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In a typical electro-spinning process, the steady stretching process of the jet beyond the Taylor cone 

has a significant effect on the dimensions of resulting nanofibers. Also, it sets up the conditions for the 

onset of the bending instability. The focus of this work is the modeling and simulation of the initial 

stable jet phase seen during the electro-spinning process. The perturbation method was applied to solve 

hydrodynamic equations, and the electrostatic equation was solved by a boundary integral method. 

These equations were coupled with the stress boundary conditions derived appropriate at the fluid-fluid 

interface. Perturbation equations were discretized by the second-order finite difference method, and 

the Newton method was implemented to solve the discretized nonlinear system. Also, the boundary 
element method was utilized to solve the electrostatic equation. In the theoretical study, the fluid is 

described as a leaky dielectric with charges only on the jet surface in dielectric air. In this study, 

electric charges were modeled as static. Comparison of numerical and experimental results shows 

that at low flow rates and high electric field, good agreement was achieved because of the superior 

importance of the charge transport by conduction rather than convection and charge concentration. 

In addition, the effect of unevenness of the electric field around the nozzle tip was experimentally 

studied through plate-plate geometry as well as point-plate geometry.  

 
 

I.  INTRODUCTION 

Electro-spinning is the most popular strategy for produc- 

ing ultrafine fibers by electrically charging a droplet of polymer 

liquid. The fiber diameters could be as small as a few nanome- 
ters if electro-spinning takes place under appropriate spinning 

conditions. The remarkable characteristics of the nanofibers, 

such as high surface areas and possibilities for efficient surface 

functionalization, make them a promising candidate in techni- 

cal areas such as filters, textiles, and nanofiber reinforcement 
as well as in medicinal areas such as tissue engineering, wound 

healing, and drug delivery.1 

In electro-spinning, the tensile force is generated by the 

interaction of an applied electric field with the electrical charge 

carried by jet. Once a threshold voltage is applied to the 

polymer solution of the Newtonian or non-Newtonian fluid, 

a critical value is obtained at which the electrostatic forces 

overcome the surface tension and a straight jet is formed, as 

a consequence of electrical forces, from a conical protrusion, 

often called a Taylor cone, on the surface of a pendant drop 

of solution. This jet travels for a few centimeters in a straight 

line toward the collector, and at the end of this steady stretch- 

ing process, the jet follows a bending, whipping, spiraling, and 

looping path in three dimensions. The jet in each loop is grown 

longer and thinner as the loop diameter and circumference are 

increased.2 The steady stretching process is important in that it 

not only contributes to the thinning directly but also sets up the 
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conditions for the onset of the bending instability. However, 

bending instabilities in electro-spun jets play the principal role 

in elongation and thinning electro-spun jet. 

With the renewed interest in nanotechnology in a recent 
decade, many studies have been focused on the production 

of nanofibers, whilst some theoretical studies have been per- 
formed. There are several models that have been proposed  

to explain the initial development of electro-spun jets by 

Hartman et al.,3 Spivak et al.,4 Hohman et al.,5,6 Shin et al.,7 

Feng,2,8 Yan et al.,9 Carroll and Joo10,11 as well as by Reneker 

and Yarin12 and Higuera.13–15 Recently, some studies have 
been developed to predict nanofiber properties. Some of this 

research involved using available models,2,12 and some oth- 
ers have statistically predicted nanofiber properties using 

experimental data.16–23 

In this paper, we considered only the steady stretching 

process of the electro-spun jet. We numerically analyzed the 

behavior of an incompressible Newtonian jet under the uni- 

form external electric field. The fluid was described as a 

leaky dielectric with charges only on the jet surface. Electro- 
hydrodynamic (EHD) equations were derived using the pertur- 

bation method. The electrostatic equation which is the Laplace 

equation was solved using the boundary integral technique, as 

conducted by Lac and Homsy.24 With a leaky dielectric model, 
the low conductivity fluid causes the formation of a thin layer 

of electric charges on the interface. The dynamics of elec- 

tric charge transport at the fluid-fluid interface is described 

by the charge conservation equation (see Ref.25). The main 

essential transport mechanisms in this equation are the charge 
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accumulation at the interface due to conduction and the jump in 

the conventional charge current in the bulk across the interface; 
surface convection of the interfacial charges; effect of stretch- 

ing of the interface; and surface conduction. In the present 

study, due to low flow rates and high voltages, the charge con- 

vection term can be eliminated from the governing equation. 

Moreover, by assuming the instantaneous migration of electric 

charges toward the interface, concentration change due to the 

surface dilation in the transport of electric charges is negligible 

 

hydrodynamic (τH
 ) and electric (τE

 ) components, and g is 

the gravitational acceleration vector. For a leaky dielectric 

fluid, the electric force only applies to the fluid-fluid inter- 

face. Hence, the electric force will be a boundary term and 

the induced current will be formed only by the application of 

boundary conditions on the interface.26 Saville25 has expressed 

the jump condition of normal and tangential Maxwell electric 

stresses at the interface as presented in the following equations: 

" E " T  " 2 2 " 

 

tinuous. Hence, the surface charge conservation equation is 

reduced to a boundary condition at the interface. This model 

which was well adapted for the leaky dielectric systems is 

called the static model for surface charges. 

The geometry of the nozzle plays a major role in the 

applied electric field. Hohman et al.6 indicated that the con- 

ductivity and the length of the nozzle protrude from the top 

capacitor plate cause a fringe field. Near this nozzle, the local 
field will be higher than the applied electric field between 

the two electrodes. Feng2 stated that the effective parame- 

ters on the electric charges at the nozzle have depended on 
the nozzle geometry and the applied electric field; however, 

these facts have not been considered in the numerical models. 

Carroll and Joo10 neglected the fringe fields around the spin- 

neret. They believed that the electro-spinning setup which they 

used is slightly different from that used by Hohman et al.;6 

in their setup, the needle is directly connected to the high 

voltage source without using a capacitor plate. Also, applied 
electric field intensities were much smaller than those exam- 

ined by Hohman et al.6 As well as Higuera14,15  estimated  

the geometry of the nozzle as a conic metal tube which log- 

 

 

t ·  τE
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 = q
s
 (E · t). (4) 

In these equations,  ( )  denotes the jump, outside   inside, of 

( ) across the interface, ε0ε indicates the electric permittivity 

of the fluid, qs is the electric charge surface density, and n 

and t are the unit normal and the tangential vectors to the 

free surface, respectively. In this study, electric charges were 

modeled as static and the electric charge density was obtained 

explicitly from the equation qs = ε0 εE n .24,25 Across the 

jet interface, E t is continuous, but E n undergoes a 

discontinuity due to the difference in phys ical properties of 

the two fluids.24 In order to consider electric stresses in the 

momentum equation, the jump condition was applied across 

the interface. Additionally, surface tension results in pressure 

discontinuity across the interface. The pressure jump on the 

interface is directly proportional to the average of the surface 

local curvature and causes a difference in pressure between 

the inside and outside of the jet. With considering these two 

effects, the jump condition in normal stresses can be calculated 

as in the following equation:27 

" 

.
n

Σ 
· (pI −  ) · nT

 " 

.
γ κ

Σ 
, (5) 

 

governing electrical equation in this study is capable of mim- 
icking the effect of the nozzle in the uniform applied elec- 

tric field without considering its geometry; subsequently, the 

resulted irregularity around the nozzle will be automatically 

compensated. 

In addition, the effect of unevenness of the electric field 

around the nozzle tip was experimentally studied through 

plate-plate geometry as well as point-plate geometry. It was 

observed that the connection of the high voltage source to 

the nozzle will result in more irregularity in the electric field 

around the nozzle. This irregularity causes the deviation of the 
central axis of the jet from the straight path and elongates the 

jet in a shorter distance from the nozzle at low applied electric 

field. Current numerical results were compared to numerical 

and experimental results of previous studies for validation. 

 
II.  GOVERNING EQUATIONS 

The equation of continuity and momentum was applied 

where γ is the surface tension, κ is the surface curvature, and I 

is the unit tensor. The problem dimensionless parameters were 

listed in TableI, where U is the velocity of the jet at the nozzle 

outlet, a is the radius of the nozzle, R is the jet local radius, X is 

the jet axis coordinate, and En, t are the normal and the tangen- 
tial electrical components on the interface. The dimensionless 

numbers in this study include Weber, Reynolds, Froude, Beta, 

electric permittivity ratio, and conductivity ratio as listed in 
TableII, where µ is the dynamic viscosity, the magnitude of 

the external electric field is E0 , and ε0εo is the electric permit- 

tivity of the external fluid. In this study, the applied external 

electric field is uniform and its magnitude can be obtained 
by dividing the potential difference (∆Ψ ) by the spinning 

distance (d). 

The basis used for solving the governing equations for 

an elect ri fied jet  i s the perturbat ion theory prop osed by P ă ră u  

et al.,28 who used this methodology to simulate the behavior 
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arithmically changes the electric voltage between the two 

electrodes. The proposed numerical method for solving the 

2 and the electric current across the interface will become con- 
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of a bent jet in the prilling process. They expand the veloc- 

ity components, pressure, radius, and position components 

of the jet trajectory in asymptotic series by assuming that 

interface. By ignoring the charge diffusion mechanism, this 

equation can be written as25 

t  ∂qs t 

the jet is a long, slender object. They then substitute these 
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boundary conditions, and after a few manipulations obtained 

the governing equations on the jet behavior. Certain assump- 

tions have been considered such as a circular cross section for 

the jet, and the position of the centerline is not affected by 

the small perturbations. Their boundary conditions included 
the jump in the pressure magnitude(5)and kinematic bound- 

ary condition on the surface. In the present study, only the 

stable electro-spinning region has been investigated. Hence, 

time-dependent terms could be eliminated and the governing 

perturbation equations for the electro-hydrodynamic behav- 

ior of the axisymmetric jet would be as follows, with known 

electric field components: 

where tc is the electrostatic time scale identified by the ratio of 

the dielectric permeability and conductivity, tP is the transport 

process time rise from viscose relaxation and diffusion, tF is 

the convective flow time which can be defined as the ratio of 

the flow length scale to the flow characteristics speed, and s 

is the surface gradient. In this equation, the first term on the 

left represents charge relaxation, the second describes  charge 

convection at the interface, and the third denotes changes in 

concentration due to dilation of the surface. Also, the term 

on the right stands for the charge transport to the surface by 

electro-migration. For a steady flow motion and assumption of 

instantaneous migration of charges to the interface, tc/tF 1, 

Eq.(11)is reduced to the continuity of the electric current at 
ū ū = −p̄ + 

 1  
.

2ū 
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the interface and is used as a boundary condition to solve the 
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ū R̄ 2 

2R̄ 

R̄ Fr 
(6) 

x  
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equation for the electric current equation. 
In this study, the physical and electrical properties of the 

fluids are constant. Hence, the potential distribution(10)can be 

transformed into the potential Laplace equation which would 

be solved by the boundary integral approach as similarly used 
In Eq.(6), which is the momentum equation along the jet axis, 
oi and io indices represent the quantitative ratio of the exterior 

to interior fluid and vice versa, respectively. Equation(7)was 

obtained based on the kinematic boundary condition. From this 

equation , it has been observe d that ū R̄ 2 is constant and by using 

boundar y condit ion R̄ (0) = ū (0) = 1 at the nozzle tip, the axial 

velocity will be obtaine d as ū = 1/R̄ 2 . In Eq.(6), the pressure 

which is composed of hydrodynamic and electrostatic pressure 

components can be calculated by the following equation: 

by Lac and Homsy.24 They stated that the extent of the elec- 

tric field on the surface is the average of interior and exterior 

electric fields in the vicinity of the interface. By applying the 

boundary condition of electric current continuity across the 

interface, i.e., σE n = 0, as well as applying the external 

electric field with the assumption of no free charges on the 

surface, the dimensionless boundary integral equation of the 

electric field for each of the surface elements can be obtained 

using the following equation: 

p̄ = 
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netic equations. However, in the absence of external magnetic 

field condition, if the characteristic time scale of magnetic phe- 
nomena (tM ) is much smaller than the characteristic time scale 

of electric phenomena (tc), magnetic effects can be ignored 

completely and the electrostatic equations furnish an accu- 

rate approximation.25 Moreover, charges in the leaky dielectric 

fluid only accumulate at the interface, which can be considered 

as boundary effects and modifies the external electric field.25,26 

Therefore, for a leaky dielectric fluid system, the governing 

equation is reduced to simple electric current continuity law 

and can be represented as follows: ∇  · (σE) = 0, (9) 

where σ is the electric conductivity of the fluid. From the 

irrotational property of the electric field, it can be considered 

where p, q, and (r̄)pq are the field point , source point, and dis- 
tance between these two points, E is the applied electric field 

vector, and S̄ is the fluid-fluid interfac e, respe ctively. The fi rst  

term on the right side of this equation represents the applied 

electric field at each point of the computational domain, and 

the second term represents the electric field correction at each 

point due to the existence of the potential surface. This equa- 

tion includes two variables of Ep, electric field vector at each 

point , and   Ē o n    q
, elect ric field norm al to the surface . Lac and 

Homsy24 primarily solved this equation for each point of the 

surface which was obtained by the dot product of both sides of 

this equation by the unit normal vector of the field point (p). 

Using this approach, the electric field normal to the surface in 
each point can be obtained as in the following equation: 

as the gradient of an electric potential E = ∇Ψ and we have ∇  · (σ∇Ψ ) = 0. (10) 

It is assumed that due to the low electric conductivity of flu- 

ids, there is no charge transport at the electrode surfaces and, 

therefore, electric charges are only generated at the fluid-fluid 

1 + σoi .
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interface and the net electric current is zero. To complete the 

description, a charge conservation equation is required at the 

After the calculation of the normal component of the electric 

field and its substitution into Eq.(12), the electric field vector 

pq q p 
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will be obtained for surface points. Thereafter, the tangential 

component of the electric field can be obtained with a vector 
subtraction, as in the following equation: 

following equation: 

I   = 
  4    

(X̄ ) 
(A + B)3/2 

p
 
− (X̄ )q

Σ 
Π 

.
m2 , m

Σ 
, 

.
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Since the tangential electric field component continues across + (R̄ )  
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III.  NUMERICAL SOLUTION 

In the present study, the interface behavior of the liquid 

jet surrounded by air under uniform external electric field is 

analyzed. In order to numerically solve the boundary inte- 

gral equation(13), the boundary element method was imple- 

where Π and K are the first and third kinds of complete elliptic 

integrals that can be accurately estimated by convergent series. 

The constant value of A and B and the integral module of m 

are defined as follows: 

A = 
.
(X̄ )   − (X̄ )  

Σ2  
+ (R̄ )2 + (R̄ )2 , 

mented. This numerical method required the initial surface for 

performing the calculations. Hence, it was primarily assumed 

that the electric field does not exist and the liquid jet leaves the 
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Q = Uπa2 under the gravitational force. In this condition,  

the initial surface was obtained; subsequently, applying the 

electric field will provide the actual, final jet profile. 
Given the axisymmetric geometry of the electrified jet 

In case the source and field points are located on the symmetry 
axis, components of vector integral I should be modified as in 

the following equation: 

toward the central axis, the boundary integral equation can be 

solved on a line (Γ̄  ); however, this equation has been obtained 

for a 3D surface. Therefore, the integral in Eq.(13), which is 
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integrals in the azimuthal and axial directions that are given 
by Eq.(15). By the assumption of circular cross section for 

the jet,   R̄  
q  

as well as   Ē on    q  
are consta nt in the azimuthal 

direction of the following equation: 

 

In this study, the axis of symmetry is aligned with the direction 

of E∞ = E∞ei. The initial interface profile is divided into N 

equal elements defining N + 1 nodes which are located from 

the nozzle tip to the end of the jet where it is assumed trun- 

cated; therefore, there are no nodes that lie on the symmetry 
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axis. The linear element is defined by two nodes at both ends 
and a node at the center of an element which is defined as the 
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Afterwards, the integrals in the azimuthal and axial directions 

can be solved using an analytical method and a numerical 

integral of the modified Gaussian point, respectively. The 
considered coordinate system for the electric problem is the 

right-handed and orthogonal coordinate, with the origin on the 

jet axis at the nozzle outlet. Hence, the distance of each point 

on the surface of the jet to the origin can be calculated by the 

following equation: 

r̄ =  X̄   ei +   R̄ cos θ  ej +   R̄ sin θ  ek. (16) 

In order to solve the boundary integral equation in the form 

of axisymmetric, the azimuthal integral of Eq.(15)should be 

solved, 
∫ 2π  (r̄)pq 

 
 

length of the jet is analyzed and the end of the jet is truncated. 

Hence, the simulated length should be long enough to avoid 

the occurrence of any numerical errors. Moreover, increasing 

the node number leads to a larger system of equations. Since 

the coefficient matrix resulted from the discretization process 

through the boundary element method is full, increasing the 
grid nodes affects the expense and accuracy of the computa- 

tion. Therefore, in order to this problem, a tradeoff should be 

accomplished between the optimum number of grid and the 

required accuracy. Therefore, the grid size of 0.025 is used for 

the simulations. 

According to the fluid electrical conductivity range that 
is used in the current study, σoi tends to zero and the effect of 

this parameter in governing equations(6),(8), and(12)will 
be neglected. Therefore, the terms including σoi have been 

I = 
(r̄)3 

d(θ)q. (17) eliminated from governing equations for the simulations. Since 
the second fluid which has surrounded the jet is air, εio = εi in 

The integral of Eq.(17)is a vector integral with three compo- 

nents and can be defined as I = Ī /a. Following the analytical 

solution of the vector integral, the components of this inte- 

gral which are I = IX ei + IY ej + IZ ek can be obtained by the 

pq 0 

this node for estimating the axial integral of Eq.(13). Simi- 

lar to all previous studies in electro-spinning, only a certain pq 0 

obtained on the fluid-fluid interface, is converting to double 

A + B nozzle with the radius of a with a determined flow rate of 

A + B nozzle with the radius of a with a determined flow rate of 

p p on p q 

m = . 

= 

(Γ̄ )q 
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. (15) 
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this study. 

After the calculation of normal and tangential compo- 

nents of the electric field using the boundary element 

method, the nonlinear equation(6)can be solved using the 

Newton 
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method. In this equation, the derivatives are discretized using 

the second-order central finite difference and the conditions 
of the jet downstream can be obtained by a second order 

extrapolation of last internal points of the grid. 

 

 
IV.  RESULTS AND DISCUSSION 

A.  Validation 

1.  Simulation and comparison with literature 

In this section, the suggested numerical method for the 

electro-spinning process will be validated by comparison 

between the simulation results and numerical and experimental 

results reported by Hohman et al.6 Numerical and experimen- 

tal results of Hohman et al.6 for electro-spinning of glycerol 

Given the diagram of glycerol fluid behavior by Shin   

et al.,7 our numerical simulations for a flow rate-potential dif- 

ference of 1-22, which lies in the Rayleigh instability region, 

cannot predict the jet behavior. The possible reason is the 

curvature of the estimated surface for the stable jet which is 

inversely proportion al to the local radius of the jet, i.e., 1/R̄ . 

In the numerical model by Refs.5and6, the surface curva- 

ture was estimated as a combination of the local jet radius 

and its second derivative along the jet axis, i.e., 1/R̄  + 1/R̄ xx , 

and the second derivative provided the feasibility of predicting 

the instabilities. Therefore, in order to predict the jet behav- 

ior in the aforementioned flow rate and potential difference, 

the surface curvature should be modified. Accordingly, the 

surface curvature in the present study was also modified as  

follows: 

were obtained using the parameters of TableIIIfor different 

flow rates and potential differences. Dimensionless numbers 

K = 
1
 

R(1 + R2)1/ 2
 

Rxx − 
(1 + R2)3/ 2

 

, (21) 

of the present study due to physical parameters of TableIII 

were represented in TableIV. 

As it can be seen in Fig.1, good agreement exists between 
the results of the present study and numerical results of the lit- 

erature. Furthermore, there is very good agreement between 

our numerical results and experimental results for a flow rate- 

potential difference of 1-26, 1-30, and 1.5-30; however, dif- 
ferences can be noticed for other cases. In spite of considering 

the charge conservation equation consisting of electric charge 

convection and conduction terms, Hohman et al.6 attributed the 

lack of agreement between their numerical and experimental 

results due to the inappropriate model for convection of the 
electric charges near the nozzle. 

The electric charges entirely transport due to the conduc- 

tion near the nozzle where the electric field is very large. In fact, 

low flow rates and high electric field justify the ignorance of 

charge transport by other mechanisms and the assumption of a 

static model for charges in this study. It can be seen from Fig.1, 

with the constant flow rate, increasing the potential difference 
enhances the agreement between numerical and experimental 

results. In addition, comparing the numerical results indicated 

the lower contribution of the convection mechanism in the 

transport of electric charges at low flow rates. 

 

TABLE III.  Physical parameters of the glycerol fluid used by Hohman et al.6 

ρ 
.
 kg 

Σ  

ν 

. 
cm2 

Σ  

γ 
. 

mN 
Σ  

ε σ 
. 

µS 
Σ  

a(mm) d (cm) 
 

 

which was proposed by Părău et al.28 for predict ing the instable 

bent jet behavior in the prilling process for evaluating the sug- 

gested surface curvature. The simulation result is  represented 

in Fig.1after considering the modifications (i.e., 1-22). Esti- 

mation of the surface curvature using Eq.(21)is also capable 

for predicting the jet behavior in regions with severe gradients 

due to the derivatives of the jet radius along the axis, i.e., R̄ x 

and R̄ xx . 

2.  Simulation and comparison with experiment 

The numerical model of Hohman et al.6 was not primarily 

capable of predicting the jet behavior by applying a uniform 

external electric field. Moreover, they figured out that the pro- 

trusion length of the nozzle through the capacitor plate has   

a noticeable effect on non-uniformity of the electric field in 

the vicinity of the nozzle. To explain this discrepancy, they 

propounded the existence of the fringe field near the nozzle 

tip. When they included the effects of the fringe fields near 

the nozzle by simulating the experimental nozzle as a per- 

fectly conducting solid cylinder and computed the electric field 
in the vicinity of the nozzle with the finite element method, 

agreement improved markedly between experimental obser- 

vation and numerical computation. However, the numerical 

results of the present study (Fig.1) approve that electro- 

hydrodynamic equations due to the application of uniform 

external electric field can correctly predict the jet behavior and 

there is no need to modify the external electric field near the 
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TABLE IV. Dimensionless numbers used for numerical simulation of an elec- 

trified jet in Fig.1based on the parameters in TableIII, different flow rates 

(ml/min), and potential differences (kV). 
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The occurrence of this paradox was adequately persuasive 
for us to investigate experimentally the uneven behavior of the 

electric field near the nozzle. Accordingly, in the present study, 

certain experiments were prepared using the Newtonian fluid 

with properties listed in TableVand by different setups to 

induce the electric field near the nozzle. 

To examine the initial jet development, the electro-spun 

jets close to the spinneret were photographed using a Canon 

EOS 6D DSLR camera, a 200 mm f /4d Micro Nikkor lens, 

and Canon 430 EXII speed light. The flow rate was adjusted 

by a TOP 5300 syringe pump through a metallic nozzle, and 

the electric field was formed by a high voltage power supply 

with a maximum nominal voltage of 30 kV and two aluminum 

nozzle tip. 

 β  

22 (kV) 26 (kV) 30 (kV) We × 103
 Re × 103

 Fr × 102
 

 
min 18.6 24.8 1.1 4.5 0.9 

min 8.3 11.0 2.5 6.7 2.1 

min 4.7 6.2 4.4 9.0 3.6 
      

 



 

m3 m m min 

 

   
 
 

 
 

 

FIG. 1. Quantitative comparison of the 
numerical results of the present study 
(dotted line) with numerical results 

(dashed line) and experimental results 

(solid line) of Hohman et al.6 for di ffer- 
ent flow rates and potential differences. 

 
 

 
 

 

 

 

 

electrodes. Additionally, the solution viscosity, electrical con- 

ductivity, and surface tension were measured by a DV II 

+ Pro viscometer, an EU 3540 conductivity meter, DCAT 11 

surface tension, and Libror AEU 210 balance measurement 
devices, respectively. 

 
 

TABLE V. Properties of the utilized Newtonian fluid in 20◦C. 
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The fluid jet leaves the metallic nozzle by applying an 

electric field during the electro-spinning process. By directly 

connecting one of the high voltage electrodes to the noz-   

zle and the other one to the collector plate, the electro- 
spinning process will happen at a low potential difference   

in a far distance between the nozzle tip and the collector 

plate. However, as seen in Fig.2for this assembly of elec- 

trodes, the fluid jet will rapidly deviate from the straight line 

in the stable region. The cause of deviation could be the non- 

uniformity of the electric field in the vicinity of the nozzle. 

 

1273 1.18 63.23   40    0.26 0.35 0.026 8 × 8  and Joo10 in their numerical and experimental analyses. How- 

   ever, they did not mention details about how they calculated the 

The point-plate assembly of electrodes was used by Carroll 



 

× 

 

FIG. 2. Electro-spinning process with the connection of 

a high voltage source to the nozzle and demonstrating the 

deviation of the jet in the stable region from a straight line 

by applying a potential difference of 10 kV in a distance 

of 9 cm (a) and 15 cm (b) between the nozzle tip and the 

collector. 

 
 

external electric field and the nature of E∞ in their numerical 

simulations. 

The protrusion of the metal nozzle from a metallic plate 
and connection of the high voltage source to this plate rather 

than the nozzle itself is another method to make the fluid jet 

leave the nozzle. As can be seen from Fig.3, empirical studies 

show that the deviation of the fluid jet trajectory significantly 

reduced from the straight line in the stable region for the plate- 
plate configuration. However, it has been observed that by 

increasing the applied potential difference between the metal 

plate and the collector plate, the dimensions of the metal plate 

and the protrusion length of the nozzle are important factors 

on the jet deviation and elongation because the irregularity 
effects of the electric field near the nozzle were not entirely 

eliminated even though with the metal plate such that reducing 

the metal plate dimensions [Figs.3(b)and3(d)] or increasing 

the protrusion length of the nozzle [Figs.3(a)and3(f)] causes 

the jet deviation from the straight line and different elongation 
at a constant applied potential difference between the parallel 

plates. This mechanism was used by Hohman et al.6 and Shin 

et al.7 Hohman et al.6 concluded that the protrusion length  

of the nozzle is an influential parameter in the stability of the 
fluid jet, but they did not express the effect of the metal plate 

dimensions on jet behavior. 

Hartman et al.3 used plate-plate as well as point-plate 

configurations for electro-spinning. The agreement between 

their numerical and experimental results indicates the validity 

of the numerical model in predicting the stable cone-jet mode. 

However, they did not explain the difference between these two 

mechanisms in electro-spinning, the calculation of the electric 

field in the vicinity of the nozzle, and the necessity of the 

numerical simulation of the nozzle. 

It is obvious that for both methods, unevenness of the elec- 

tric field near the nozzle causes the jet elongation as it leaves the 

nozzle. In fact, the difference between these two mechanisms 
is the relief of the electric field unevenness near the nozzle for 

the plate-plate configuration. By comparing Figs.2and3, it 

can be concluded that the metal plate attached to the nozzle 

has decreased the electric field irregularities as it has  reduced 

the jet deviation from the straight line. Furthermore, increasing 

the stability of the jet is caused by increasing the uniformity 

of the electric field created by the plate-plate mechanism. 

In our numerical model for electrified jet, we assumed that 

the position of the central axis of the jet is not affected by the 

small perturbations and the external electric field was uniform 

(12). Since it is necessary to provide experimental conditions 
in line with the numerical model to correctly compare these 

results, the experimental result of Fig.3shows that the plate- 

plate configuration with the nozzle protruding from a metal 

plate is better consistent with assumptions of the present sim- 

ulation. Moreover, empirical studies showed that the electric 

field generated by a metallic capacitor plate of 8 cm 8 cm and 

a nozzle protrusion length of 4 mm is closer to the numerical 

model assumptions [Figs.3(b)and3(e)]. 

In order to validate this proposition, a comparison was 

conducted between our numerical model results and exper- 

imental results. Figure4demonstrates  this  comparison  of 
the experimental parameters of TableVand the correspond- 

ing dimensionless numbers used in numerical simulations, as 

listed in TableVI. As shown in the figure, the good agreement 

is achieved for the proposed electrode configuration. 

In the numerical simulation, the surface curvature was 

defined based on Eq.(21)due to the severe gradients near the 

nozzle. Furthermore, a linear non-uniform mesh in which its 

mathematical equation follows a geometric progression with 

a coefficient of 4 (ratio of the last element grid size to the 

first one) was applied. This progression coefficient provides a 

dimensionless grid size of 0.025 near the nozzle. The number 

of nodes was 700, and the dimensionless length of the jet is 
also 35. 

As it was previously mentioned in the section of the static 

electric charge model (Sec.IV A 1), numerical results of the 

 

 

 

 
 

FIG. 3. Electro-spinning process with the protrusion of the nozzle from a metal plate and connection of the high voltage source to this plate in a constant distance 
of 5 cm between the parallel plates and different conditions of [metal plate dimensions (cm × cm), nozzle protrusion length (mm), applied potential differences  
(kV)]; (a) (2 × 2, 4, 20), (b) (8 × 8, 4, 23.5), (c) (8 × 8, 8, 17), (d) (2 × 2, 4, 23.5), (e) (8 × 8, 4, 25.5), (f) (8 × 8, 8, 20). 



 

 
 

 
 
 

 
 

 

FIG. 4. Experimental images of glycerol jets for di ffer- 
ent conditions of (distance between parallel plates [cm], 
applied potential difference [kV]) (a): (3, 14); (b): (5, 

24.5) and comparison of numeri cal results (dashed line) 
and experimental results (solid line) for di fferent Beta 

dimensionless number (β × 10 3) (c): 1.19; (d): 1.31. 

 
 

 
 
 

 
 
 

 
 
 

 

 

 

 
 

 
 
 

 
 

 
 
 

 
model is independent of the nozzle protrusion length and metal zero at the nozzle (i.e., X̄ 

 

= 0). Moreover, it can be noticed 
plate dimensions in predicting the behavior of the electrified jet 

under a uniform external electric field. To investigate how this 

geometry independence is feasible, the contour of the elec- 
tric field component in the axial direction, i.e., ei, has been 

that the local field will tend to the external electric field (i.e., 

Ē x  = 1) at a farthe r distanc e from the nozzle. 
The other important  feature  of  an  electrified  jet  is  

its asymptotic thinning behavior. Kirichenko et al.29 and 

 
 
 

 
 

 

FIG. 5. Contour of the elect ric field 

component in the axial direction and 

formation of a fringe field near the 

nozzle tip using the boundary element 

numerical method (a) and changes of the 

electric charge and electri c field axial  

component (b) along the jet. 
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and a curve fit by X 4 function obtained from the least square 

4  

 

TABLE VII. Dimensionless numbers used in parameter study.  

We × 104
 β Re × 103

 Fr × 103
 σoi × 104

 εio 

5 40 2 5 1 30 
      

 

numbers of TableVIwith β = 1.31 103, in Fig.6, the jet 

radius profile is magnified for the region after the cone shape 
¯  − 1  

 

 
 
 

 
 

 
 

 

FIG. 6. The asymptotic behavior of the jet radius profile.  

 

 

Ganon-Calvo30,31 in their universal theory of electro-spraying 

fi rst   reported  that  the  jet   i s  thinne d  as  X̄ − 1      

with  the  dis- 

tance from the nozzle in an electric field. Later, Hohman     

et al.6 reached to the same conclusion by making a balance 

between inertia, electric tangential stress, and gravity terms in 

the momentum equation. Since the electric term used in this 

study is different from Hohman et al.,6 the proposed relation 

for the jet thinning asymptotic behavior should be modified 
by omitting the electric current term from the equation. There- 

fore, in our case, the jet is thinned only by the gravity force 
¯  − 1  

 
 

analysis is shown for the comparison. 

 
C. Parameter study 

In order to analyze the effects of fluid physical proper- 

ties, geometrical parameters, and flow characteristics on the 

behavior of the electrified jet, effects of various dimensionless 
numbers were studied. TableVIIrepresents the main dimen- 

sionless numbers considered within the simulations. The effect 

of dimensionless numbers can be investigated by changing 

one of the numbers in a specific range while keeping others 

constant. The simulation results are illustrated in five distinct 

diagrams in Fig.7and will be discussed in more detail in the 

following. 

The Coulomb repulsion between surface electric charges 

tends to form a conic geometry, while the surface tension of the 

fluid tends to maintain a spherical shape. Hence, by increas - 
ing the electric number ( β), the Coulomb repulsive force will 

overcome surface tension and the jet will be stretched in a 

short distance from the nozzle and tends to have a conic form 
[Fig.7(a)]. It is also clear from the figure that a thinner jet is developed by increasing this number. Figure7(b)shows 

and we expect that the jet radius profile tends to X 4 with 
1  

a coefficient proportional to Q 2 . According to dimensionless that by increasing the Re number the resistance force against 
 
 

 

FIG. 7. Effects of dimensionless numbers β (a), Re (b), Fr (c), σoi (d), and εio (e) on the changes of the electrified jet radius profile.  



 

 

deformation decreases and the jet gets thinner, obviously. On 

the other hand due to the small flow rate, the bulk forces have a 
few effects on the jet behavior. Therefore, by decreasing the Fr 

number, there are no considerable changes on the jet profile, 

as shown by Fig.7(c). 

Decreasing the electric conductivity ratio means a higher 

conductivity of the fluid jet. As a result, the increased density 

of electric charges on the surface followed by the increased 

Coulomb repulsive force elongates the jet and makes it thinner. 
Since increasing fluid conductivity means that σoi tends to zero 

and the effect of this parameter in governing equations(6),(8), 

and(12)will be neglected, therefore, higher conductivity does 

not affect the radius profile change [Fig.7(d)]. The electric 

permittivity coefficient of a fluid indicates the extent of electric 

energy stored in the fluid. In other words, it represents the 
ability of the fluid in polarization and creates normal stresses. 

By increasing the permittivity, the ability of polarization and 

consequently normal stresses to the surface increases which 

leads the jet to faster elongation due to the pressure decrease 

[Fig.7(e)]. 

 

V.  CONCLUSION 

In this study, a numerical model was suggested for pre- 

dicting the behavior of a Newtonian leaky dielectric fluid in a 

uniform external electric field and stable cone-jet mode. The 

proposed model is independent of the nozzle geometry due 

to the boundary element numerical method applied for solv- 

ing the governing electric equation. Electro-hydrodynamic 

equations include continuity, momentum, and electric Laplace 

equations, and contrary to previous studies, the charge con- 
servation equation was not solved with the assumption of 

static electric charges which reduces the number of govern- 

ing equations from 4 to 3. In order to validate the numerical 

model, a comparison was carried out between the numerical 

results of the present study and the numerical and exper- 

imental results of previous studies. This comparison indi- 

cated that in low flow rates and high potential difference, 

very good agreement exists between the results. The reason 

for the agreement can be attributed to the superior impor- 

tance of conduction in electric charges rather than convec- 

tion and changes of charge concentration due to surface 
dilation. 

It is highly essential to consider experimental conditions 

in line with numerical formulations in order to conduct a cor- 

rect comparison between the numerical and empirical results. 

Hence, several experiments were carried out to investigate dif- 

ferent electro-spinning mechanisms, including the connection 

of the high voltage source to the nozzle or to a metal plate from 

which the nozzle is protruded. The difference between these 

two mechanisms is the reduction of electric field irregularities 

in the vicinity of the nozzle, followed by the deviation of the 

jet from a straight line. It was observed that in addition to the 
spinning distance (the distance between the nozzle tip or the 

attached metal plate to the nozzle and the collector plate), the 

dimensions of the metal plate attached to the nozzle and the 

protrusion length of the nozzle noticeably affect the electric 

field. Moreover, empirical results explain that the mechanism 

in line with the numerical formulation of the current study is 

the connection of the high voltage source to the metal plate 

which is attached to the nozzle. 
Analyzing the effect of dimensionless numbers on the jet 

behavior indicates that increasing β, Re, and εio numbers result 

in the formation of the stable cone-jet in a short distance from 

the nozzle. Additionally, increasing the dimensionless num- 
bers of Fr and σoi primarily decreases the formation distance 

of the stable cone-jet from the nozzle. 
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