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Abstract 

The solidification heat transfer, melt convection and volume shrinkage in the casting of an 

energetic material are analyzed through numerical modeling and experimental investigation. The 

shrinkage resulting from phase change is considered through the volume of fluid method. The 

model is validated against an analytical solution and then applied to study the volume contraction 

during the casting of tri-nitro-toluene (TNT). Good agreement is obtained between experimental 

results and predictions of temperatures at selected locations as well as shrinkage shape. New 

casting conditions are suggested based on the analysis, and improved results are observed both 

numerically and experimentally. 
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1. INTRODUCTION 

Solid-liquid phase change is widely encountered in engineering applications such as casting, 

thermal sprays and energy storage.  Substantial shrinkage is often observed during these 

processes due to the density change upon solidification [1-3].  In the absence of a feeding 

mechanism in place to compensate for this volumetric change, the resulting shrinkage can lead to 

undesirable features such as void formation, poor heat transfer, and excessive residual stresses.  

In the casting of energetic materials, shrinkage-induced density non-uniformities and void 

formation can significantly impair the detonation velocity, Gurney energy, and insensitive 

munitions characteristics of the formulation, and lead to catastrophic accidents in explosives 

handling [4, 5].  Compared to the trial and error approaches generally adopted in explosives 

casting, numerical simulation offers improved understanding of solidification shrinkage and 

associated phenomena, and can help to better control shrinkage behavior. 

Numerical investigations of solidification heat transfer have focused on the analysis of heat 

conduction and melt convection; the effects of shrinkage have often been ignored due to the 

difficulties involved in multiphase pressure-velocity coupling, and the interaction between free 

surface dynamics and solidification volume change [6-8].  The effects of density change on 

solidification can be studied by using continuous mass feeding to avoid the difficulties of 

tracking the shrinkage shapes explicitly [9, 10].  However, in many applications, phase change 

takes place in an enclosure and predicting the shrinkage shapes is critical to understanding the 

process.  For problems involving relatively simple geometries, the shrinkage shape can be 

tracked by deforming the computational mesh to accommodate the volumetric change [1, 2, 11, 

12].  A simplified front-tracking method was used by Chiang and Tsai [13] to investigate the 

effects of solidification-induced flow on heat transfer.  The free surface was assumed to be flat, 
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so that the shrinkage shape could not be resolved.  Based on coordinate transformation and 

different grid adaptation schemes, the shrinkage of paraffin wax in an open cavity was studied by 

Kim and Ro [11] and Zhang et al. [12].  A complex grid deformation scheme was developed by 

Naterer [2] to track the free surface movement during solidification of a binary alloy.  More 

recently, Bellet et al. [14] proposed an arbitrary Lagrangian-Eulerian (ALE) method to 

investigate the pipe shrinkage formation during solidification.  In the studies discussed above, 

the free surface movement due to volumetric change was tracked by deforming the finite element 

mesh.  The use of moving meshes for solidification shrinkage, however, has its limitations.  

Comprehensive mesh deformation schemes have to be developed to accommodate the 

volumetric changes and account for the free surface movement.  This can be extremely 

challenging as shrinkage shape evolves during solidification/melting.  Maintaining the mesh 

quality is another serious challenge. 

Such difficulties are avoided in methods based on a fixed mesh, provided an efficient 

tracking algorithm is developed.  While considerable research has been targeted at developing 

front tracking methods for free/moving surface problems, such as level set, phase field, and other 

methods [15-20], limited effort has been devoted to the study of solidification shrinkage.  

Trovant and Argyropoulos [1] proposed a fixed grid numerical model for phase change problems.  

Effective shrinkage was calculated at each time step and the volume of the solidified material 

was then subtracted from the liquid phase in the control volumes that contain the interface.  A 

free surface was, however, not considered.  Solidification shrinkage in cylindrical and T-shaped 

castings was studied [21], with only energy equations solved in the mold and casting; shrinkage 

was calculated by evaluating local volume changes in each control volume.  Ehlen et al. [22] 

investigated the formation of shrinkage cavities and macrosegregation in steel casting.  The VOF 
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method [23] was used to track the free surface movement and a slip solid method was proposed 

to treat the dynamic change in solid fraction in the mushy zone.  A very coarse mesh was used 

and only qualitative comparisons of the cavity shape were provided.  The effects of density 

change due to solid/liquid phase change during droplet impact and solidification were 

investigated recently by Raessi and Mostaghimi [3].  A generic three-dimensional formulation 

was developed and the shrinkage shape captured using the VOF method.  In all of these studies, 

only qualitative comparisons of shrinkage shapes have been provided; detailed comparisons of 

temperature predictions with experimental data were not made. 

In the present work, a numerical method is developed for modeling solidification shrinkage 

based on the volume of fluid (VOF) method.  Special attention is paid to shrinkage formation 

during the casting of an energetic material, tri-nitro-toluene (TNT), in a cylinder.  The model is 

first validated against an analytical solution, and then applied to the casting problem of interest.  

Detailed comparisons are provided for the predicted and measured temperature fields and 

shrinkage cavity shapes.  Approaches for controlling shrinkage shape through active cooling are 

also discussed. 

2. EXPERIMENTAL INVESTIGATION 

It is well known that TNT experiences a large density change upon solidification [24].  

Macroscopic shrinkage is often observed in practice as shown in Figure 1.  A tall riser is 

generally used to avoid the effects of shrinkage on the cast munitions, resulting in significant 

material waste. 

The casting assembly considered in this work consists of a stainless steel mold (ASTM 1026) 

and an aluminum riser, as illustrated in Figure 2.  Steam heaters are placed on the top and bottom 

of the assembly to control the solidification process.  Both heaters are instrumented with 
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thermocouples, as are the outside walls of the tube and riser, to provide temperature boundary 

conditions for simulations; these are shown as solid dots on the figure.  The casting is open to 

ambient at the top; a small gap (δ = 1 cm) separates the top of the riser from the heater on top.  

Twenty Type-K thermocouples are positioned in a grid inside the mold to record transient 

temperature changes during casting.  The locations of three representative internal thermocouples 

are marked as TC1, 2, 3 and 4 in Figure 2.  Seven thermocouples are attached to the outside 

walls of the riser and tube, marked as STC#1-7, as depicted in Figure 2.  The uncertainty in 

measured temperatures is estimated to be 2 K. 

The thermophysical properties for TNT are well documented [24-26], and the relevant values 

are listed in Table 1.  The density of TNT is strongly influenced by temperature, and can be 

given as follows: 

 
( )

3

3

1648 kg/m ,

1544.6 1.016 273.15  kg/m ,

m

m

T T

T T
ρ

⎧

T

<⎪= ⎨
− − ≥⎪⎩

 (1) 

in which Tm = 354.15 K is the melting point of TNT and temperature T is in Kelvin.  This 13% 

density change upon solidification results in significant shrinkage (Figure 1). 

Under normal operating conditions, TNT behaves like a Newtonian fluid, the viscosity of 

which can be written as [26] 

 
75.41exp(3570 ) 10  Pa sTµ −= × ⋅  (2) 

where T is temperature in Kelvin. 

The solidified samples obtained by casting are examined by CT scan as shown in the vertical 

cross-sectional scans of Figure 3.  The outline of the solidification shrinkage is extracted from 

the scans using the image processing toolbox in Matlab [27].  The solidified TNT, metal parts 

(mold and riser) and air appear as different colors in the CT scan images, facilitating 
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identification of voids (Figure 3a).  Contrast enhancement, intensity thresholding, and filtering 

operations are used to unify the color indices and enhance the quality of the image so that the 

shape of the shrinkage/voids may be more clearly detected.  The detailed procedure is described 

in Jones et al. [7] and consists of the following steps.  The CT scan image is first processed to 

change the colors in the riser region so that the mold and riser regions have similar color indices.  

Linear contrast enhancement is then applied to different regions along the height of the image 

based on the RGB values at a given pixel.  This increases the contrast between different regions 

and highlights the boundaries (Figure 3b).  The image is then converted to grayscale format to 

prepare for edge detection, as shown in Figure 3c. 

A threshold was used to remove low-intensity pixel values.  If Th represents the threshold 

intensity value, this operation is described by 

  (3) ( ) ( )
0, if ( , )

, =   
, if ( , )

i

i
i i

h x y T
h x y

h x y h x y T

<⎧
⎨ ≥⎩

h

h

where hi(x,y) is the intensity in region i.  The threshold value was manually adjusted until a good 

compromise was achieved between attenuation of low-intensity noise and retention of original 

detail. 

A 10×10 median filter was employed to smooth out the remaining noise and artifacts.  The 

edge detection employed a gradient-based method by implementing Robert’s approximation for 

the derivative.  This method sets the pixel value to maximum intensity at the locations where the 

gradient is a local maximum.  Figure 3d shows the edges that were detected in the image shown 

in Figure 3c.  The inner curves in Figure 3d represent the shrinkage shape, and the outer edges 

are the interfaces between different parts and the boundaries of the system.  The actual shape of 

the shrinkage was then determined from a knowledge of the image-to-object dimensional ratio, 
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which was found by comparing the known outer diameter and height of the tube to the number of 

pixels these distances occupy in the image. 

 

3. MATHEMATICAL MODELING  

In order to analyze the shrinkage and void formation caused by the density change during 

solidification, the algorithm employed must be capable of tracking a moving free surface.  The 

volume of fluid (VOF) method is employed in this work since it can handle free surface 

movement and has been previously applied to study solidification shrinkage.  For the casting 

problem considered, only two phases, i.e., TNT and air, are present in the system.  Molten TNT 

is assumed to behave as a Newtonian, incompressible fluid.  When the density change upon 

solidification is taken into consideration, the mass conservation equation for the explosives can 

be written as [3, 28]: 

 ( ) ( ) ,l l lu S
t

eααρ αρ∂
+∇⋅ =

∂
 (4) 

The source term Sα,e in Eq. (4) is introduced due to the density difference between the solid and 

liquid phases, and is given by 

 ( ) [,e l s s sS f
t

α α ρ ρ α ρ∂
= − −∇⋅⎡ ⎤⎣ ⎦∂

]l lf u  (5) 

where α is the volume fraction of TNT, fl is the liquid fraction, and subscripts l and s denote 

liquid and solid, respectively. 

The momentum and energy are dependent on the volume fraction of the different phases 

through ρ, µ and k, which are evaluated according: 

 ( ) ( )1 ;   1e a e aρ αρ α ρ µ αµ α µ= + − = + −  (6) 
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where the subscripts e and a denote explosives and air, respectively.  A single set of momentum 

and energy equations may thus be solved for all phases.  As a consequence, the momentum and 

energy equations can be written in the following form with h denoting the specific enthalpy: 

 ( ) ( ) ( ) ,
l l

l l l l u u

u
u u p u g T T S S

t
α

ρ ρ µ β ∞
∂

+∇ ⋅ = −∇ +∇⋅ ∇ + − + +
∂

 (8) 
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3

l l
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f f h
S u u S f H

t t
α µ ρ α ρ ρ ρ∂ ∂ ∂

l
t

⎡ ⎤= − ∇ ∇⋅ − + = − ∆ + −⎢ ⎥∂ ∂ ∂⎣ ⎦
 (10) 

are additional source terms introduced due to the density change. 

The transport equations for heat transfer, solidification and free surface movement, Eqs. (4), 

(8), (9), are solved using the commercial software package FLUENT, with the SIMPLEC 

algorithm employed for pressure-velocity coupling, the pressure staggered option (PRESTO!) 

used for pressure correction, and the volume-of-fluid (VOF) method employed for the free 

surface.  The convective terms in the momentum and energy equation are discretized with 

second-order upwind differencing.  The solidification process is handled with an enthalpy-

porosity approach based on fixed grids [29].  The geometric reconstruction scheme is used for 

convection and diffusion flux interpolations near the interface in the VOF implementation.  The 

additional source terms introduced due to the density change are handled through the user 

defined function (UDF) and user defined memory (UDM) features in FLUENT. 
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4. RESULTS AND DISCUSSION 

4.1. Model validation 

The numerical model was first validated for shrinkage of a semi-infinite slab upon freezing, 

for which an analytical solution is available in Alexiades and Solomon [30].  In this problem, a 

slab of phase change material (PCM) initially maintained at Tl  > Tm is suddenly exposed to Tw  < 

Tm at one end at t = 0.  A void forms between the solidified layer and the left boundary due to 

solidification shrinkage.  A schematic diagram of the problem is provided in Figure 4.  The 

properties used and conditions adopted in the simulation are listed in Table 2. 

The analytical solution is obtained by assuming an isothermal boundary with T = Tw at the 

surface of the void, which is not easy to implement in the VOF method since the void surface is 

not explicitly tracked.  Instead, T = Tw is imposed on the left wall of the computational domain 

and the thermal boundary condition at the void surface is mimicked by artificially increasing the 

thermal conductivity.  This inevitably introduces some numerical error. 

According to Alexiades and Solomon [30], the analytical solutions for the temperature 

distribution in the solid and liquid region are: 

 ( ) ( )
( ) ( )

( ) ( )

erf erf 1
2

,
2 1
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s

l m m s

s

v

x

t
T x t T T T
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λ µ
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where µ=ρl / ρs, υ2
=αl  /αs, and the parameter λ takes a value of 1.3564 for this problem 

configuration.  The solid/liquid front location X(t) and solid/void interface location Y(t) are 

expressed as follows: 

 ( ) ( ) ( )2 , and ( ) 1sX t t Y tλ α ν= = − X t  (13) 

 

The slab length of L = 5 mm was discretized into 102 mesh points in the x-direction.  The 

predicted temperature distributions, and solid-liquid and solid-void interface locations are 

compared with the analytical solutions in Figure 5.  The average deviation of the predicted 

variable φ (temperature or location) from the analytical solution, defined as 

 
, ,

1 0

1
100%

N
Num i Ana i

iN

φ φ
ε

φ=

−
= ∑ ×  (14) 

 

is examined, with N being the total number of grid points; φ0 is the temperature scale, ∆T = (Tl – 

Tw), or the length scale L.  The average deviations for predicted void interface and solid front 

locations are 0.14% and 0.56%, respectively, after the first 2×10
-5

s.  For predicted temperature, 

deviations of 0.28%, 0.38% and 0.67% were found at t = 5×10
-6 

s, 1×10
-5

 s, and 2×10
-5

 s, 

respectively.  The agreement between predictions and analytical solutions is quite satisfactory.  

The error introduced in implementing isothermal boundary conditions at the void surface is the 

main reason for the observed discrepancy.  The effects of such an approximation become more 

pronounced as solidification progresses, as indicated in the comparisons. 

 

4.2. Casting of TNT in a cylinder 

The casting of the energetic material, TNT, in a cylinder is now considered as described in 

Section 2.  The transient nature of shrinkage formation during the casting process is analyzed 
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using the VOF and enthalpy methods described.  Figure 6 shows the measured temperature 

boundary conditions imposed in the experiments in the upper and lower portions of the casting 

assembly.  This set of measured boundary conditions, referred to as the “original conditions” 

from this point forward, provide the boundary conditions for the simulation.  Dynamic control of 

the temperatures of the top and bottom steam heaters causes a continuous decrease in 

temperature at all locations.  The changes in slope in the temperature profiles at ~6600 s indicate 

the time when both heaters are turned off.  Due to the poor design of the original conditions in 

terms of the quality of casting achieved, both the tube and riser are at temperatures lower than 

the freezing point of TNT even at the beginning of the casting process.  Since the thermal 

diffusivity of TNT is much smaller than that of the metal parts (tube and riser) (αriser/αTNT ≈ 30 

and αtube/αTNT ≈ 640), the thermal boundary conditions have a direct impact on the explosives in 

a short period of time, and initiate solidification along the entire length of the sidewalls right 

after pouring.  Due to the higher thermal conductivity of the aluminum riser (kriser/ktube ≈ 12), a 

nearly uniform temperature distribution is found along the riser wall (Figure 6a).  The 

temperature gradient along the height, on the other hand, is found to be mainly along the 

stainless steel tube wall at any given time with the lowest temperature being close to the bottom 

surface (Figure 6b). 

The temperature distribution, solid front movement, and solidification shrinkage shape 

changes during the course of the TNT casting are shown in Figure 7.  Even though the 

temperatures of all surfaces, including top and bottom surfaces and sidewalls, are lower than the 

freezing point of TNT (Figure 6), heat is mainly extracted from the side and bottom walls due to 

the thermal resistance offered by the air gap between the free surface and the top heater.  As a 

result, a solid crust is first formed at the sidewalls as well as on the bottom surface (Figure 7a).  
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Due to the details of the temperature distribution along the sidewalls of the riser and the tube and 

the bottom surface (Figure 6), and the larger contact area of the sidewalls with the melt, heat is 

mainly extracted from the sidewalls.  Thus, the solid front moves faster in the radial direction, 

leading to the formation of a deep vertical melt channel along the axis of the casting assembly.  

The free surface at the top recedes downwards as solidification progresses.  The solidification 

shrinkage volume is filled with air entrained through the small gap δ (Figure 2), preventing 

effective heat loss through the top.  This explains the nearly adiabatic isotherms near the air-TNT 

interface observed in Figure 7a-c.  The explosive melt is totally solidified after 6600 s and a 

cavity is observed along the center of the cast due to volumetric contraction.  The heat transfer in 

the cast is conduction-dominant from this point forward (Figure 7d).  The shrinkage under the 

original conditions considered here is seen to penetrate deep into the casting in the tube, 

indicating a poor cast quality. 

The predicted temperatures are compared with the experimental measurements in Figure 8 at 

selected thermocouple locations (as identified in Figure 2).  The numerical predictions are in 

reasonable agreement with the experiments, especially for locations far from the free surface 

(Figure 8a-b).  This implies that melt convection is sufficiently well resolved by the model.  

Larger discrepancies are observed at locations near the free surface (Figure 8c) and in the gas 

phase (Figure 8d).  This is believed to be due to the inaccuracies in free surface prediction.  

Factors contributing to such inaccuracies include the large property contrast between the 

different phases (i.e. µTNT/µair > 1000) and uncertainty in TNT properties.  For example, military-

grade TNT generally contains a percentage of solid flakes, making the viscosity of the mixture 

depart from that of pure TNT; also, the surface tension of TNT is a strong function of 

temperature, but this dependence is not available.  Intrinsic experimental uncertainties also 
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contribute to the differences between the experiment and predictions.  The energetic nature of 

TNT limited the choice of the thermocouple rake material to inert wooden dowels (4 mm 

diameter) which impact the melt convection and solidification behavior due to their non-

negligible size compared to the size of the tube (~39 mm diameter).  Significant deformation was 

also observed in the aluminum riser after casting, resulting in an irregular shape of the cast 

material (Figure 1b); this is not accounted for in the model and would also contribute to 

discrepancies in the comparison.  Due to the lack of detailed information on circumferential 

variations in the thermal boundary condition, the three-dimensionality of the shrinkage formation 

can also not be fully captured.  Voids caused by dissolved gas also cannot be handled by the 

model in its current form. 

The final shape of the fully solidified cast product is shown in Figure 9.  The fine solid line 

contours show the shrinkage shapes in the actual cast product.  The scattered voids in the bulk of 

the casting are likely caused by the presence of thermocouple rakes and dissolved air in the 

liquid melt.  The predicted shrinkage shape is shown as thick red lines.  Both the experiments 

and predictions show that the void penetrates deep into the casting due to the large density 

change of TNT upon solidification.  Since the computations are carried out in two dimensions, 

while three-dimensional shrinkage shapes occur in the experiments, the predicted cavity shape is 

compared with the experiments at two vertical cross-sections orthogonal to each other.  Figure 9 

shows that the main features of shrinkage are captured by the prediction, including the 

approximate shrinkage depth.  Further improvements to the model may be able to resolve the 

effects of the presence of dissolved gas. 
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4.3. Controlling shrinkage through improved casting conditions 

The large amount of shrinkage observed in Figure 9 can impair the quality of the cast; more 

importantly, the presence of the shrinkage and air bubbles can lead to catastrophic accidents 

during explosives handling.  It is thus highly desirable to control the shape of the shrinkage so as 

to restrict it to the riser portion of the casting.  Analysis of the results discussed above 

demonstrates that the transient solid front movement is determined by the imposed thermal 

boundary conditions, which in turn control the final shape of the shrinkage after casting.  When 

melt in the riser solidifies at the same rate as that in the tube, as happens under the original 

conditions considered thus far (Figure 6), radial solid front movement is observed, resulting in 

shrinkage penetration into the tube (Figure 7).  Deferring solidification of TNT in the riser while 

promoting it in the tube, on the other hand, can contain the volumetric contraction in the riser 

alone, thus preventing the deep vertical shrinkage pattern observed above.  This can be achieved 

by means of well-controlled thermal boundary conditions and appropriate choice of riser 

dimensions. 

Improved casting conditions were employed in the experiment so that higher temperatures 

could be maintained along the riser than along the tube.  This was achieved by installing two 

separate control loops for the top and bottom steam heaters, thereby maintaining a higher 

temperature at the top heater and decreasing it at a lower rate than the bottom heater.  The 

measured temperature variations along the sidewalls of the casting assembly at selected locations 

under the new conditions are shown in Figure 10 (referred to as “improved conditions”).  It is 

evident that under the improved cooling conditions, the riser sidewall is kept at a temperature 

higher than the tube, leading to slower solidification in the riser.  Ideally, the riser should be kept 

at a temperature higher than the freezing point of TNT (> 354.5K) early in the casting process so 
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that no solidification can taken place in the riser.  Solid TNT would form only in the tube and not 

in the riser, and the free surface would recede relatively uniformly to accommodate the 

volumetric contraction due to solidification shrinkage.  Solidification would be allowed in the 

riser only after the material in the tube is fully solidified.  A very short riser would then be 

sufficient.  It is clear that the temperature profiles under the improved conditions are still not 

perfectly controlled, and further improvements in the experimental realization of the desired 

control are necessary. 

The temperature predictions under the improved conditions were compared extensively 

against the experimental measurements, and agreement comparable to that shown in Figure 8 

was achieved; the results are not shown here for brevity.  Instead, the impact of the improved 

conditions on shrinkage formation is explored.  The predicted solidification shrinkage shapes are 

compared with the experimental observations in Figure 11a.  The bulk features of the predicted 

shrinkage shape agree reasonably well with the experiments.  The inaccuracy in free surface 

prediction is again believed to be the main reason for the discrepancies between the two sets of 

results.  Shrinkage shapes resulting from the original and improved conditions are compared in 

Figure 11b.  It is evident that the shrinkage is mainly contained in the riser under the improved 

cooling conditions and that its penetration depth is significantly smaller than that under the 

original conditions.  Further fine-tuning of the processing conditions would yield further control 

of the shrinkage shape.  This could lead to improved riser designs, less waste of materials and 

reduced void formation.  Given the challenges of experimentation with energetic materials and 

the difficulties with the computations, the present demonstration of improvement of shrinkage 

shape due to improvement in processing conditions is encouraging. 
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5. CONCLUSIONS 

Solidification shrinkage in the melt casting of energetic materials is investigated using 

volume-of-fluid (VOF) and enthalpy-porosity methods.  The numerical model was benchmarked 

against an analytical solution.  The simulation results for shrinkage shape and temperature 

profiles during the casting of an energetic material in a cylinder also compare satisfactorily with 

experimental measurements.  The present model can be employed in optimizing the explosives 

melt casting process for reduced void formation.  It was found that applied cooling conditions are 

crucial in controlling solidification shrinkage.  An improved cooling procedure is suggested 

based on the analysis of existing casting conditions.  Both numerical predictions and 

experimental results under the improved conditions suggest that solidification shrinkage can 

indeed be contained and controlled using improved cooling conditions. 
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Table 1.  Selected thermophysical properties of TNT [24-26]. 

Properties Unit Value 

Density, ρ kg/m
3

Eq. (1) 

Viscosity, µ Pa⋅s Eq. (2) 

Thermal conductivity, k W/m-K 0.26 

Specific heat, cP J/kg-K 1062.2 

Melting point, Tm K 354.05 

Latent heat, ∆H kJ/kg 98.4 

Surface tension coefficient N/m 0.9 

 

Table 2.  Properties and conditions used in the simulation of solidification shrinkage in a slab. 

PCM  
Unit 

Solid Liquid 
Void 

Density, ρ  kg/m
3

10 7 1 

Thermal conductivity, k  W/m-K 100 50 1000 

Specific heat, cP J/mg-K 1000 1000 1 

Initial temperature, Ti K 360 

Wall temperature, Tw K 300 

Melting point, Tm K 350 

Latent heat, ∆H J/kg 1000 
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Figure Captions 

Figure 1.  Photographs of shrinkage cavity formation in the casting of TNT in a cylinder: (a) top 

view, and (b) cross-sectional view. 

Figure 2.  Schematic diagram of the assembly for casting of TNT in a cylinder. 

Figure 3.  Illustration of the shrinkage shape reconstruction procedure. 

Figure 4.  Schematic diagram of shrinkage in a semi-infinite slab. 

Figure 5.  Comparison of numerical predictions with analytical solutions at selected time 

intervals: (a) temperature distribution, and (b) solid/liquid and solid/void interface locations. 

Figure 6.  Measured temperature boundary conditions imposed in the experiments: (a) top 

thermocouple and those attached to the riser, and (b) bottom thermocouple and those attached to 

the tube; thermocouple locations shown in Figure 2). 

Figure 7.  Transient temperature distribution, solid front and shrinkage shape changes during the 

course of TNT solidification, (a) 1200 s, (b) 3600 s, (c) 4800 s, (d) 6600 s. The left panel in each 

figure shows the temperature contours, while the fl = 0.5 contour line in the right panel denotes 

the solid front location. 

Figure 8.  Comparison of numerically predicted temperatures and experimental measurements at 

selected locations, (a) TC1 (r = 0, z = 0.025H0), (b) TC2 (r = 0.39r1, z = 0.29H0), (c) TC3 (r = 

0.39r1, z = 0.69H0) and (d) TC4 (r = 0.3r1, z = 0.86H0); (r1 is the inner diameter of the tube and 

H0 is the total height of the tube/riser assembly). 

Figure 9.  Comparison of numerically predicted and experimentally measured shrinkage shapes 

for casting TNT in a cylinder at different cross-sections. 

Figure 10.  Measured temperature boundary conditions imposed in the experiments under the 

improved boundary conditions: (a) top thermocouple and those attached to the riser, and (b) 

bottom thermocouple and those attached to the tube (thermocouple locations shown in Figure 2). 

Figure 11.  Comparison of predicted shrinkage shapes using the original and improved cooling 

procedures. 
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(a)      (b) 

Figure 1.  Photographs of shrinkage cavity formation in the casting of TNT in a cylinder: (a) 

top view, and (b) cross-sectional view. 
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Figure 2.  Schematic diagram of the assembly for casting of TNT in a cylinder. 
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Figure 3.  Illustration of the shrinkage shape reconstruction procedure. 
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Figure 4.  Schematic diagram of shrinkage in a semi-infinite slab. 
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Figure 5.  Comparison of numerical predictions with analytical solutions at selected time 

intervals: (a) temperature distribution, and (b) solid/liquid and solid/void interface locations. 
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(a)       (b) 

Figure 6.  Measured temperature boundary conditions imposed in the experiments: (a) top 

thermocouple and those attached to the riser, and (b) bottom thermocouple and those attached to 

the tube; thermocouple locations shown in Figure 2). 
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(a) 1200 s  (b) 3600 s  (c) 4800 s  (d) 6600 s 

Figure 7.  Transient temperature distribution, solid front and shrinkage shape changes during the 

course of TNT solidification, (a) 1200 s, (b) 3600 s, (c) 4800 s, (d) 6600 s. The left panel in each 

figure shows the temperature contours, while the fl = 0.5 contour line in the right panel denotes 

the solid front location. 
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(c) TC3 (r = 0.39r1, z = 0.69H0)   (d) TC4 (r = 0.3r1, z = 0.86H0) 

Figure 8.  Comparison of numerically predicted temperatures and experimental measurements at 

selected locations, (a) TC1 (r = 0, z = 0.025H0), (b) TC2 (r = 0.39r1, z = 0.29H0), (c) TC3 (r = 

0.39r1, z = 0.69H0) and (d) TC4 (r = 0.3r1, z = 0.86H0); (r1 is the inner diameter of the tube and 

H0 is the total height of the tube/riser assembly). 
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Figure 9.  Comparison of numerically predicted and experimentally measured shrinkage shapes 

for casting TNT in a cylinder at different cross-sections. 
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(a)      (b) 

Figure 10.  Measured temperature boundary conditions imposed in the experiments under the 

improved boundary conditions: (a) top thermocouple and those attached to the riser, and (b) 

bottom thermocouple and those attached to the tube (thermocouple locations shown in Figure 2). 
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Figure 11.  Comparison of predicted shrinkage shapes using the original and improved cooling 

procedures. 
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