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a b s t r a c t

The effect of cutouts on load-bearing capacity and buckling behavior of cylindrical shells is an essential

consideration in their design.

In this paper, simulation and analysis of thin steel cylindrical shells of various lengths and diameters

with elliptical cutouts have been studied using the finite element method and the effect of cutout

position and the length-to-diameter (L/D) and diameter-to-thickness (D/t) ratios on the buckling and

post-buckling behavior of cylindrical shells has been investigated. For several specimens, buckling test

was performed using an INSTRON 8802 servo hydraulic machine and the results of experimental tests

were compared to numerical results. A very good correlation was observed between numerical

simulation and experimental results. Finally, based on the experimental and numerical results, formulas

are presented for finding the buckling load of these structures.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Cylindrical shells are frequently used in the manufacturing of

aircrafts, missiles, boilers, pipelines, automobiles, and some

submarine structures. These structures may experience axial

compression loads in their longevity and yield to buckling.

Furthermore, these structures usually have disruptions, such as

cutouts, which may have adverse effects on their stability.

The problem of buckling in cylindrical shells has been a

preoccupation of investigators for more than a century. At first,

researchers focused on the determination of the buckling load in

the linear elastic zone, but experimental studies [1,2] showed that

the buckling capacity of thin cylindrical shells is much lower than

the amount determined in the classic theories [3]. Based on the

classic theories, the buckling load of thin cylindrical shells subject

to uniform axial compression can be predicted using the formula

Ncr ¼
E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1� n2Þ
p

t2

R

� �

(1)

where E is the Young modulus, n is Poisson’s ratio, t is shell

thickness, and R is shell radius. It is noteworthy that this formula

gives an appropriate result for thin shells without cutouts with

L/Rp5 [4]. For shells with moderate thickness (R/to50), this

formula often overestimates the buckling load, so that buckling

occurs before reaching the specified load.

Van Dyke [5] determined the stress distribution around a hole

in a cylindrical shell subject to axial, torsional, and internal

pressure. Tennyson [6] performed an experimental study on the

effect of circular cutouts on the buckling capacity of cylindrical

shells with radius-to-thickness ratio of 162–331 subject to axial

compression. He compared the measured buckling loads with

analytical results of Van Dyke.

Brogan and Almorth [7] studied the effect of stiffened

rectangular cutouts on the buckling load of cylindrical shells,

and also compared the experimental results of shells with cutouts

with and without stiffening with the results calculated by the

STAGS finite element code. Jenkins [8] performed an experimental

study on cylindrical shells in the range 75pR/tp150 with two

opposite circular cutouts. Additionally, Starnes [9] performed an

experimental investigation on the buckling of cylindrical shells

with circular cutout subject to axial compression. In this study,

the radius-to-thickness ratio of shells was 400–960. Based on the

findings from these experiments, he linearized the buckling

problem and determined an upper bound for the buckling load

using the Reyleigh–Ritz method.

Almorth and Holmes [10] investigated 11 thin-walled alumi-

num cylindrical shells with rectangular cutouts and various

stiffeners which had been installed on seven test specimens. The

buckling load of stiffened shells was compared to that of the non-

stiffened specimens. Furthermore, the experimental results were

compared with the results of the STAGS finite element code.

Analysis results showed that the effects of stiffeners are negligible
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for thin cylindrical shells with small cutouts, unless for long

shells. Almorth et al. [11] performed a complex nonlinear analysis

for cylindrical shells with two opposite circular cutouts subject to

axial compression. They showed that the calculated numerical

results are comparable to the experimental results of Starnes.

Starnes [12] performed another experimental and numerical

study on the buckling effect of circular, square, and rectangular

cutouts in cylindrical shells subject to axial compression. Toda

[13], too, performed an experimental investigation on the

cylindrical shells with circular holes subject to axial compression.

Furthermore, he placed ring-shaped stiffeners around the cutout

and studied the effect of stiffeners on the buckling of cylindrical

shells with circular cutouts. The shells in his study were made of

polyester with two opposite circular cutouts, and they had a

radius-to-thickness ratio of 100 and 400. It was found that if the

holes were small enough, they had no effect on the buckling

resistance of cylindrical shells. Larger holes, however, caused

considerable decrease in the buckling load. Jullien and Limam [2]

studied the effect of square, rectangular, and circular cutouts on

the buckling of cylindrical shells subject to axial compression, and

developed a parametrical formula for the shape and dimensions of

the cutouts. The influences of the position and number of cutouts

were also studied. The software program used for the finite

element method was CASTEM2000. At the same time, Yeh et al.

[14] analytically and experimentally studied the bending and

buckling of moderately thick-walled cylindrical shells with

cutouts. The dimensions of their shells were diameter-to-thick-

ness, D/t ¼ 50 and length-to-diameter, L/D ¼ 7.9. It was found that

the limiting buckling moment would be higher if the cutout was

on the tension side rather than on the compression side. They also

performed parametric studies on the influences of shape, size, and

location of a cutout on the buckling capacity. Hilburger et al. [15]

analyzed the buckling behavior of thin composite cylindrical

panels with central circular cutout. In this study, the effect of

cutout dimensions, panel curvature, and initial geometric im-

perfections was investigated, and the numerical results were

compared with experimental findings. The STAGS finite element

code was used for numerical analysis in this study. It was found

that the results of nonlinear analyses are much more accurate

than the traditional linear analyses. Tafreshi [16] also numerically

studied the buckling and post-buckling response of composite

cylindrical shells subjected to internal pressure and axial

compression loads using ABAQUS. She studied the influences of

size and orientation of cutouts and found that an increase of

internal pressure resulted in an increase in buckling capacity.

Haipeng Han et al. [17] studied the effect of dimension and

position of square-shaped cutouts in thin and moderately thick-

walled cylindrical shells of various lengths by nonlinear numerical

methods using the ANSYS software. They also compared their

results with experimental studies on moderately thick-walled

shells. Finally, they developed several parametric relationships

based on the analytical and experimental results using the least

squares regression method.

In this paper, linear and nonlinear analyses using the ABAQUS

finite element software, were carried out in order to study the effect

of the position of elliptical cutouts with identical dimensions on the

buckling and post-buckling behavior of cylindrical shells. The shells

with different diameters and lengths as follows, studied were: (L/

D1) ¼ 2.857, 6.5, 10; (D1/t) ¼ 53.846; and (L/D2) ¼ 2.495, 5.676,

8.732; (D2/t) ¼ 61.667. Additionally, several buckling tests were

performed using an INSTRON 8802 servo hydraulic machine, and the

results were compared with the results of the finite element

method. A very good correlation between experiments and

numerical simulations was observed. Finally, based on the experi-

mental and numerical results, formulas are presented for the

computation of the buckling load in such structures.

2. Numerical analysis using the finite element method

The numerical simulations were carried out using the general

finite element program ABAQUS 6.4-PR11.

2.1. Geometry and mechanical properties of the shells

For this study, thin-walled cylindrical shells with three

different lengths (L ¼ 120, 273, 420mm), and two different

diameters (D ¼ 42, 48.1mm) were analyzed. An elliptical geome-

try was selected for cutouts that were created in the specimens.

Furthermore, the thickness of shells was t ¼ 0.78mm. Fig. 1 shows

the geometry of the elliptical cutouts. According to this figure,

parameter (a) shows the size of the cutout along the longitudinal

axis of the cylinder, and parameter (b) shows the size of the cutout

in circumferential direction of the cylinder. The distance between

the center of the cutout and the lower edge of the shell is

designated by L0, as shown in Fig. 1.

Specimens were nominated as follows: D42-L120-L060-a-b.

The numbers following D and L show the diameter and length of

the specimen, respectively.

The cylindrical shells used for this study were made of mild

steel alloy. The mechanical properties of this steel alloy were

determined according to ASTM E8 standard [18], using the

INSTRON 8802 servo hydraulic machine.

The stress–strain curves, stress–plastic strain curve and

respective values are shown in Fig. 2. Based on the linear portion

of stress–strain curve, the value of elasticity module was

computed as E ¼ 187.737GPa and the value of yield stress was

obtained as sy ¼ 212MPa. Furthermore, the value of Poisson ratio

was assumed to be n ¼ 0.33.

2.2. Boundary conditions

For applying boundary conditions on the edges of the

cylindrical shells, two rigid plates were used that were attached

to the ends of the cylinder.

In order to analyze the buckling subject to axial load similar to

what was done in the experiments; a 10-mm displacement was

applied centrally to the center of the upper plate, which resulted

in a distributed, compressive load on both edges of the cylinder.

Additionally, all degrees of freedom in the lower plate and all

degrees of freedom in the upper plate, except in the direction of

longitudinal axis, were constrained.
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Fig. 1. Geometry of cutout.
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In the section on experimental results, it will be shown that the

fulcrum used in these tests has an edge that is 19.6mm high. For

this reason, in numerical simulations, the edges of the shell are

constrained to this elevation except in the direction of cylinder

axis.

2.3. Element formulation of the specimens

For this analysis, the nonlinear element S8R5, which is an

eight-node element with six degrees of freedom per node, suitable

for analysis of thin shells, and the linear element S4R, which is a

four-node element were used [19]. Part of a meshed specimen is

shown in Fig. 3. Both linear and nonlinear elements were used for

the analysis of the shells, and the results were compared with

each other.

2.4. Analytical process

Eigenvalue analysis overestimates the value of buckling load,

because in this analysis the plastic properties of material do not

have any role in analyses procedure. For buckling analysis, an

eigenvalue analysis should be done initially for all specimens, to

find the mode shapes and corresponding eigenvalues. Primary

modes have smaller eigenvalues and buckling usually occurs in

these mode shapes. For eigenvalues analysis the ‘‘Buckle’’ step was

used in software. Three initial mode shapes and corresponding

displacements of all specimens were obtained. The effects of these

mode shapes must be considered in nonlinear buckling analysis

(Static Riks step). Otherwise, the software would choose the

buckling mode in an arbitrary manner, resulting in unrealistic

results in nonlinear analyses. For ‘‘Buckle’’ step, the subspace

solver method of the software was used.

It is noteworthy that due to the presence of contact constraints

between rigid plates and the shell, the Lanczos solver method

cannot be used for these specimens [19]. In Fig. 4, three primary

mode shapes are shown for the specimen D42-L120-L060-8-17.6.

After completion of the Buckle analysis, a nonlinear analysis

was performed to plot the load–displacement curve. The max-

imum value in this curve is the buckling load. This step is called

‘‘Static Riks’’ and uses the arc length method for post-buckling

analysis. In this analysis, nonlinearity of both material properties

and geometry is taken into consideration.

2.5. Reference cylindrical shell

For plotting the curves, it is preferable to use dimensionless

data. In this study, for making the buckling load dimensionless,
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we used buckling of a reference cylindrical shell, which is defined

as follows:

Fref ¼ pDt � sy (2)

where Fref is the reference load, which is in fact the load required

for the cylindrical shell to yield. D is the diameter, t is the

thickness of the shells, and sy is the yield stress of the material

used in the making of shells. Therefore, the reference load of the

specimens is calculated in this way:

Fref ¼ p� 42mm� 0:78mm� 212N=mm2
¼ 21;818:738N

for D ¼ 42mm (3)

Fref ¼ p� 48:1mm� 0:78mm� 212N=mm2
¼ 24;987:65N

for D ¼ 48:1mm (4)

Also, the amount of compressive deformation of the shells was

made dimensionless using the length of the shells.

3. Numerical analysis results

In this section, the results of the buckling analysis in cylindrical

shells with elliptical cutouts of identical size in different positions

using the finite element method were presented. For this purpose,

a cutout with fixed dimensions was created on the shells with

distances from the lower edge of the shell as L0 ¼ 0.5L, 0.6L, 0.7L,

0.8L, and 0.9L.

Three different shell lengths were analyzed, representing short,

intermediate-length, and long/slender cylindrical shells. As men-

tioned previously, the boundary conditions are symmetric with

reference to the mid-height of shells. Therefore, when the cutout

is located along half of the shell length, due to the presence of

symmetry, it would reflect the influence of the cutout’s location

along the entire length of the shells. For cylindrical shells, the

results are obtained from nonlinear buckling analyses, including

both geometric and material nonlinearity. The designation and

analysis details of each model are summarized in Tables 1 and 2.

Evidently, the results of this analysis can be generalized to shells

with similar L/D and D/t ratios.

The results show that a change in the position of the cutout

affects the buckling load. In Figs. 5 and 6, buckling load curves are

plotted against the cutout position for cylindrical shells of various

lengths for parameters D/t ¼ 53.846 and 61.667, respectively.

It can be seen that an increase in the diameter of the shell

increases the buckling load. Figs. 5 and 6 clearly show that with

changing the position of the cutout from mid-height of the shell

toward the edges, the buckling load increases. It can also be seen

that longer shells are more sensitive to the change in the cutout

position. For example, for shells with parameters L/D ¼ 10 and D/

t ¼ 53.846, when the cutout position is changed from the middle

of the shell to 90% of its length, the buckling load increases 11%,

while for shells with parameters L/D ¼ 6.5 and D/t ¼ 53.846, the

increase in the buckling load is only 8%, and for shells with

parameters L/D ¼ 2.857 and D/t ¼ 53.846, the increase in the

buckling load is limited to only 4%. Similarly, for shells with the

ratio of D/t ¼ 61.667, with the change of cutout position from

middle to 90% of shell length, the buckling load changes 16%, 6%,

and 3% for ratios L/D ¼ 8.732, 5.676, and 2.495, respectively.

Fig. 7 shows the buckling load vs. the (L/D) ratio curves. It is

clear that for fixed cutout position, buckling load decreases with

the increase in the length of cylindrical shells, and shells with

greater diameter have higher buckling loads.

3.1. Load vs. deformation curves

Figs. 8 and 9 show the load-end shortening curves, isometric

and top views of the shells and von Mises stress contours for two

specimens with ratios L/D ¼ 5.676 and D/t ¼ 61.667, with a cutout

of fixed size in different positions (L0/L ¼ 0.5 and 0.7, respec-

tively).

According to Figs. 8 and 9, it can be seen that before the load

reaches a critical value, stress is uniformly distributed in all areas

of the shell, except the regions around the cutout, and it increases

with increasing load. In the specimen with a cutout in mid-height

position, stress contours are totally symmetrical. The front region

of the shell tolerates less stress because of the presence of the

cutout (Figs. 8a and 9a), and the area of these regions increases

with increase in load, until the load reaches the critical value.

However, in regions around the cutout and in circumferential

direction of the shell, stress rises briskly, so that these regions
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Fig. 4. Buckling mode shapes for specimen D42-L120-L060-8-17.6: (a) first mode, (b) second mode, (c) third mode.
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Table 1

Summary of numerical analysis for cylindrical shells with Elliptical cutout

D ¼ 42mm, t ¼ 0.78mm, D/t ¼ 53.846

Model designation Shell length

(mm)

Cutout size (a� b)

(mm�mm)

Location of cutout

(L0/L)

Buckling load (N)

S4R element S8R5 element

D42-L420-Perfect 420 – – 23285.2 22792.8

D42-L420-L0210-8-17.7 420 8�17.7 0.5 17670.6 16938.7

D42-L420-L0252-8-18 420 8�18 0.6 17757.6 17020.5

D42-L420-L0294-8-18.15 420 8�18.15 0.7 18157.5 17453.2

D42-L420-L0336-8-18 420 8�18 0.8 18827 18185.6

D42-L420-L0378-8-18.04 420 8�18.04 0.9 19403.3 18729.1

D42-L273-Perfect 273 – – 23447.4 22814.8

D42-L273-L0136.5-8-17.68 273 8�17.68 0.5 18477.7 17746.4

D42-L273-L0163.8-8-18 273 8�18 0.6 18527 17822.3

D42-L273-L0191.1-7.96-18.25 273 7.96�18.25 0.7 18888.5 18181.8

D42-L273-L0218.4-8-18 273 8�18 0.8 19153.7 18714.5

D42-L273-L0245.7-7.98-17.94 273 7.98�17.94 0.9 19698.5 19187.1

D42-L120-Perfect 120 – – 23404.7 22751.6

D42-L120-L060-8-17.6 120 8�17.6 0.5 19760.8 19120.4

D42-L120-L072-8-17.6 120 8�17.6 0.6 19761 19174

D42-L120-L084-8-17.6 120 8�17.6 0.7 19828.6 19338

D42-L120-L0108-8-17.6 120 8�17.6 0.9 20109.5 19891.4

Table 2

Summary of numerical analysis for cylindrical shells with elliptical cutout

D ¼ 48.1mm, t ¼ 0.78mm, D/t ¼ 61.667

Model designation Shell length

(mm)

Cutout size (a� b)

(mm�mm)

Location of cutout

(L0/L)

Buckling load (N)

S4R element S8R5 element

D48.1-L420-Perfect 420 – – 26506.4 25876.9

D48.1-L420-L0210-7.94-17.54 420 7.94�17.54 0.5 20592.8 19828.4

D48.1-L420-L0294-7.94-17.54 420 7.94�17.54 0.7 21237.1 20514.1

D48.1-L420-L0378-7.94-17.54 420 7.94�17.54 0.9 22502.5 21778.5

D48.1-L273-Perfect 273 – – 26426.1 25858.7

D48.1-L273-L0136.5-8.02-17.86 273 8.02�17.86 0.5 21361.6 20623.2

D48.1-L273-L0191.1-8.02-17.86 273 8.02�17.86 0.7 21898.6 21192.3

D48.1-L273-L0245.7-8.02-17.86 273 8.02�17.86 0.9 22796.5 21872.9

D48.1-L120-Perfect 120 – – 26484.7 25825.4

D48.1-L120-L060�8.04-17.75 120 8.04�17.75 0.5 22827.5 22177.3

D48.1-L120-L072-8-17.75 120 8�17.75 0.6 22830.1 22260.7

D48.1-L120-L084-8-17.75 120 8�17.75 0.7 23006.9 22438.9

D48.1-L120-L0108-8-17.75 120 8�17.75 0.9 23734 22910.2
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yield before the shell reaches the buckling state (Figs. 8b and 9b).

The area of these regions increases in circumferential direction

with increase in load and finally the shell buckles.

Comparing Figs. 8 and 9, it can be deduced that with increasing

L0/L ratio, stress distribution becomes more uniform before and

after buckling, so that it approaches a uniform stress distribution

in the shell, except for regions around the cutout. In other words,

more regions of the shell experience the compression load. This

can be the reason for the observation that buckling load increases

with increase in L0/L ratio.

It can be seen that first the buckling occurs locally and then the

shell experiences generalized bending. The FEM results also

confirm this statement, since the obtained values for rotational

displacements of the shell around an axis perpendicular to its

longitudinal axis and parallel to the extension of the cutout along

the circumferential direction of the shell for shells with ratios L0/

L ¼ 0.5, 0.7, and 0.9 were 0.2, 0.15, and 0.1 rad, respectively, while

for other regions, they were about 0.01, 0.009, and 0.006 rad,

respectively.

Final load-end shortening curves for all analyzed specimens

are shown in Figs. 10a–f. These curves are produced from finite

element analyses with linear element S4R; because these

elements have the post-buckling region better than other

elements, according to the comparison done in Section 4 between

numerical and experimental results.

It can be seen from these load-end shortening curves that the

buckling load of the shell decreases considerably when a cutout is

created in the shell. Furthermore, it can be seen that all curves

related to shells with equal lengths have two coincidence points.

The first coincidence point occurs just after the shells arrive at the

buckling state. Before these points, the curves for shells with
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greater L0/L ratios are above other curve lines. This phenomenon

happens once again for the second coincidence point, and the

mutual position of curves reverses afterwards.

The reason behind this phenomenon is because of the resulting

load redistribution. A high level of load redistribution results in a

high load bearing capacity and vice versa [17].

Another observation is that with decreasing length of the

specimens, the first coincidence point moves toward the buckling

point. The equality of the slope of the curves in the pre-buckling

region is another fact resulting from scrutinizing the charts.

4. Confirmation of numerical results with experimental

findings

Experimental tests were performed on a large number of

specimens in order to confirm the numerical results. For these

tests, a state-of-the-art, servo hydraulic, INSTRON 8802 machine

was used.

The specimens were constrained by steel sleeve fixtures

inserted at both ends, which mimics the fixed–fixed boundary

condition used in the finite element simulations (see Fig. 11).

Three specimens were tested for each case and almost identical

results were obtained compared to those obtained from the

numerical simulations.

The results of experiments are compared with numerical

findings in Table 3. It is evident that there is little difference

between experimental and numerical results. For example, the

biggest discrepancy between the two sets of results is 6.54% for

S8R5 nonlinear element and 5.4% for S4R linear element. It is also

noteworthy that the greatest difference is seen for short speci-

mens. This can be attributed to the fact that the bending theory of

shells is more suitable for lower t/L ratios, and this theory is used

by the software for calculations.

The mean difference between the numerical calculations and

the experimental results is 2.89% for S4R element and 2.05% for

S8R5 element. It can be said that the results of analysis with

nonlinear elements have lower errors.

The load–displacement curves produced by numerical and

experimental analyses are shown in Figs. 11–13 for three speci-

mens. After comparing the curves in Fig. 11, it can be said that

linear elements in comparison to nonlinear elements, have a
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Table 3

Comparison of the experimental and numerical results for cylindrical shells with elliptical cutout situated at various locations

Model designation Buckling load (N) |FEXP�FFEM|/FEXP�100% error

S4R element S8R5 element Experimental S4R element S8R5 element

D42-L420-Perfect 23285.2 22792.8 23018.3 1.16 0.98

D42-L420-L0210-8-17.7 17670.6 16938.7 16809.8 5.12 0.77

D42-L420-L0294-8-18.15 18157.5 17453.2 18555.2 2.14 5.93

D42-L420-L0378-8-18.04 19403.3 18729.1 19525 0.62 4.07

D42-L273-Perfect 23447.4 22814.8 22245.6 5.4 2.56

D42-L273-L0136.5-8-17.68 18477.7 17746.4 17945.8 2.96 1.11

D42-L273-L0191.1-7.96-18.25 18888.5 18181.8 17979.1 5.06 1.13

D42-L273-L0245.7-7.98-17.94 19698.5 19187.1 19296.2 2.08 0.56

D42-L120-Perfect 23404.7 22751.6 23925.7 2.17 4.90

D42-L120-L060-8-17.6 19764.8 19120.4 20274.9 2.51 5.69

D42-L120-L084-8-17.6 19828.6 19338 20691.3 4.16 6.54

D48.1-L420-Perfect 26506.4 25876.9 25775.3 2.84 0.39

D48.1-L420-L0210-7.94-17.54 20592.8 19828.4 19909.4 3.43 0.40

D48.1-L273-Perfect 26426.1 25858.7 26123.8 1.16 1.01

D48.1-L273-L0136.5-8.02-17.86 21361.6 20623.2 20855.3 2.43 1.11

D48.1-L120-Perfect 26484.7 25825.4 26967.3 1.79 4.23

D48.1-L120-L060-8.04-17.75 22827.5 22177.3 21914 4.17 1.2
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better prediction power for the post-buckling behavior of mild

steel alloy cylindrical shells with elliptical cutouts. In the pre-

buckling phase, both elements produce similar results.

It can be seen that the slope of load vs. end shortening curves is

higher in numerical results than in experimental results before

the buckling. This discrepancy is due to the presence of internal

defects in the material which reduces the stiffness of the

specimens in the experimental method, while the materials are

assumed to be ideal in the numerical analyses.

5. Empirical–numerical equations

Based on the numerical and experimental dimensionless

buckling loads of shells, formulas are presented here using

Lagrangian polynomial for the computation of the buckling load

of cylindrical shells with elliptical cutouts subject to axial

compression. To get these formulas with using Lagrangian

polynomial method [20], the surfaces were passed through the

dimensionless buckling load values in (Kcutout, g, l) coordinate

system which Kcutout is buckling load reduction factor for

cylindrical shells with cutout (dimensionless buckling load),

g ¼ L/D and l ¼ L0/L.

Kcutout is defined as follows:

Kcutout ¼
Fcutout
Fperfect

(5)

where Fperfect is the buckling load for cylindrical shells without

cutouts and Fcutout is the buckling load for cylindrical shells with

cutouts. The general form of Kcutout is as follows:

Kcutoutðg; lÞ ¼ Aþ Bgþ Cg2 þ Dlþ El2 þ Fglþ � � � (6)

The coefficients A, B, C,y are computed using Lagrangian

polynomial. To use these expressions, the buckling load for

cylindrical shells without cutout must be known.

The formulas for computation of the buckling load of

cylindrical shells with elliptical cutouts will be presented later

in this paper. These relationships were formulated using experi-

mental findings, and in a few cases where experimental data were

not available, the numerical results with the S8R5 element were

used:

Kcutout ¼ 0:548g� 3:517l2 � 0:0447g2 � 0:62� 0:097g2l2

þ 0:1353g2lþ 1:288gl2 � 1:735glþ 4:702l (7)

Kcutout ¼ 0:4171lþ 0:6544� 0:00333g2 � 0:00138g2l2

þ 0:00608g2lþ 0:0708g2l� 0:1314glþ 0:0487g

� 0:1928l2 (8)

Eq. (7) represents the reduction factor applicable to the

cylindrical shells with the ratio D/t ¼ 53.846 and various lengths

(2.857pL/Dp10), with an elliptical cutout of fixed size

8�18mm2 in different positions.

ARTICLE IN PRESS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

End shortening δ/L

A
x
ia

l 
lo

a
d

 F
/F

re
f

Experimental

FEM Result (S8R5 Element)

FEM Result (S4R Element)

ABAQUSExperimentalABAQUSExperimental

b

a

0.0250.020.0150.010.005

Fig. 11. Comparison of the experimental and numerical results for the specimen D42-L273-L0191.1-7.96-18.25.

M. Shariati, M.M. Rokhi / Thin-Walled Structures 46 (2008) 1251–1261 1259



Eq. (8) represents the reduction factor applicable to the

cylindrical shells with the ratio D/t ¼ 61.667 and various lengths

(2.4948pL/Dp8.732), with an elliptical cutout of fixed size

8�18mm2 in different positions.

6. Concluding remarks

In this research, we studied the buckling load of mild steel

cylindrical shells of various D/t and L/D ratios with elliptical

cutouts using numerical and experimental methodology, and

determined the buckling load of these shells with a cutout of fixed

size in different positions. The following results were found in this

study:

Changing the position of the cutout from the mid-height of the

shell toward the edges increases the buckling load, and longer

shells are more sensitive to the change in cutout position.

Increasing the shell diameter with a fixed thickness increased

the buckling load. And an increase in the L/D ratio reduces the

buckling load.

For cylindrical shells with cutout, at first the buckling occurs

locally, and then the shell experiences general bending.

Comparison of the curves shows that the numerical and

experimental results are well matched. Furthermore, the

curves from linear elements predict the post-buckling region

better than nonlinear elements, while the nonlinear elements

are a better indicator of the buckling load.

Finally, we obtained formulas for computing the buckling load

of shells with cutout based on the buckling load of perfect

shells. These expressions can be used for a vast range of thin

cylindrical shells with elliptical cutouts.
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