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Abstract The paper presents a dry friction model consid-
ering plastic interactions described by the Oxley equations.
The model differs clearly from those published by Oxley
due to the fact that it includes a statistical analysis of rough
surface interactions. The contact of a single asperity is ana-
lyzed in a 3D—not 2D—space. The results of this analysis
are further extended to the contact of two rough-surfaces by
accomplishment of an appropriate summing (integration) of
individual elementary forces of friction and pressure occur-
ring in discreet contacts. In the case of papers based on the
Oxley model, their authors analyze the contact of a single
asperity with a plane and thus compute the macroscopic fric-
tion coefficient. On the basis of the achieved mathematical
model of dry friction, the friction force was determined and
consequently, the friction coefficient. In order to verify the-
oretical speculations, an experimental test was carried out in
the system consisting of a steel disk with a galvanized coat-
ing and a steel pin. The results of experimental tests com-
ply with the solutions achieved via a computer simulation.
The resistance to motion results mainly from plastic defor-
mations, which in turn result in adhesion tacking. Among
investigated galvanic coatings, the highest motion resistance
was revealed by a nickel coating, whereas the lowest one was
revealed by a silver coating.
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List of symbols

a Radius of the area of contact
A′ Area of a single plastic contact
An Nominal contact area
Ar Real contact area
b, ν Parameters of bearing surface curve
c Approach of the mating surfaces for bearing

surface curve (measured fromthe highest asperity)
d Mutual overlapping of maximum asperities
f Relative strength of connections
h Mutual overlapping of two given asperities
k Shear strength of the deformed material

(shear yield stress)
m Linear density of profile heights

(number of peaks per 1mm of theprofile)
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n Density of asperities of contacting areas
N Normal force
NR Number of profile peaks over the 10 mm section
p Pressure
P Elementary force between two asperities
Pz Elementary normal force (normal force

on a single asperity)
Px Elementary friction force (friction force

on a single asperity)
r Parameter of mutual asperity overlapping
rmax Border parameter of asperity penetration
R Radius of hemispherical asperity
Ra Arithmetic mean deviations of roughness profile
Rmax Maximum roughness height
Rq Quadratic mean deviations of roughness profile
Rt Sum of the curvature radii of contacting asperities
S Standard deviation of asperity heights
Sm Mean spacing of profile irregularities
T Friction force
tp Bearing ratio (relative reference length of profile)
z Height of asperity measured from the mean

of asperity heights
δ Separation distance of asperities along the normal

to the contactpoint
ε Relative approach for bearing surface curve
φ(z) Distribution function of asperity heights
τ Shear strength of the interfacial film
μ Coefficient of friction

1 Introduction

The user expects maximum efficiency, reliability and durabil-
ity of the machinery and equipment he uses accompanied by
the highest economical benefits (minimum costs). Movable
friction pairs play a crucial role in meeting these require-
ments. The processes occurring in them are responsible for
energy losses and wear of contacting elements. One of the
most important tasks in the field of machine performance and
reliability is the possibility of theoretical assessment of the
resistance to motion of the contacting friction planes. It is
important in the areas where dry friction occurs especially
when its high value can lead to the excessive wear of con-
tacting planes, generation of too much heat which can entail
seizures. Minimizing the resistance to motion leads to energy
saving, reduced wear and longer usage. On the other hand,
increased ability to counteract seizure reduces the possibili-
ties of device failure. Favourable tribological properties can
be obtained through the appropriate selection of materials
and formation of a surface topography.

Modelling of the contact between moving rough surfaces
allows a better understanding of friction and wear mech-
anisms, which can be used in engineering solutions. This
issue has been examined using a number of approaches. The

statistical type of a contact model is still the most popular
model used in rough surfaces contact. Instead of using the
complete roughness data, only probability density function
is used. This function means the probability of the asperity
with the height between h and h + dh.

The first well known statistical model was introduced by
Greenwood and Williamson [1] (GW). They joined a statisti-
cal process with a classical Hertzian contact to deal with the
rough surfaces contact. They adopted the following assump-
tions: (1) the asperity height distribution is Gaussian, (2)
asperity contact is modelled by the Hertzian spherical con-
tact theory, (3) the asperity tip radius is assumed constant and
(4) ignore adhesion, neighbouring asperity interaction and
shoulder–shoulder contact. A rough surface was described
by three parameters: (1) standard deviation of asperity height
distribution, (2) average asperity summit radius of curvature
and (3) areal asperity density.

This model has been widely accepted and developed by
numerous researchers. The main reason of its popularity is its
simplicity and predictions are in accordance with the carried
out experiments. Adams and Nosonovsky [2] summarized
various modifications of the GW model in their review paper.
Other interesting review articles are written by Bhushan [3],
Liu [4], Barber [5], Buczkowski and Kleiber [6]. To sum-
marize these trends we can say: proposed models take into
account different aspects of surface topography, the effects of
friction, plasticity, adhesion and more complex local surface
topography.

The GW model has been modified a number of times by
other researchers. More significant modifications are briefly
reported below.

The model proposed by Greenwood and Tripp [7] exten-
ded the GW model to contact between two rough surfaces.
Greenwood and Tripp (GT) showed that the contact between
two rough surfaces can be modelled by a contact between
an equivalent single rough surface and a flat. The equivalent
rough surface is characterized by an asperity curvature and
the peak-height distribution of the equivalent surface. They
gave the simple formula for a standard deviation of the sta-
tistical distribution.

There are a few approximation formulas for the integrals
given by the GT model. Recently Jedynak and Gilewicz [8]
proposed a new formula which is based on the Pade theory.
This approximation method has become increasingly popular
for solving different problems in mechanics. They compared
the approximation formula with others. The results show that
their formula is more accurate than the currently used one.

Whitehouse and Archard [9] extended the GW model by
abandoning the assumption of a constant asperity radius.
They found from a profilometer study of rough surfaces that
higher asperities have sharper tips. On the basis of this fact
they derived the joint probability density function of both
summit height and summit curvature.
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Nayak [10] introduced the techniques of random process
theory into the analysis of Gaussian rough surfaces. He con-
sidered a more complex statistical model which characterizes
a random surface by three spectral moments of the profile,
which are equivalent to the variances of the distribution of
profile heights, slopes and curvature respectively.

Tsukizoe and Hisakado [11] assumed a conical shape for
surface asperities. They proposed a statistical contact model
for predicting the contact spot size and density for an isotropic
Gaussian rough surface in contact with an ideal smooth flat
surface.

Bush et al. [12] (BGT) extended the Nayak statistical
model by considering elastic contact model which treated
asperities as elliptical paraboloids with two principle curva-
tures of asperities along the x and y directions. The BGT
model became more generalized Hertzian elliptic contact
model. In another paper Bush et al. [13] considered a rough
surface with a random anisotropic distribution of asperity
radii.

McCool [14] derived the closed-form expressions of areal
asperity density, average asperity summit radius of curvature
and standard deviation of asperity height distribution for the
GW model based on the Nayak statistical model for isotropic
rough surfaces. In another paper McCool [15] extended the
GW microcontact model to include skewness in the distribu-
tion of surface summit heights and the presence of a surface
coating of prescribed thickness.

Chang et al. [16] proposed a method for treating elastic–
plastic contact of rough surfaces. This model is widely known
as the CEB model. This CEB model assumes that the hemi-
sphere deformation is localized near its tip, the hemisphere
behaves elastically below the critical interference and fully
plastically above that value and the volume of the plastically
deformed hemisphere is conserved.

Zhao et al. [17] extended an elasto-plastic asperity con-
tact model for rough surfaces (ZMC). They considered three
regions of (1) fully elastic, (2) elastic–plastic and (3) fully
plastic contacts. The relations for contact area, contact load
for the elastic region are similar to those of the CEB model.
They introduced a “template” cubic polynomial function
which satisfies continuity of the function and smooth transi-
tion between mentioned segments.

Persson [18] reviewed basic contact mechanics theories
for surfaces with random roughness. He briefly discussed the
Hertz contact theory for elastic spheres with perfectly smooth
surfaces and then the GW and BGT models. In most cases
the elastic coupling between the asperity contact regions is
neglected. His theory breaks this limit and is valid for all
squeezing (normal) forces.

A fractal description of engineering surfaces is another
method used in the contact mechanics. This method is
presently a subject of the intensive discussion. The surface
roughness can be described using two scale-independent

parameters D and G, where D relates to distributions of differ-
ent frequencies in the surface profile and G to the magnitude
of variations at all frequencies. Majumdar and Bhushan [19]
developed the first elastic multi-scale contact model based
on fractal geometry. They assumed a Gaussian distribution
of heights and deduced the formula of contact load as a func-
tion of geometrically-dependent parameters D and G and the
elastic properties. The present fractal contact theory suffers
from a few serious problems like (1) the distribution of con-
tact areas is assumed geometrically and does not take into
account the actual elasticity (2) it predicts that the lighter the
load, the greater will be the percentage of contacts that are
plastically deformed. Other fractal-based models have also
been developed by a number of investigators.

Jackson and Streator [20] (JS) developed an isotropic 3D
multi-scale contact model based on 3D sinusoidal contact
model. The main idea of the JS model is that a 2D rough
surface profile can be decomposed into stacks of sinusoidal
waves with different frequencies and amplitude. In the fol-
lowing paper Jackson [21] simplified solution of the full mul-
tiscale model which was presented by JS to the stacked multi-
scale model. Ciavarella et al. [22] suggested a new “discrete”
GW model, which takes input data directly from numerical
discretizations of surfaces. They developed a full interaction
asperity algorithm. The results obtained with this model and
using fractal surfaces show that the original GW theory cor-
rectly or at least qualitatively predicts the basic features of the
problem. In another work Ciavarella et al. [23] formulated
an improved version of the GW theory with the inclusion of
interaction between asperities. They claimed that improved
GW theory is able to predict the numerically obtained con-
tact response for intermediate load levels. Numerical contact
simulations using Weierstrass–Mandelbrot surfaces show a
general agreement with the improved theory.

This method is rather controversial between researchers,
for example Whitehouse [24] questioned the philosophy of
using fractals to describe and control engineering surfaces.
Greenwood [25] in his comments on the paper of Whitehouse
agreed with him and stated that fractals have been “over-
hyped”.

Another approach is connected with using of the finite ele-
ment method (FEM) to study the elastic–plastic contact of a
contact between single asperity and flat surface. One of the
most popular work on this subject is paper written by Kogut
and Etsion [26] (KE). They presented an elastic–plastic finite
element model for the frictionless contact of a deformable
sphere pressed by a rigid flat. They analyzed evolution of
the elastic–plastic contact with increasing interference. The
model shows three distinct stages of deformation that range
from fully elastic through elastic–plastic to fully plastic con-
tact interface. It offered a general dimensionless relation for
the contact load, contact area and mean contact pressure as a
function of contact interferences. Jackson et al. [27] analyzed
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sliding interaction between spheres using two approaches:
a semi-analytical and finite element simulation. These ana-
lyzes were used to formulate empirical equations, which
describe the average tangential and normal forces resulting
from the sliding interaction. The study showed that the effec-
tive friction coefficient between spherical asperities increases
with the elastic modulus, decreases with yield strength, and
increases with the interference between the contacts.

Malayamurthi and Marappan [28] presented a contact
analysis between a deformable sphere and a rigid flat by a
finite element method. They carried out the analysis beyond
elastic limit for various materials with different radii. Thanks
to these studies they found some materials which showed
vitally different contact phenomena.

Shankar and Mayuram [29] developed a finite element
method to calculate the wear depth and volume of material
displaced laterally between two contacting asperities during
a sliding. They were able to predict the wear by combining
the influences of contact stress and a surface wear coeffi-
cient. They claim that understanding the nature of the sliding
interactions between two contacting asperities allows a better
insight into the wear as well as frictional process.

Vijaywargiya and Green [30] presented the results of a
finite element analysis used to simulate a two-dimensional
(2D) sliding between two interfering elasto-plastic cylinders.
The results were presented for both frictionless and fric-
tional sliding. Mulvihill et al. [31] introduced a finite-element
model of the interaction of an elastic–plastic asperity junc-
tion based on cylindrical or spherical asperities. The model
was used to predict sliding friction coefficients. It differs
from the previous work by permitting greater asperity over-
laps, enforcing an interface adhesional shear strength, and
allowing material failure.

The FEM was also used to construct models of multi-
asperity contacts. In another work Kogut and Etsion [32]
presented an improved elastic–plastic model for the contact
of rough surfaces. This model is based on an accurate finite-
element model solution of a single asperity contact. It pre-
dicts the contact parameters such as a real area of contact, a
real contact pressure as function of contact load and others.
The model proposed by Cohen et al. [33] also incorporates
an accurate finite element analysis for contact and sliding
inception of a single elastic–plastic asperity in a statistical
representation of surface roughness. A comparison between
the present model and a previously published friction model
shows that the latter severely underestimates the maximum
friction force by up to three orders of magnitude.

Abdo [34] also presented an improved mathematical
elastic–plastic model for the contact of rough surfaces. It is
based on an accurate finite element solution of a deformable
single asperity and a rigid flat surface. This model provides
dimensionless expressions for the contact area and contact
load. It differs from the existing models because it takes into

account the level of interference beyond expected failure.
This model considers a realistic picture of elastic–plastic
deformation where elastic, plastic and failure behaviours can
occur simultaneously for an asperity.

Recently Jackson and Green [35] compared the four con-
tact models: (1) GW (with a Gaussian distribution) [1], (2)
BGT statistical model [12], (3) Persson’s diffusion model
[18] and (4) Jackson’s stacked multiscale model [21] to a
deterministic elastic contact model that uses a fast Fourier
transform. The deterministic model is considered as the most
accurate because surfaces are analyzed from actual measure-
ments and then can be used for modelling parameters of con-
tact. The results for different surfaces show that four men-
tioned models produce nearly linear predictions of contact
area as a function of load and in some cases are even in quan-
titative agreement. Jackson and Green state that these four
models cannot make exact quantitative predictions of rough
surface contact because they use only a few key parameters
from the complex surface profile.

The analysis of surface topography is a subject which is
still being developed by many researchers. It is difficult to
describe rough surface deterministically due to its multi-scale
structure and random nature. Therefore, statistical parame-
ters of rough surfaces are used. Research in this area is exten-
sive. We would like to pay attention to two papers: Pawar et
al. [36] and Robbe-Valloire [37]. Recently Pawar et al. found
that the contact parameters vary significantly based on the
method used to determine the topography parameters, and
as a function of the autocorrelation length of the surface, as
well as the sampling interval. They claim that using a summit
identification model or the GW model based on topography
parameters obtained from a summit identification scheme is
the most reliable approach. The summit identification method
is the method which finds the surface topography parameters.
It is based on determining the summits of the surface as local
maxima using an 8-nearest neighbour summit identification
scheme.

Statistical analysis of asperities on a rough surface made
by Robbe-Valloire [37] delivered a lot of useful relationships
between roughness parameters measured by typical pro-
filometer and surface topography characteristics like: areal
density of asperity, the mean radius of the asperities and oth-
ers. These relationships were very helpful in experimental
part of this paper to calculate surface statistics from profile
data which were needed in computer simulation of coefficient
of friction.

Recently Kapłlonek and Nadolny [38] showed useful
analysis of a possible use of laser scatterometry and image
processing in the optical inspection of the condition of the
examined surface topography.

At this point it is worth noting the studies which were made
by Abdo [39]. He joined results of surface topography exami-
nations with friction experiments. He considered the mechan-
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ical interaction due to surface roughness and examined the
surface theories using the classical definition of coefficient
of friction. He carried out experiments with pin-on-disk test
apparatus. In each case, he performed profilometer mea-
surements on the disks and determined the Greenwood and
Williamson parameters. Next he compared theoretical values
of friction coefficients with those obtained from measure-
ments for various applied normal loads. The results suggested
that the elastic–plastic formulations provide better predic-
tions of load ratios than the elastic contact formulations.

To summarize this review of different models it can be said
that there is still a lack of spatial contact models. Such models
take into account a shoulder–shoulder contact of asperities
that results in a slanted orientation of forces due to a contact
slope. These contact forces consist of both parallel and per-
pendicular components to mean plane. Sepehri and Farhang
model [40] is one of a few works which extended a finite
element model of the elastic–plastic interaction proposed by
Kogut and Etsion [26] to a 3D contact of two nominally flat
rough surfaces.

Another interesting approach is proposed by Karpenko
and Akay [41]. They derived a computational method for the
calculation of the friction force between 3D rough surfaces.
They assumed the friction force to come from the elastic
asperity deformation and the shear resistance of adhesive
junctions at the contact areas. They computed contact force
distribution using an iterative procedure which considered
contact parameters, external loads and surface topographies.
The process of iteration was carried out until the sum of
normal components of contact forces equalled the normal
load. They proved that by increasing surface roughness a
value coefficient of friction decreases exponentially.

In this paper, we consider plastic contact of nominally
flat rough surfaces. It is a new spatial contact model which
is based on the slip-line theory for plastic deformation. The
contact model described in the next section considers two
rough surfaces sliding along a straight line parallel to the
mean planes of the surfaces. The surfaces come into contact
under the action of an external normal load, P. The con-
tact model considers the contributions of forces developed
at each asperity contact resulting from their plastic deforma-
tion and shear resistance due to adhesion. This model can
be easily extended to elastic–plastic one. If we would like to
extend this model to elastic–plastic one we should introduce
the parameter of critical asperity deformation for an elastic
contact. If we assume that all asperities whose deformations
are larger than the critical interference have plastic deforma-
tion and below elastic deformation we can sum all elemen-
tary forces for plastic and elastic asperities interactions and
thus calculate normal and tangential forces. In this case the
elastic deformation is defined by Hertzian spherical contact
theory. Preliminary calculations performed for the elastic–
plastic model and for information received from the experi-

ment showed that we can neglect the effect of elastic inter-
actions for macroscopic forces and that is why we present
a model only for plastic deformation. This statement is true
for range of loads used in the experiment and state of sur-
face roughness. Our earlier model for elastic contact of two
rough surfaces was presented in the publications of a limited
circulation.

2 Basic Assumptions of the Model of Plastic Interactions

Analysis of the contact of two rough surfaces was started
with the construction of a model of interactions between
two single asperities. The starting point for this model was
Shcheglovov’s geometry [42]. For the sake of the model it
was assumed that the contact between rough surfaces is of a
discreet nature, i.e. it occurs between two single asperities.
Next, on the basis of the said geometrical model, using the
statistics of asperity distribution and the type of interactions
between them, the forces of pressure, friction and the friction
coefficient were determined.

The contact of two single asperities (Fig. 1) is described
by the following parameters:

h—mutual overlapping of two considered asperities (along
the normal to the plane of motion),

δ = Rt −
√

(Rt−h)2+r2—a separation distance of an
asperity along the normal to the contact point, (Rt = R1 +
R2—the sum of the curvature radii of the contacting asperi-
ties),

r—parameter of the asperity overlaps (for r = 0 contact
of the peaks).

The model assumes that the contact between rough sur-
faces is discreet in nature, i.e. it occurs between single
asperities.

In Fig. 1 the following forces occurring in the contact
between two asperities are marked: Pz elementary pressure
and Px elementary friction. On the basis of the geometrical
model and with the use of the asperity distribution statis-
tic and the type of interactions between asperities, the total
pressure N (Eq. 1) and total friction T (Eq. 3) which operate
between rough surfaces were calculated as well as friction
coefficient μ (Eq. 5). These forces were determined by sum-
ming the elementary forces in all asperity contacts.

For the sake of the plastic interaction analysis the model
put forward by Oxley [43] for the elementary asperity contact
was adopted as the starting point. The following assumptions
were adopted while solving the problem: deformation occurs
in the flat 2D deformation without flowing of the material in
the direction normal to the relative motion of the asperity, the
deforming material is ideally rigid-plastic, it is isotropic due
to the deformation direction and its density is constant. The
phenomenon of plastic hardening is not taken into account.

The solution put forward by Oxley [43] describes the situ-
ation of a surface contact between objects of moderate rough-
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Fig. 1 Stereometric contact of two asperities in the proposed theoretical model

ness, characterized also by small adhesion. Consequently this
means low friction coefficients. The wear process is con-
nected with the occurrence of a buildup of deformed material
in the form of a relocating wave in front of the asperities of
the rigid body. The choice of this model for the description of
elementary plastic interactions was favoured, among others,
on account of a large number of references to it in tribological
literature [44,45], as well as its high compatibility with exper-
imental results which verify its correctness. As a curiosity it
can be mentioned that Jahanandish et al. [46] used slip-line
theory in geotechnical engineering practices. They obtained
the new bearing capacity formula from the solution of the
plasticity equations based on soil rupture mechanisms sim-
ilar to those suggested by Oxley for penetration of punches
into metal.

The works using the formulas given by Oxley always use
analysis of a single asperity with a plane [43,44]. In the pro-
posed model the values of pressure and friction were calcu-
lated with the use of the statistical distribution of asperity
heights covering two rough surfaces and the plastic nature
of their interactions. Such an approach is different from that
described by Oxley.

2.1 Normal force (N) in a plastic contact

The elementary normal force Pz appearing in contact of two
asperities was determined from the slip-line field [43]. While

determining the total force N, the statistical approach was
used which was not applied in the Oxley model [43]. The
function of the asperity height distribution φ(z) was intro-
duced. In this way a formula in the form of the triple para-
metric integral was obtained, where parameter d describes
mutual overlapping of maximum asperities:

N = π Ann1n2

d∫

0

d−z1∫

0

rmax∫

0

Pzφ(z1)φ(z2)rdrdz2dz1, (1)

where: An , the nominal contact area,
ni , density of asperities of contacting areas,
Pz = k

{[
1 + 2(π

4 + φ − η)
]

cos α + sin(α + 2φ)
}

A′
elementary pressure (Fig. 1),

A′ = π R1 R2
R1+R2

δ, area of a single plastic contact [18],

φ(z), statistical distribution of asperity heights,
rmax = √

2Rth − h2, border parameter of asperity pene-
tration,

sin α = r

Rt − δ
, α + φ = 1

2
arccos f, sin η = sin α√

1 − f
,

h, mutual overlapping of two considered asperities (along
the normal to the plane of motion),

δ = Rt −
√

(Rt − h)2 + r2, separation distance of asper-
ities along the normal to the contact point,

Rt = R1 + R2, sum of the curvature radii of contacting
asperities,

r, parameter of mutual asperity overlapping,
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f = τ
k , “relative strength of connections” [43] defined as

the ratio of the shear strength of the interfacial film τ and
k—shear strength (shear yield stress) of the softer workpiece
material.

Physical interpretation of the triple parametric integral in
formula (1) without Pz is the number of asperity contacts.
For numerical calculations, formula (1) describing normal
force was converted with the use of geometrical dependencies
following formula (1). What is more, the integration variable
r was replaced by the angular α:

N = π2 Ann1n2k Rr

d∫

0

d−z1∫

0

αmax∫

0

V (α, z1, z2)φ(z1)

×φ(z2)dαdz2dz1 (2)

where:

V (α, z1, z2) = (Rt − h)2 sin α

cos2 α
[Z(α) − f tan α]

× [Rt(cos α − 1) + h]

αmax = arctg
rmax

Rt − h
= arctg

√
2Rth − h2

Rt − h
,

λ = 1 + π

2
+ arccos f +

√
1 − f 2.

Normal force N was determined numerically on the basis of
formula (2).

2.2 Friction Force (T) in a Plastic Contact

Elementary friction force Px occurring in contact of two
asperities was also determined from the slip-line field [43].
In this case, the friction force T can be presented in the form
of the triple integral:

T = π Ann1n2

d∫

0

d−z1∫

0

rmax∫

0

Pxφ(z1) φ(z2)rdrdz2dz1, (3)

where: Px = k
{[

1 + 2(π
4 + φ − η)

]
sin α + cos(α + 2φ)

}

A′—is an elementary friction force.
For the sake of numerical calculations, formula (3)

describing the friction force T was transformed with the use
of geometrical dependencies following formula (1). What is

more, the integration variable r was replaced by the angular
α:

T = π2 Ann1n2k Rr

d∫

0

d−z1∫

0

αmax∫

0

U(α, z1, z2)

× φ(z1) φ(z2)dαdz2dz1 (4)

where:

U (α, z1, z2) = (Rt − h)2 sin α

cos2 α
[Z(α) − f tan α]

× [Rt(cos α − 1) + h]

Z(α) = λ − 2α − 2 arcsin

(
sin α√
1 − f

)

Friction was determined numerically on the basis of formula
(4).

2.3 Friction Coefficient (μ) in a Plastic Contact

On the basis of the determined values of the friction force T
and normal force N, the average coefficient of friction was
calculated as the ratio of these values: μ = T

N .
Substituting appropriate values (Eqs. 2 and 4) for T and

N, we obtain:

μ =
∫ d

0

∫ d−z1
0

∫ rmax
0

{[
1 + 2(π

4 + φ − η)
]

sin α + cos(α + 2φ)
}
δφ(z1)φ(z2)rdrdz2dz1

∫ d
0

∫ d−z1
0

∫ rmax
0

{[
1 + 2(π

4 + φ − η)
]

cos α + sin(α + 2φ)
}
δφ(z1)φ(z2)rdrdz2dz1

. (5)

Later, the obtained Eqs. (2, 4, 5) will allow us to determine the
values of normal force, friction force and friction coefficient
for the given geometry and material constants characterizing
the friction pairs.

3 Computer Simulation of Friction Coefficient

This section analyzes the results of computer modeling. The
purpose of this analysis is computing the friction coeffi-
cient and comparing the values obtained with those achieved
experimentally. In the experiment we used the disks covered
galvanically with different metals. Each coating had about
20 µm thickness. We chose a very short initial time (120 s)
for measurement of the coefficient of friction which guar-
anteed the stability of each coating. We assumed that such
disks can be treated as homogeneous with known topography
measured before the experiment.

3.1 Analysis of Surface Roughness

As the formerly described theoretical model of external fric-
tion is closely connected with the geometrical structure of
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Fig. 2 Diagram for calculating
bearing ratio tp (c—approach of
the mating surfaces measured
from the highest asperity,
m—mean of surface heights,
L i—individual length of the
peak section at the level c)

Table 1 Material constants and
parameters used for computer
simulation in the experimental
part of the work dealing with
coatings

Material Microhardness Maximum asperity Average curvature Density of asperity
(MPa) heights Rmax (µm) radii R (µm) peaks per mm2

Steel 45 (pin) 2,350 Rmax = 3.0 ± 0.4 R = 79 ± 7 n = 660 ± 40

Ag (disk) 700 Rmax = 1.4 ± 0.3 R = 480 ± 80 n = 180 ± 40

Cr (disk) 10,000 Rmax = 7 ± 2 R = 46 ± 6 n = 880 ± 80

Cu (disk) 700 Rmax = 5 ± 2 R = 530 ± 80 n = 50 ± 20

Ni (disk) 1,500 Rmax = 1.7 ± 0.6 R = 450 ± 60 n = 150 ± 30

Zn(disk) 600 Rmax = 2.5 ± 0.5 R = 400 ± 60 n = 180 ± 40

Steel 45 (disk prior
to galvanic coating) 2,350 Rmax = 2.7 ± 0.2 R = 50 ± 5 n = 2,000 ± 100

contacting surfaces (their roughness), it seemed justified to
examine the roughness of the samples prepared for the fric-
tion experiment. Surface roughness of the tested elements
was determined by means of the Hommel T-2000 surface
profile tester. Three measurements were taken for each work-
ing surface of the sample, perpendicular to the direction of
the machining traces, in three places chosen at random, but
in the vicinity of the predicted friction traces. Sample mea-
surement results were averaged. The samples having similar
characteristics (the same roughness class) were chosen for
further friction tests. The report on measurements included
the following parameters:

– arithmetic mean deviations of roughness profile (Ra),
– quadratic mean deviations of roughness profile (Rq),
– maximum roughness height (Rmax),
– average roughness separation distance (Sm),
– number of profile peaks over the 10 mm section (Nr ),
– and graphs of the profile and bearing ratio tp (Fig. 2).

Bearing ratio tp is the length of a bearing surface expressed
as a fraction (or percentage) of the assessment length L at a
depth c, or “slice level”, below the highest peak. Mathemat-
ically it can be expressed

tp =
∑n

i=1 Li

L

In order to calculate the density of asperities (n), the for-
mula given by Robbe-Valloire [37] for the isotropic surface
was applied:

n = 1.2 m2 (mm−2)

where: m denotes linear density of profile heights (number
of peaks per 1 mm of the profile).

The report on experiments gives the magnitude Nr , which
indicates the number of the profile peaks over the length of
10 mm. Thus, we can assume that:

n = 1.2
(

Nr
10

)2
(mm−2)

The radius of the asperity curvature (R) was determined by
means of an empirical formula given by Whitehouse [47]:

R = 0.05 S2
m

Ra
(µm)

Rmax was adopted as the maximum asperity height directly
from the report on experiments. The bearing curve obtained
in the said profilometric examinations was used for the
assessment of the distribution of asperity heights.

The magnitudes describing the topography of the sam-
ple surfaces calculated on the basis of the quoted statisti-
cal formulas taken from literature are presented in Table 1.
The Table also includes mean values of microhardness of the
examined galvanic coatings.
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Fig. 3 Theoretical bearing ratio
calculated from normal
distribution (continuous line) for
disks covered with different
coatings and a steel disk. Points
denote reported empirical
results for the determined
bearing curves

Fig. 4 Distributions of
probability density of asperity
heights for different galvanic
coatings. The thick line indicates
the distribution for the disk prior
to coating (steel 45)

3.2 Results and Discussion of Results of Research Into
Rough Surfaces

Figure 3 presents results of theoretical analysis of bearing
area distributions for the examined disks. The continuous
line denotes the Gaussian cumulative distribution function.
The points denote empirical results reported for the bear-
ing curve. In the case of all disks the distribution of asperity
heights can be well described by means of the normal distrib-
ution. This results from a good compatibility of experimental
bearing distributions and the appropriate Gaussian cumula-
tive distribution functions. Table 1 contains results of asperity
distribution analysis for particular coatings.

Obtained results for heights of the highest asperities, aver-
age curvature radii and surface densities of asperity peaks
for particular galvanic coatings (Table 1) are worth compar-
ing with appropriate steel disk parameters. While comparing
asperity curvature radii of the disk before and after coating
we can notice that in most cases they increase. The maxi-
mum increase of the radius is observed in the case of copper
(11-fold). An exception is the chromium coating in the case
of which we can notice a small decrease in this value (8 %).
In the case of surface density of asperities we always observe
its decrease following the coating process. Copper is char-
acterized by the least number of asperities per a unit area.
When it comes to an asperity height distribution (Fig. 4) we
can say that galvanic coating modifies its form (it affects

the value of standard deviation and the mean value). Both
reduced (silver, zinc) and increased (copper and chromium)
standard deviations are observed. The maximum decline in
standard deviation was observed for a silver coating (45 %),
whereas the maximum increase was noted for a chromium
coating (115 %). Thus, in the case of silver and zinc coat-
ings asperity heights are more concentrated around the mean
value than prior to coating whereas in the case of copper
and chromium coats a much broader distribution of asper-
ity heights is obtained (“more broadening” around the mean
value) in comparison to the initial situation (Fig. 4). Bibli-
ographical item [48] outlines research results for coatings
of zinc and chromium. Only one parameter characterizing
surface roughness is analyzed, namely the arithmetic mean
deviations of the roughness profile (Ra). Qualitative results
are close to those presented in this paper. Another paper [49]
presents results from tribological tests which were performed
with electroplated copper and zinc coatings. Authors tried
to explain wear mechanisms which took place during these
tests. The performed Roentgen tests showed that copper (or
zinc) transferred from the disc to the pin as the result of
friction. On the basis of changes in topography of surfaces
they concluded that in the case of copper adhesive wear was
dominant, while for zinc–abrasive.

We can also investigate the effect of the type of the gal-
vanic coating applied on the bearing capacity of examined
disks. On the basis of the experimental results for the bearing
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Table 2 Parameters of the
bearing curve determined by the
method of least squares for the
tested surfaces with galvanic
coatings, the steel pin contacting
them and the steel disk prior to
galvanic coating

Coating b (−) ν (−) ε = c
Rmax

(%) tp = bεν(%)

Cr 0.1 ± 0.2 1 ± 1 20 1 ± 3

Zn 1.8 ± 0.6 2.8 ± 0.2 20 2 ± 1

Ag 0.6 ± 0.3 1.7 ± 0.2 20 4 ± 2

Ni 11 ± 2 3.17 ± 0.08 20 7 ± 1

Cu 4.0 ± 0.6 2.29 ± 0.08 20 10 ± 2

Steel 45 (disk prior to coating) 14 ± 3 4.2 ± 0.2 20 2 ± 1

Steel 45 (pin) 4.1 ± 0.6 2.47 ± 0.07 20 8 ± 2

area distribution of the galvanic coatings discussed (points
in Fig. 3), by using the method of least squares, approximate
formulas for the bearing ratio tp (tp = bεν) were derived,
and next its values were computed for the relative separation
distance ε, equal 20 %. Results are listed in Table 2. From the
list it is clear that copper coating is characterized by the high-
est bearing ratio (for the given distance)—ca. 10 %, whereas
the least bearing ratio is revealed by a chromium coating (ca.
1 %). When we compare the initial situation that is the bear-
ing capacity of the steel disk prior to its coating (ca. 2 %), we
must conclude that for majority of analyzed coatings their
bearing properties improved significantly with respect to the
steel pin, reaching the maximum result (fivefold) in the case
of copper. An exception here was the chromium coating in
the case of which we observed a drop in the bearing ratio (ca.
50 % in relation to the disk without coatings).

3.3 Measurement of the Coefficient of Friction

The T-01M pin-on-disk testing device was used to measure
the coefficient of friction. It is a distributed contact of the
plane-to-plane type. With the use of the T-01M testing device
the friction coefficients were determined for different metal-
lic coatings (disks) at sliding on steel (pins). The tests were
carried out for different surface pressures as a function of the
distance covered (friction time) at a given sliding velocity.

Three independent series of friction force measurement
(tribological tests) were conducted for each material combi-
nation and a given surface pressure/load. Thus the coefficient
of friction was determined as a function of the friction path.
Final results of the measurements were the arithmetic mean.
Both disks and pins were earlier selected for the experiment
in such a way that for each measurement series they were
characterized by similar roughness profiles (the same class
of roughness).

Figure 5 demonstrates the principle of the used tribolog-
ical tester operation. The examined friction pair consists of
a disk rotating with the rotational speed n and a pin pressed
to the disk with force P at a point distant by R from the rota-
tion centre of the disk. The pressure is constant throughout
the test. Figure 6 shows a picture of a complete station of
the pin-on-disk tester T-01M. On the basis of the obtained

Fig. 5 Schematic diagram of the pin-on-disk tester (T-01M)

Fig. 6 T-01M testing device

tribological characteristics for different frictional pairs the
averaged friction coefficients were computed at 120-s inter-
vals. Table 3 presents the averaged results of friction coeffi-
cients for three independent measurement series. The exper-
iment was carried out for three different surface pressures:
0.4, 0.8 and 1.2 MPa at a sliding velocity of 0.1 m/s. Such an
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Table 3 Mean values of the coefficient of friction for disks with dif-
ferent galvanic coatings for different surface pressures in the first 120 s
of the tribological test

Coating 0.4 (MPa) 0.8 (MPa) 1.2 (MPa)

Ni 0.84 ± 0.08 0.90 ± 0.09 0.91 ± 0.09

Cr 0.38 ± 0.04 0.40 ± 0.04 0.43 ± 0.04

Zn 0.42 ± 0.04 0.42 ± 0.04 0.49 ± 0.05

Ag 0.22 ± 0.02 0.21 ± 0.02 0.21 ± 0.02

Cu 0.25 ± 0.03 0.25 ± 0.03 0.26 ± 0.03

Fig. 7 The friction coefficient as a function of pressure for the steel
Ag coating combination for different values of f. The top line (dotted)
corresponds to f = 0.7, middle line (continuous) corresponds to f =
0.65, bottom line (dashed) corresponds to f = 0.6

Fig. 8 The friction coefficient as a function of pressure for the steel
Cu coating combination for different values of f parameter. Top line
(dotted) corresponds to f = 0.85, middle line (continuous) corresponds
to f = 0.8, bottom line (dashed) corresponds to f = 0.75

approach ensures that roughness parameters measured before
the experiment do not change during such a short time.

3.4 Results and Discussion of the Computer Simulation
Results for the Coefficient of Friction

Figures 7, 8, 9, 10, 11 present results of the conducted com-
puter simulation of the coefficient of friction depending on
the pressure per unit area with the use of data included in
Table 1. The Figures presented below also comprise the aver-
aged experimental data for the friction coefficients from the
initial 120 s of the run together with determined errors.

Fig. 9 The friction coefficient as a function of pressure for the steel
Cr coating for different values of the f parameter. Top line (dotted)
corresponds to f = 0.95, middle line (continuous) corresponds to f =
0.9, bottom line (dashed) corresponds to f = 0.85

Fig. 10 The friction coefficient as a function of pressure for the steel
Zn coating for different values of the f parameter. Top line (dotted)
corresponds to f = 0.96, middle line (continuous) corresponds to f =
0.95, bottom line (dashed) corresponds to f = 0.94

Fig. 11 The friction coefficient as a function of pressure for the steel
Ni coating combination for different values of the f parameter. Top line
(dotted) corresponds to f = 0.997, middle line (continuous) corre-
sponds to f = 0.996, bottom line (dashed) corresponds to f = 0.995

The relationships presented in Figs. 7, 8, 9, 10, 11 were
computed for several values of the f parameter (relative mole-
cular resistance). The values were selected in such a way
as to obtain the best match with experimental results. Data
analysis proves that the interaction between silver and steel
is the poorest ( f = 0.65 ± 0.05), whereas for nickel it is the
strongest ( f = 0.996 ± 0.001). After we have grouped the
obtained values of the relative molecular resistance “f” in the
ascending order, we can also order the following series of ele-
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ments: silver ( f = 0.65 ± 0.05), copper ( f = 0.80 ± 0.05),
chromium ( f = 0.90 ± 0.05), zinc ( f = 0.95 ± 0.01),
nickel ( f = 0.99 ± 0.01), whose adhesive interactions with
steel should also increase respectively. In summary it must
be emphasized that theoretical results concerning coefficient
f are characterized by high compliance both qualitative and
quantitative with experimental tests conducted by Rabinow-
icz [50]. Their ascending values coincide with the tendency to
create increasingly more durable adhesive connections with
the metals examined. It is an indirect confirmation of the
adopted model. In the discussed theoretical model gradation
of the f parameter defining adhesive interactions and not its
concrete values is important.

4 Conclusions

The paper presents a new mathematical model describing
interactions of two rough surfaces which takes into account
a plastic interaction described by the theory of the slip-line. It
clearly differs from that published by Oxley and his followers
because it takes into account a spatial contact of the asperity
as well as a statistical distribution of asperity heights. For
the sake of calculations it uses basic parameters characteriz-
ing these asperities such as: the curvature radius, maximum
height and their surface density as well as material constants.
It allows us to determine the normal and friction forces and
the friction coefficient. In the case of works based on the
Oxley model, the authors analyze the contact of a single
asperity with a plane and in this way they conclude about
the macroscopic coefficient of friction.

The formulas describing the forces of friction and pres-
sure are presented in the form of integral parametric equa-
tions set by means of triple integrals. They are connected
by a global parameter of surface distance d defining mutual
overlapping of the highest asperities. These equations can be
solved numerically only. Due to the occurrence of trigono-
metric and exponential functions the model is characterized
by a high computational complexity.

In order to verify theoretical considerations, experimental
tests were carried out in the system consisting of a steel disk
with a galvanic coating and a steel pin.

One of the elements necessary to carry out a computer
simulation is the knowledge of asperity height distributions.
These functions were determined on the basis of experimen-
tal measurements of bearing curves for individual samples.
Analysis of the bearing ratio shows that for the examined
samples a Gaussian distribution can describe asperity height
distributions. During a comparison with a steel sample it was
found out that the process of a thin coating deposition does
not change the type of the asperity height distribution, but it
modifies parameters characterizing it, for instance the values
of standard deviation and the mean value.

The conducted tribological tests resulted in a number of
interesting results which are conformable with the solutions
reached via a computer simulation. Among the different gal-
vanic coatings tested, the nickel coating was characterized
by the highest resistance to motion, whereas the silver one
revealed the lowest resistance to motion. The resistance in
question results mainly from adhesive interactions, charac-
terized by the f parameter, of the contacting surfaces accom-
panying plastic interactions. The f coefficient is comprised
in the range from 0.65 to values close to 1 and it can be
sequenced as follows:

f (Ag) < f (Cu) < f (Cr) < f (Zn) < f (Ni).

Changes in the coefficient of friction as a function of time
and pressure are increasing and they can approximately be
sequenced as below:

μ(Ag) < μ(Cu) < μ(Zn) < μ(Cr) < μ(Ni).

On the basis of the experimental results obtained and con-
ducted computer simulations we can conclude that in the area
of plastic interactions and within the range of adopted loads
the proposed model of friction predicts resistance to motion
correctly.
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