned. For simulat-

ing a free structure, the plate was hanged by two ny-

lon wires and impact tests were carried out. Due to

the experimental simplifications, accelerations of some

points were used as the structural response. A more

detailed description of the experimental set-up comes

bellow.

The tested sandwich plate was formed by two thin

sheets of aluminum with 0.7 mm of thickness and a

honeycomb core whose dimensions were: 0.60 m ×
0.40 m × 0.0105 m and the mass was 0.725 kg. As

mentioned before the plate was suspended by two ny-

lon wires attached to it by means of very small sup-

ports. Screws in the wall connected those wires and

were used to maintain the correct position of the plate.

A small impact hammer was used to excite the struc-

ture. Accelerometers attached to the plate were linked

by signal conditioners to an HP 3566a data signal ana-

lyzer which, in turn, was controlled by a personal com-

puter. The situation is presented, in a schematic way, in

Fig. 1 and a basic experiment configuration is depicted

in Fig. 2.

In order to obtain sufficient data for the identifica-

tion process, three sets of tests with different posi-

tions of one accelerometer were performed ((110,120);

(250,140); (330,260) mm coordinates were established

from the left upper corner). Each set corresponds to

the average of twenty tests with the aim of minimizing

the presence of noise in the data.

A modal analysis code, developed by the Vibration

Laboratory of PUC-Rio, was used to post-process data.

This consists on curve fitting the measurements with

the Frequency Response Function (FRF). Only the nat-

ural frequencies were extracted from the FRF because

a full modal analysis leading to the mode shapes would

have required much more time and computational ef-

fort. Therefore, a careful ad-hoc analysis necessary to

assure the correct correlation among experimental and

numerical frequencies was needed.

3. Mathematical modeling

The analytical discrete model used in the identifica-

tion process is based on a variational framework namely

the Rayleigh-Ritz method, leading to approximate solu-

tions for the mode shapes and natural frequencies. The

modeling considers the composite structure formed by

a central core and the two face sheets as an homoge-

nous plate with global equivalent constitutive constants,

which have to be obtained by means of analytical or

experimental techniques.

The adopted kinematics comes from the Mindlin

plate theory and it is described by the three fieldsw0, ψx

and ψy . The first one is the vertical displacement of

mid-surface points and the last two corresponds to the

rotation of the cross sections in x and y directions.

Herex and y stand for orthogonal directions in the mid-

surface of the plate. In this theory, plane cross-sections

remain plane during the motion and shear deformation

is accomplished by considering the rigid rotation of the

cross-sections, given by ψx and ψy .

Therefore, assuming the plate to be a conservative

system experimenting a free harmonical motion corre-
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Fig. 1. The scheme of the experimental set-up.

sponding to a specific vibration mode, the accumulated
energy in a specific instant is given by [9,11]

Tmax = (1)

ω2

(

1
24 (6ρfc

2t + ρcc
3)

∫

A(ψ2
x + ψ2

y)dA

+ 1
2 (2ρf t+ ρcc)

∫

A w2
0dA

)

Umax =
Ec2t

4(1 − ν2)

∫

A

(

ψ2
x,x + ψ2

y,y

+2νψx,xψy,y

)

dA

+
Ec2t

8(1 + ν)

∫

A

(ψx,y + ψy,x)2dA

(2)

+
c

2
kGyz

∫

A

(w0,y − ψy)2dA

+
c

2
kGzx

∫

A

(w0,x − ψx)2dA.

where T and U stand for kinetic and elastic energy
terms. Besides, ω is the natural frequency, ρf and ρc

are, respectively, the mass density of the faces and of the
core, ν stands for the Poisson’s ratio, E and Gzx, Gyz

are the moduli of elasticity and shear. Finally, k is
the shear correction factor and a typical value for it is
0.8 [9]. The constitutive parametersE,Gzx, Gyz and ν
are the target of the identification process. The notation
f,x denotes spatial derivatives in x or y directions.

The dimensions of the plate’s cross section with area
A are introduced in Fig. 3.

The three kinematics fields were discretized by us-
ing orthogonal polynomials which naturally enforce the
free boundary conditions. In order to come up with
simpler expressions the following non-dimensional co-
ordinates are introduced

ξ =
2x

a
η =

2y

b
(3)

where ξ e η in [−1,1] and a and b are the plate dimen-
sions in directions x and y.

Therefore, the displacement fields are now repre-
sented by

w0(ξ, η) =

p−1
∑

m=0

p−1
∑

n=0

Nmnφm(ξ)φn(η)

ψx(ξ, η) =

p−1
∑

m=0

p−1
∑

n=0

Omnφm(ξ)φn(η) (4)

ψy(ξ, η) =

p−1
∑

m=0

p−1
∑

n=0

Pmnφm(ξ)φn(η)

whereN,O andP are the coefficients of the discretiza-

tion, the integer p corresponds to the number of adopted

polynomials. Besides, φm and φn are the orthogonal

polynomials referred above and defined by [4]:

φ0(ξ) =
1√
2

φi = A
−1/2
i Φi(ξ)

Φ1 = ξφ0 Φi = ξφi−1(ξ) −A
1/2
i−1φi−2(ξ) (5)

(i = 2, 3, 4, . . .) Ai =

∫ 1

−1

Φ2
i (ξ)dξ

Substituting Eq. (4) in Eq. (2) leads to

Tmax = (6)

ω2ab

4
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Umax = U (1)
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max + U (3)
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max (7)

where
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Fig. 2. Experimental configuration.

Fig. 3. Cross section dimensions.

U (2)
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U (3)
max =

c

2
Gyz

[

a

b

∫ 1

−1

∫ 1

−1

w2
0,ηdξdη

−a
∫ 1

−1

∫ 1

−1

w0,ηψydξdη

+
ab

4

∫ 1

−1

∫ 1

−1

ψ2
ydξdη

]

U (4)
max =

c

2
Gzx

[

b

a

∫ 1

−1

∫ 1

−1

w2
0,ξdξdη

−b
∫ 1

−1

∫ 1

−1

w0,ξψxdξdη

+
ab

4

∫ 1

−1

∫ 1

−1

ψ2
xdξdη

]

.

The dynamical equilibrium state of the system is

given by a minimum of the LagrangianL = T − V [4,

9], therefore it satisfies

∂(Tmax − Umax)

∂(Nij , Oij , Pij)
= 0. (9)

Relation Eq. (9) leads to the following system of
equations, which involves the coefficients N,O and P
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ρ̃ = 2ρf t+ ρcc
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ρfct

2
+
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2
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2

E
(13)

ω2 = 4π2f2
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Equation (10) system can be cast in the matricial
compact form

p−1
∑

m=0

p−1
∑

n=0

([K] − f̃2[M ]){λ} = 0 (14)

denoting that the formulation results in an eigenvalue
problem, where [K] and [M ] are stiffness and mass ma-
trixes and f̃ and {λ} form the eigenvalue-eigenvector
pair.

It is worth remarking that damping was not taking
into account in this modeling, which, surely, is a limita-
tion of the proposed approach. To diminish this draw-
back, the damping influence is considered, based on a
simplified model, in the experimental results.

4. Parameter identification

This section describes the adopted optimization tech-

nique to identify elastic constants of the sandwich plate.

The technique is based on the adjustment of coefficients

in a minimization optimization process with respect

to the elastic constants. Based on the least squares

method, values are sought for the elastic constants that

would provide best agreement between obtained exper-

imental measurements and the analytical model natural

frequencies [3,7,10].

As previously mentioned, a sandwich plate com-

posed of a single orthotropic core with two thin

isotropic faces was considered. For this sandwich plate,

according to the mathematical model described in Sec-

tion 3, for given plate dimensions and material density,

the frequencies are nonlinear functions of the Young’s

modulus E, the Poisson’s ratio ν and the shear moduli

Gxz andGyz. Therefore, to formulate the identification

problem the vector θ, which contains the undetermined

coefficients, is defined by

θ =
[

E
E0

ν Gxz

E0

Gyz

E0

]T

(15)

where E0 is a fixed scaling factor, chosen so that all

parameters are measured on compatible scales.

For identification of elastic constants of thick or-

thotropic plates, Frederiksen [3,5,6] proposed an ob-

jective function based on a sum of squared relative dif-

ferences between each experimental natural frequency

and its corresponding theoretical prediction. Herein the

objective function differs a little from Frederiksen’s.

Motivated by a number of numerical tests, a residue

consisting of the difference between the square of ex-

perimental and the numerical frequencies was adopted.

Therefore, the adopted objective function is written as

L =
m

∑

i=1

[ei(θ)]
2. (16)

The residue ei (θ) is defined by

ei(θ) =
f2
expi

− f2
i (θ)

f2
expi

(17)

where fexpi
represents the experimental frequencies

and fi(θ) the numerical ones, obtained in each step

of the optimization iterative process. The number of

modes m considered in the analysis, depend on the

quality of the obtained experimental data and the sen-

sitivity analysis of the problem. The work deals with

the first twelve frequencies. Indeed, the above objec-
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Fig. 4. Sensitivity coefficients for a free edge sandwich plate.

tive function has lead to a better conditioned numerical

problem.

In order to fulfill mechanical requirements to ensure

the positive-definiteness of the stiffness matrix, the fol-

lowing constraints are imposed to the parameters:

E

E0
> 0

Gyz

E0
> 0

(18)
Gxz

E0
> 0 − 1 < ν < 0.5

A penalty method is applied to transform this con-

strained problem into an unconstrained one [1,2,5]. In

this method, a modified objective function is proposed

so as to assign a high cost for violating the constraints.

Then, the minimization process is performed iteratively

by a Newton-Rapson algorithm. For more details about

the algorithm see Bastos [1] and Bazzara [2].

5. Frequency sensitivity analysis

First-order derivatives of the frequencies with respect
to the unknown parameters, often referred as sensitivi-

ties, are primordial in the optimization algorithm based

on gradient methods as Newton-like algorithms. Be-

cause sensitivity coefficients values indicate the level

of the process reliability, more detailed information can
be gained for the identification procedure by examining

those coefficients [9]. For example, those coefficients

are important in order to determine the minimal number

of frequencies that need to be included in the analysis

to assure reliable results.
The non-dimensional coefficient sij(θ), which indi-

cates the sensitivity of the frequency fi with respect to

the unknown parameter θj , is obtained by the analytical

expression

sij(θ) =
∂fi(θ)

∂θj

θj

fi(θ)
(19)
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Table 1

Computed E, Gyz, Gzx and ν for three different initial guesses

Initial guess Identified parameters Number of iterations

E0 = 200.00 GPa E = 59.92 GPa 25

G0yz = 0.80 GPa Gyz = 0.43 GPa

G0zx = 0.20 GPa Gzy = 0.10 GPa
ν0 = 0.40 ν = 0.33

E0 = 200.00 GPa E = 59.86 GPa 25

G0yz = 1.00 GPa Gyz = 0.43 GPa

G0zx = 0.40 GPa Gzy = 0.10 GPa

ν0 = 0.20 ν = 0.33

E0 = 100.00 GPa E = 59.97 GPa 25

G0yz = 0.38 GPa Gyz = 0.42 GPa

G0zx = 0.1 GPa Gzy = 0.10 GPa

ν0 = 0.30 ν = 0.33

where

∂fi(θ)

∂θj
=

E

2ρ̃a2fi

∂K(θ)

∂θj
φi · φi (20)

in which it is assumed that the eigenvectorφi, obtained

from the numerical analysis, is normalized such that

[M ]φi. φi = 1.

Figure 4 shows the value of the inverse sensitivity

coefficients for a free edge sandwich plate with the fol-

lowing properties: E = 71 GPa, Gyz = 0.22 GPa,
Gzx = 0.11 GPa e ν = 0.30. The graphs show that, in

almost all frequencies range, higher sensitivities with

respect to Young’s modulus and shear modulus Gzx

are obtained than those obtained with respect to shear

modulus Gyz and Poisson’s ratio ν. Some precau-

tions should be considered in analyzing the reliability
of those parameters estimation. Finally, for all parame-

ters, the graphs indicate that better estimates are possi-

ble provided the higher mode frequencies are included.

6. Results

Before applying the present methodology to com-

posite structures, it was applied to a homogeneous alu-

minum plate. This turned out to be a very good test due
to the existence of previous estimations of the sought

parameters. Besides, there are simpler ways to perform

the validation of the updated model. A number of im-

portant analysis were developed in this context such as

the adequacy of the polynomials, convergence charac-

teristics of the algorithm and strategies for the choice
of the initial guess. Those results are reported in [1].

The above sensitivity analysis, summarized in Fig. 4,

points towards the use of the 12 first natural frequencies

in the identification process. Moreover, for the iterative

algorithm used in the optimization, initial guesses are

necessary for the sought parameters. The three initial

guesses adopted are shown in Table 1. The number of
iterations needed is presented as well. Regardless the
initial guesses choice the identified parameters are sim-
ilar, which seems to be an indicator of the consistency
and stability of the proposed approach

The shift on the natural frequencies due to the pres-
ence of damping was approximated using the expres-
sion of a single degree of freedom (“modal damping”).
Thus, the damping was evaluated and this was used to
obtain normal frequencies from the damped ones.

A typical convergence’s history of the optimization
is depicted for each parameter in Fig. 5. One can ob-
serve that all the elastic parameters converge monoton-
ically in a satisfactory number of iterations. The elastic
modulus and the Poisson’s ratio achieve the final value
much faster than the shear coefficients.

The plate orthotropy [9], due to the core element ,
renders distinct values for the two shear moduli, as it
was experimentally confirmed and presented in Table 1.

7. Final remarks

The present work deals with an identification ap-
proach, based on model up-date, for global elastic pa-
rameters of a composite structure represented by a hon-
eycomb sandwich plate. This approach relies on the
comparison of a number of experimental natural fre-
quencies, obtained by means of standard modal tests,
with those coming from an analytical modeling. This
comparison results in a minimization problem numer-
ically solved by an iterative procedure based on the
Newton’s method.

Finally, the approach starts with the modal tests exe-
cution and finishes with the optimization procedure, in
a prototype. The obtained results seem to be satisfac-
tory and , therefore, motivate the authors to apply the
same approach to different kinds of composites like,
for instance, fiber reinforced laminates.



200 S.F. Bastos et al. / Numerical and experimental approach for identifying elastic parameters

iteraction iteraction

iteraction iteraction

M
o
d
u

lu
s 

o
f 

el
as

ti
ci

ty
 (

E
) 

S
h

ea
r 

m
o
d
u

lu
s 

(G
y
z)

 

S
h

ea
r 

m
o
d
u

lu
s 

(G
zx

) 

P
o
is

so
n

`s
 r

at
io

 (
ν)

 

Fig. 5. Parameters evolution along the iterative process.
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