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Nonlinear ultrasonic Lamb waves are popular to characterize the nonlinearity of materials. However,

the widely used nonlinear Lamb mode suffers from two associated complications: inherent dispersive

and multimode natures. To overcome these, the symmetric Lamb mode (S0) at low frequency region

is explored. At the low frequency region, the S0 mode is little dispersive and easy to generate.

However, the secondary mode still exists, and increases linearly for significant distance. Numerical

simulations and experiments are used to validate the nonlinear features and therefore demonstrate an

easy alternative for nonlinear Lamb wave applications. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4958705]

Nonlinear ultrasonic guided waves have emerged as a

useful tool to characterize material microstructure and detect

micro scale damages prior to the formation of macro-cracks

in large structures, such as plates,1–3 rods,4,5 and pipe struc-

tures.6,7 Comparing with nonlinear ultrasound in bulk media,

nonlinear guided waves are much more complex in theory.

Strict criteria have to be satisfied for the existence of nonlin-

ear guided waves, including synchronism, i.e., the matching

of phase velocities, as well as non-zero power flux from pri-

mary modes to the secondary modes.1,8–10 Therefore nonlin-

ear guided waves exist only in particular frequencies, and

they appear in mode pairs. Theoretically there are an infinite

number of mode pairs that satisfy the above conditions,

although in the literature the mode pair (S1, S2) is most

widely used, as it also has synchronous group velocities.2,11–13

Fig. 1 presents the mode pair (S1, S2) at normalized frequen-

cies fd¼ 3.57 and 7.14 MHz-mm on the phase velocity dis-

persion curves of an aluminum plate. In practice it may be

difficult to generate the S1 mode at the exact resonant fre-

quency, due to the uncertainty in the material properties used

in the experiment. There are also challenges in the signal

processing as multiple modes exist in that frequency and both

S1 and S2 modes are dispersive. Although time frequency

analysis, e.g., short time Fourier transformation (STFT), can

be used to separate Lamb modes that are closely spaced, it

suffers from the Heisenberg uncertainty principle, making it

impossible to have perfect resolution in both time and fre-

quency, and its resolutions depend strongly on the user’s ex-

perience in determining the type and size of the window.14

Because of these uncertainties, the post processing results for

the time domain signal may be distorted.

In this paper, we explore the possibility to use low fre-

quency symmetric Lamb mode (S0) for nonlinear applica-

tions. We will demonstrate that although the exact phase

velocity matching criterion is no longer valid, the amplitude

of the second harmonics still increases cumulatively for

significant distance. It has been reported that mismatch of

the phase velocity, cpð2xÞ 6¼ cpðxÞ, where cp¼x/k and k is

the wavenumber, plus the nonzero power flux results in the

sinusoidal behavior for the second harmonic wave.8,15 Here

kd ¼ kð2xÞ � 2kðxÞ is interpreted as the deviation from

exact phase velocity matching. In general, the sinusoidal

behavior is not desired, since the amplitude of the second

harmonic wave is bounded and oscillates with a spatial peri-

odicity, called dispersion length L, given by a simple for-

mula, L ¼ 2p=jkdj.8 However, a special case would be

practically useful: if kd is very small, the sinusoidal solution

for the second harmonic wave approaches closely to the res-

onant solution. In this case, the amplitude of the second har-

monic wave grows almost linearly for a certain distance,

which creates the possibility for practical applications. It can

be seen from the dispersion curves that S0 mode is very little

FIG. 1. Phase velocity dispersion curves for Lamb modes in aluminum

plates. Symmetric modes (represented by S) are shown in dashed curves

while antisymmetric modes (represented by A) are shown in solid curves.

The box indicates the low frequency region and dotted dashed lines show

the mode pair (S1, S2) satisfying the condition of the matching of phase

velocity.a)Electronic mail: ZFAN@ntu.edu.sg
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dispersive in the low frequency region, leading to small kd

and thus cumulative increase of the second harmonics for a

certain distance. This is interesting as the S0 mode is rela-

tively easier to generate, and there are a wide range of fre-

quencies that can be used. The objective of this paper was to

explore the nonlinear feature of the low frequency region S0

mode via numerical simulations and experiments, and there-

fore demonstrate an easy alternative for nonlinear Lamb

wave applications.

In the theoretical analysis, a perturbation approach and a

mode expansion technique are used for the generation of sec-

ond harmonic waves in nonlinear elastic plates.1,8–10 The sol-

utions for the primary wave can be obtained analytically via

linear Lamb mode theory16 or numerically via finite element

(FE) modeling.17 For the second harmonic wave, the modal

expansion technique is employed for the inhomogeneous lin-

ear boundary value problem and the solution of the second

harmonic wave is written as a linear combination of N propa-

gating modes at the frequency of 2x

v 2ð Þ y; z; tð Þ ¼
1

2

XN

n¼1

An zð Þv 2ð Þ
n yð Þe�2Ixt þ c:c:; (1)

where z is the wave propagation direction and y represents

the direction perpendicular to the plane of the plate; vð2Þn ðyÞ
is the particle velocity of the n-th mode at 2x; c.c. represents

the complex conjugates and An(z) is the modal amplitude for

the n-th mode in the expansion, which describes how strong

a certain secondary mode is excited in the expansion. In this

paper, the nonlinear Semi-Analytical Finite Element (SAFE)

method was applied, which was developed to analyze the

modal properties and nonlinear internal resonant conditions

of arbitrary waveguides.18,19

An aluminum plate with thickness of 1 mm was consid-

ered in this study and the material properties are listed in

Table I. The modal amplitude of the secondary modes with

respect to the propagation distance was calculated through

the nonlinear SAFE method with the S0 mode being the pri-

mary excitation. Fig. 2(a) plots the modal amplitudes of all

possible secondary modes at a primary excitation frequency

of 300 kHz. It is obvious that the modal amplitudes of both

SH0 and A0 modes almost equal to zero along the propaga-

tion distance, which is due to zero power flux from the pri-

mary to the secondary modes. For the S0 mode, although

it is not an internally resonant point, the modal amplitude

increases almost linearly up to 500 mm (marked by an arrow

in Fig. 2(a)) in the beginning part of its dispersion length

of 2000 mm. From a practical application perspective, such

distance is significant for applications of nonlinear Lamb

waves. Fig. 2(b) plots the modal amplitudes of the propaga-

tive secondary modes with the S0 mode excitation at

600 kHz. In this situation, as the deviation between the phase

velocity of the primary and second mode becomes larger, the

dispersion length decreases to 200 mm, which results in a

very short distance (50 mm, marked by an arrow in Fig. 2(b))

where the amplitude of the second harmonic wave grows

linearly.

To validate the predictions from the nonlinear SAFE

method, numerical simulations were carried out in a com-

mercial finite element package.20 The Murnaghan model was

adopted in the simulations, which is equivalent to the

Landau–Lifshitz nonlinear hyperelastic constitutive model in

the nonlinear SAFE method21 and plane strain condition was

used. In simulations, the thickness of the plate was also cho-

sen to be 1 mm and the length of the plate was assumed to be

600 mm. Prescribed displacement boundary condition as an

input signal was applied at the left end of the plate to excite

the primary mode, using a 10 cycle Hanning windowed tone-

burst with central frequencies of 300 kHz and 600 kHz,

respectively. Stress free boundary conditions were applied to

other boundaries. Rectangular elements were used with

length of 0.2 mm and width of 0.1 mm, and a maximum time

step of 0.01 ls was used. In addition, the monitor points

were placed at the center of the plate to pick up the in-plane

displacement at propagation distances in a step of 10 mm, as

TABLE I. Elastic constants used in numerical simulations.

q (kg/m3) k (GPa) l (GPa) A (GPa) B (GPa) C (GPa)

2700 55.27 25.95 �351.2 �149.4 �102.8

FIG. 2. Modal amplitudes for propagative secondary modes with excitation

frequency of (a) 300 kHz and (b) 600 kHz. The arrows mark the distance

where the amplitude of the secondary mode increases linearly; SH0 repre-

sents the zero order shear-horizontal mode.
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the maximum displacement occurs in the middle of the

plate.16 Fast Fourier Transform (FFT) was used in post-

processing to extract the amplitudes of the primary mode

(A1) and the secondary mode (A2). The relative nonlinearity

parameter, A2=A2
1, was calculated as a function of the propa-

gation distance to measure the nonlinearity.

Figure 3 shows the relative nonlinearity parameter with

respect to the propagation distance. It can be observed that

the numerical results agree very well with the predictions

from the nonlinear SAFE method. Fig. 3(a), with the primary

S0 mode excited at 300 kHz, demonstrates that the amplitude

of the secondary mode increases linearly with the propaga-

tion distance at least from 10 to 500 mm. In Fig. 3(b), when

the excitation frequency is 600 kHz, the relative nonlinearity

parameter captures the sinusoidal behavior, and the linear

cumulative increase of the secondary mode is prominent

at the beginning distance of each dispersion length, e.g.,

0–50 mm and 200–250 mm.

In addition to numerical simulation validations, experi-

ments were designed to verify the nonlinear feature of the low

frequency region S0 mode on a 1 mm thick aluminum plate

(Al 1100). Two wide-band piezoelectric shear wave trans-

ducers (manufactured by Doppler Electronic Technologies

Co.) with central frequency of 300 kHz and 600 kHz, respec-

tively, and diameter of 30 mm were placed on the top surface

of the plate to excite the primary S0 mode. A high voltage 10

cycle Hanning windowed tone-burst signal was generated by

a high power gated amplifier (RITEC RAM-5000 SNAP).

The ultrasonic waves were measured using two laser vibrome-

ters (Polytec OFV 5000) to pick up the in-plane displacement

of a point on the plate surface along the wave propagation

direction. An oscilloscope was used to store the time trace of

the signal with 1000 averages to improve the signal-to-noise

ratio and the data were processed in the frequency domain

using FFT. In each experiment, measurements were made in

the far field along the propagation distances, from 90 to

390 mm with a step of 30 mm, and each set of measurements

was repeated five times.

Figure 4 shows the relative nonlinearity parameter with

the propagation distance with excitation frequency of 300

kHz and 600 kHz, respectively. In the first case, when the ex-

citation frequency is 300 kHz, the linear rise of the relative

nonlinearity parameter with increasing propagation is clearly

shown from 90 to 390 mm in Fig. 4(a), which demonstrates a

cumulative second harmonic generation in this distance.

When the excitation frequency is 600 kHz, a sinusoidal type

FIG. 3. Relative nonlinearity parameter with respect to the propagation dis-

tance with excitation frequency of (a) 300 kHz and (b) 600 kHz.

FIG. 4. Relative nonlinearity parameter measured over increasing propaga-

tion distance for the aluminum plate with excitation frequency of (a) 300

kHz and (b) 600 kHz.
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of curve is shown in Fig. 4(b) between 200 and 400 mm,

which means that the amplitude of the secondary mode

increases first and then decreases with a sinusoidal behavior

in the distance. It should be noted that the first sinusoidal

curve between 0 and 200 mm is not easy to be captured

experimentally mainly due to the near field effect. Such

results have very close agreement with the predictions from

the nonlinear SAFE calculation and the numerical simula-

tions, indicating that the amplitude of the second harmonic

wave indeed grows linearly in a certain distance at the low

frequency region.

It has been known that large dispersion length can be

obtained for lower frequency, thus leading to a long distance

along which the second harmonic wave grows linearly

(shown in Fig. 5). However, it should be noted that the non-

linear parameter,22 b ¼ 8A2=k2xA2
1, is a material property de-

pendent only on the microstructure. Therefore the amplitude

of the second harmonic (A2) is proportional to the square of

the amplitude of the primary wave (A1). At very low fre-

quency, where the wavenumber k is small, A1 needs to be

very high to generate noticeable signal of the second harmon-

ics, which is practically difficult in experiments. Therefore,

the selection of the excitation frequency of the S0 mode

needs to be a compromise between the dispersion length and

the experimental complexity. On the other side, a quick way

for selections of excitation frequencies in experiments for the

low frequency S0 mode can be established. It can be assumed

that the second harmonic wave increases almost linearly in

the first quarter (25%) of the sinusoidal dispersion length.

Therefore, for a given inspection length, the frequency range

can be selected according to Fig. 5.

In this paper, the low frequency S0 mode is demon-

strated as an alternative for nonlinear Lamb wave applica-

tions. This mode is little dispersive and easy to generate, and

the second harmonic wave grows linearly along a significant

distance. Numerical simulations and experiments have been

carried out to validate these features. The excitation fre-

quency can be selected by the computation of the dispersion

length as well as practical concerns in the experiments.
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