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Abstract: The transverse cracking behavior of a carbon-fiber-reinforced plastic (CFRP) cross-ply
laminate is investigated using a fatigue test and an entropy-based failure criterion in this study. The
results of fatigue experiments show that the crack accumulation behavior depends on the cyclic
number level and frequency, in which two obvious transverse cracks are observed after 104 cyclic
loads and 37 transverse cracks occur after 105 cycles. The final numbers of transverse cracks decrease
from 29 to 11 when the load frequency increases from 5 Hz to 10 Hz. An entropy-based failure
criterion is proposed to predict the long-term lifetime of laminates under cyclic loadings. The
transverse strength of 90◦ ply is approximated by the Weibull distribution for a realistic simulation.
Progressive damage and transverse cracking behavior in CFRP ply can be reproduced due to entropy
generation and strength degradation. The effects of stress level and load frequency on the transverse
cracking behavior are investigated. It is discovered that, at the edge, the stress σ22 + σ33 that is a
dominant factor for matrix tensile failure mode is greater than the interior at the first cycle load, and
as stress levels rise, a transverse initial crack forms sooner. However, the initial transverse crack
initiation is delayed as load frequencies increase. In addition, transverse crack density increases
quickly after initial crack formation and then increases slowly with the number of load cycles. The
proposed method’s results agree well with those of the existing experimental method qualitatively.
In addition, the proposed entropy-based failure criterion can account for the effect of load frequency
on transverse crack growth rate, which cannot be addressed by the well-known Paris law.

Keywords: numerical simulation; composite laminates; entropy-based strength degradation; CFRP
transverse cracking behavior; fatigue

1. Introduction

With developments in recent years, composite materials made from two or more
constituent materials, such as aramid-fiber-reinforced plastic (FRP) [1,2], glass FRP [3],
basalt-fiber-reinforced polymer [4] and carbon-fiber-reinforced plastics (CFRP) [5,6], have
been extensively applied in automobile, aerospace, civilian and military industries due to
its excellent corrosion resistance, fatigue resistance and creep resistance [7,8]. By replacing
traditional advanced aluminum alloys, a weight saving of up to one and a half tons can
be obtained in the A380 [9], whose central wing box is made of CFRPs. In practical
applications, the CFRPs usually suffer from post-buckling under eccentric force [10–12] and
cyclic loadings. Nevertheless, the failure mechanism of CFRP typically consists of micro
failures in the fiber, matrix and interface between the fiber and matrix [13–15]. Among
these, matrix failure usually exhibits time dependency [16–18]. Thus, accurate predictions
of the long-term lifetime of CFRP under cyclic loadings are of great significance.

Initially, the lifetime of CFRPs was typically investigated using an experimental
method [19–22]. Reifsnider et al. [23] found that the fatigue failure of fiber-reinforced
plastics usually consisted of transverse crack multiplication, delamination propagation and
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fiber breakage. It is worth noting that the transverse crack multiplication and delamination
propagation account for a large portion of the total period until fatigue life due to the fact
that the final failure of CFRP is caused by fiber breakage. Therefore, some investigations
into transverse cracking behavior of CFRP were reported. Ogihara et al. [24] studied the
influence of stacking sequence on quasi-isotropic CFRP laminates’ microscopic fatigue
damage mechanism, and it was observed that transverse crack density depends on the
stress level and number of loading cycles. Yokozeki et al. [25] conducted the investigations
into transverse crack propagations, in which transverse crack initiation and propagation in
the width direction of cross-ply laminates were observed. Hosoi et al. [26] quantitatively
evaluated the effect of the applied load level on fatigue damage propagation phenomenon,
and a modified version of Paris’ law was proposed to determine damage propagation.
Kitagawa et al. [27] recently proposed a tension-tension fatigue test method to investigate
the transverse cracking behavior of CFRP ply. The applied stress level had a significant
impact on damage accumulation [27], and oblique cracks usually started near transverse
cracks. Li et al. [28] investigated the effect of various factors, such as elevated temperature
and hydraulic pressure, on the property evolution for a carbon/glass hybrid rod. In
addition, the frequency of load on composite materials is also an important factor to predict
long-term lifetime [29,30].

Experimental investigations are often expensive and time consuming. In addition,
results can be affected by the size of the specimen, temperature, humidity and loading
conditions. Therefore, researchers are trying to search for alternative ways to predict fatigue
behavior efficiently. In addition to the well-known stress-based or energy-based methods
for the estimation of fatigue life [31–34], approaches based on irreversible thermodynam-
ics [35–37] were also proposed to investigate the failure mechanism and long-term lifetime
of solid materials. It is well known that not only irreversible microplastic deformation but
also internal friction can result in permanent degradations, such as in plastic. In the view
of thermodynamics, these irreversible degradations can be measured by entropy, which is
a non-negative quantity and can serve as a basis for the damage evolution metric for elastic
and inelastic deformations. When the entropy generation of a material reaches a threshold
value called fracture fatigue entropy (FFE) [38,39], final failure occurs. Many publications
have been reported to show that the estimation of fatigue life based on entropy is promising.
It should be noted that the fracture fatigue entropy of material is also constant, even in the
case where A656-grade steel is subjected to ultrasonic vibration at 20 kHz [40].

Although the entropy-based failure criterion has been widely utilized to successfully
estimate the fatigue life of metal components, its application to investigate the long-term
lifetime of CFRP under cyclic loading is limited. Huang et al. [38] investigated the effect
of stacking sequences on the internal friction and fracture fatigue entropy of CFRP ply.
Moreover, with the consideration of both confidence level and reliability, the fatigue life
estimation of CFRP was determined [39]. Koyanagi et al. [41–44] recently developed a
computational framework with entropy damage to study the failure process of a viscoelastic
matrix. However, no research has been published on the transverse cracking behavior of
CFRP laminate, which is a dominant failure mode.

In this study, both experimental and numerical methods are utilized to investigate the
transverse cracking behavior of CFRP laminates under cyclic load. The fatigue experiment
results reveal that cyclic load level and frequency are two key factors that affect crack
accumulation behavior. To study the transverse cracking behavior of CFRP laminate
subjected to cyclic loadings, a criterion based on entropy is proposed. The model of this
study presents strength and fracture energy reduction based on the stress–strain history. In
addition, Hashin’s failure criterion [8] is adopted to consider fiber and matrix compressive
damage initiation criteria. The entropy-based failure criterion takes into account the effect
of load frequency on transverse cracking behavior that is not considered by Paris’ law. The
proposed method will be extended to simulate transverse initiation and propagation under
random loadings.
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2. Experimental Study
2.1. Material Manufacturing and Damage Observation

The material used in this study is carbon fiber/epoxy unidirectional (UD) tape prepreg
(Torayca, T700SC/2592, 0.14 mm/ply). The prepregs are cured in an autoclave at a temper-
ature of 130 ◦C and pressure of 0.2 MPa. The stacking configuration is [0◦/90◦3]s; the post
cured thickness of the laminate is about 1.15 mm. The specimen’s measurement is as shown
in Figure 1. Laminates are cut into the measurement by using a composite material cutting
machine (AC-300CF, Maruto Testing Machine). GFRP tabs are glued to the specimen ends
by using adhesive glue before the testing. As CFRP laminates are opaque, crack observation
is done using X-ray radiography. An X-ray machine, M-100S, SOFTEX is used with the
applied voltage and current of 14 KVP and 1.5 mA, respectively (exposure time is 3 min).
This damage observation method is a common method used to detect transverse cracks
and delamination in the CFRP laminates [45–48].
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Figure 1. Specimen used for fatigue test.

2.2. Fatigue Loading

To determine the stress ratio used in fatigue testing of this study, six specimens
from the same manufacturing batch used for fatigue test are monotonically and cyclically
loaded. Both of the experiments are performed with the cross-head displacement speed of
1 mm/min using Tensilon RTF-1350 A & D tensile test machine (Shimadzu, Kyoto, Japan).
From the testing, we obtained the laminate’s average maximum tensile strength of 647 MPa
where the transverse cracks initiated from about the stress level of 250 MPa.

The fatigue test of CFRP is performed at room temperature, and the relationships
between transverse cracks and load conditions, such as cyclic load number and frequency,
are investigated. The fatigue loading machine (Shimadzu, Kyoto, Japan, EHF-LV020K1A)
used in this study is shown in Figure 2. The tension-tension sinusoidal fatigue load used
in the tests is shown in Figure 3, in which the stress ratio is R (R = σmin/σmax) fixed at 0.1,
where σmin = 20 MPa and σmax = 200 MPa (30% of the tensile strength). The transverse
crack density in this study is computed by dividing the number of transverse cracks by the
certain area of length 60 mm in the specimen’s center as shown in Figure 4.

Figure 5 shows the typical distribution of transverse cracks under various cyclic loads
with a fixed load frequency of 1 Hz. It is found that there is no transverse crack when the
cyclic load number is less than 103. As the cyclic load number increases to 104, two obvious
transverse cracks are observed. The fatigue test is terminated when the cyclic load number
increases to 105 and the number of transverse cracks is 37. Furthermore, Figure 6 depicts
the transverse crack behaviors obtained after 105 cyclic loads at various load frequencies.
In contrast to the effect of the cyclic load number, as the load frequency increases from
5 Hz to 10 Hz, the final numbers of transverse cracks decrease from 29 to 11. Based on the
above fatigue experimental results, it is concluded that cyclic load number and frequency
are two significant factors that affect the transverse cracks of CFRP. These will be further
investigated by a new numerical method based on an entropy-based failure criterion in the
next section.
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3. Numerical Study
3.1. Orthotropic Viscoelastic Model

The analytical relaxation modulus of matrix resin can be found in
references [16,41,49], but it is usually characterized by the Maxwell model for numeri-
cal simulation. Koyanagi et al. [41] investigated the influence of Maxwell element number
on the relaxation modulus and found that sufficient accuracy can be ensured when the
Maxwell element number is increased to five. Thus, in this study, five Maxwell elements
aligned in parallel shown in Figure 7 are adopted to model viscoelastic matrix resin, in
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which each element consists of the spring Ck
d and dashpot ηk (k = 1~5). Stress relaxation is

modeled individually in each line, and stress is computed as the sum of all elastic stresses
σk. Owing to the orthotropic properties of CFRP, 5 × 6 elasticity constants and 5 × 6
viscosity constants are introduced to model six independent stress–strain relationships, and
the Hashin’s failure criteria are utilized to determine the damage onset. The material pa-
rameters are adopted from the reference [41] and listed in Tables 1 and 2 since the material
properties of the specimen used for the fatigue test have not been determined.
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Table 1. Material properties of viscoelastic Maxwell elements [41].

k 1 2 3 4 5

Ek
11 (MPa) 128,000 80 80 80 80

Ek
22, Ek

33 (MPa) 4290 267 267 267 267
Gk

12, Gk
13 (MPa) 1810 133 133 133 133

Gk
23 (MPa) 1610 101 101 101 101

ηk
11 (MPa·s) 1 × 1030 3.50 × 106 3.00 × 106 3.00 × 105 6.00 × 103

ηk
22, ηk

33 (MPa·s) 1 × 1030 1.17 × 107 1.00 × 107 1.00 × 106 2.01 × 104

ηk
12, ηk

13 (MPa·s) 1 × 1030 5.83 × 106 5.00 × 106 5.00 × 105 9.99 × 103

ηk
23 (MPa·s) 1 × 1030 4.45 × 106 3.81 × 106 3.81 × 105 7.63 × 103
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Table 2. Strength and degradation properties of CFRP laminate [41].

Material Properties Symbol Value

Initial axial tensile strength (MPa) XT,0 3930
Initial axial compressive strength (MPa) XC,0 2775
Initial transverse tensile strength (MPa) YT,0 150

Initial transverse compressive strength (MPa) YC,0 270
Initial axial shear strength (MPa) S12,0, S13,0 117

Initial axial transverse strength (MPa) S23,0 117
Initial fiber directional tensile fracture energy (N/mm) Gft,0 112.7

Initial fiber directional compressive fracture energy (N/mm) Gfc,0 25.9
Initial transverse tensile fracture energy (N/mm) Gmt,0 0.5

Initial transverse compressive fracture energy (N/mm) Gmc,0 0.5
Degradation coefficient (K·mm3/J) α (αAT, αAC, αo) 300,000

3.2. Implementation of Entropy-Based Failure Criterion

The orthotropic viscoelastic model considering the entropy-based failure criterion is
implemented into the finite element analysis software Abaqus 2020 by the user subroutine
UMAT [41]. At the beginning of time increment m, total strain increment ∆εk,m,0

t and histor-
ical variables, such as elastic strain εk,m−1

e and damage parameters dk,m−1
f , are passed into

UMAT, and stress at integration point σwill be updated by the user-defined constitutive
law. In this study, trial stress at the n-th (n ≥ 1) iteration of increment k is computed as

σk,m,n = Ck
dε

k,m,n
e = Ck

d

(
εk,m,n−1

e + ∆εk,m,n
e

)
(1)

In Equation (1), the superscripts k, m, n of σ or ε represent the numbers of Maxwell
model, increment and iteration, respectively. The damaged stiffness tensor of k-th spring
Ck

d is defined as

Ck
d,n =



Ck
d,11 Ck

d,12 Ck
d,13 0 0 0

Ck
d,22 Ck

d,23 0 0 0
Ck

d,33 0 0 0
Ck

d,44 0 0
Symmetrical Ck

d,55 0
Ck

d,66


(2)

where Ck
d,11 =

(
1 − d f ,n

)
Ck

11, Ck
d,12 =

(
1 − d f ,n

)
(1 − dm,n)Ck

12, Ck
d,13 =

(
1 − d f ,n

)
(1 − dm,n)Ck

13,

Ck
d,22 = (1 − dm,n)Ck

22, Ck
d,23 = (1 − dm,n)Ck

23, Ck
d,33 = (1 − dm,n)Ck

33, Ck
d,44 =

(
1 − d f ,n

)
(1 − dm,n)Ck

44,

Ck
d,55 =

(
1 − d f ,n

)
(1 − dm,n)Ck

55, Ck
d,66 = (1 − dm,n)Ck

66, d f ,n and dm,n are fiber and matrix dam-

age variables, Ck
ij is the components of the stress–strain law in intact material and listed in

Table 1.
The elastic strain increment ∆εk,m,n

e is determined as

∆εk,m,n
e = ∆εk,m,n

t − ∆εk,m,n
v (3)

where the viscoelastic strain increment ∆εk,m,n
v is expressed as

∆εk,m,n
v =

Ck
dσ

k,m,n

ηk ∆t (4)

Due to the nonlinear nature of viscoelastic behavior, stress σk,m,n is usually determined
by iteration procedure [41] listed in Figure 8.
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The increment of dissipated energy ∆Wn and total dissipated energy are determined
as follows:

∆Wn = ∑5
n=1 Ck

d,nε
k,m,n
e ·∆εk,m,n

v (5)

Wn = Wn−1 + ∆Wn (6)

After determining the dissipated energy, the entropy generation s is computed as

s =
W
T

(7)

where T is the temperature. Entropy generation s is applied to depict the degradation
of strength and fracture energy of CFRPs. The strength degradation parameters α (αAT,
αAT and αO) [8,41] are taken as a slightly larger constant 300,000 K·mm3/J, which will
be further studied in next plan. Figure 9 demonstrates the damage onset and evolution
of the fiber tensile failure mode [41]. It is also suitable for the other three failure modes,
i.e., fiber compressive mode (efc), transverse directional tensile mode (emt) and transverse
compressive mode (emc), by computing the corresponding equivalent failure displacement
and stress [41].
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3.3. Results and Discussions

The proposed method is utilized to simulate the transverse cracking behavior of CFRP
structures. As shown in Figure 10a, the dimension of the CFRP structure is
100 mm × 10 mm × 6 mm and the symmetrical boundary conditions are applied on surfaces
ABCD, CDHG and AEHD. In the 90◦ layer, the transverse tensile strength is assumed to sat-

isfy the cumulative distribution function for the Weibull distribution σ = σ0

(
ln 1

R−1

)1/m
,

where m = 20 and σ0 = 90 MPa. A finite element model made of 7777 nodes and 6000
C3D8 elements is shown in Figure 10b, in which color denotes material property and the
size of element is 1 mm × 1 mm × 1 mm. In this example, the transverse crack density
is determined by dividing the number of transverse cracks by the length (100 mm). To
ensure numerical stability, the stress boundary condition is replaced by applying strain
boundary conditions, i.e., the displacement boundary condition is employed on surface
ABFE in Figure 10a. The effect of stress levels on results can be reflected by changing the
displacement conditions.

Materials 2023, 16, x FOR PEER REVIEW 12 of 19 
 

 

 
(a) 

 
(b) 

Figure 10. Cross-ply CFRP structures subjected to cyclic loading. (a) Geometric model under cyclic 
loading: symmetric boundary conditions are applied on face ABCD, CDHG and AEHD, respec-
tively; (b) Finite element model (color denotes the material property). 

Figure 10. Cross-ply CFRP structures subjected to cyclic loading. (a) Geometric model under cyclic
loading: symmetric boundary conditions are applied on face ABCD, CDHG and AEHD, respectively;
(b) Finite element model (color denotes the material property).

The effect of the cyclic load number on the transverse cracking behavior is investigated
first. Figure 11 shows the distributions of damage onset index and stress σ22 + σ33 in the
90◦ layer after certain cyclic loadings when the applied strain is 0.6%, i.e., Ux = 0.6 mm,
and the load frequency is fixed at 5 Hz. It is found that damage onset index is smaller than
one and stress σ22 + σ33 at the edge is greater than interior at the first cycle load. Note that
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σ22 + σ33 is the dominant factor for matrix tensile failure mode [39], so we focus on this
value in this study. After 63 cyclic loads, the damage onset index reaches to 1 on the
edge, and the stress σ22 + σ33 in damaged area decreases to a lower value. As the cyclic
load increases to 71, 73, the number of cracks is 6, 9, respectively. The phenomenon that
the number of transverse cracks increases with cyclic load can also be found in current
experimental results. For a further investigation, the evolutions of the damage onset index,
damage evolution index and stress σ22 + σ33 at the first initiated cracked element versus the
cyclic load number are shown in Figure 12. It is found that the damage onset index increases
after the first load cycle and gradually reaches 1 after 63 cyclic loads. After damage occurs,
the damage evolution index becomes 1 instantly without any evolution due to the higher
stress level, and stress σ22 + σ33 drops down to a lower value. This phenomenon can be
also found in the previous works [41] of the authors in this study. It is worth noting that
owing to viscoelastic behavior of resin matrix, the maximum stress σ22 + σ33 gradually
decreases with cyclic number.
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Figure 13 shows the effect of stress level on the transverse cracking behavior, in which
the applied strain is increased from 0.7% to 0.8%, i.e., displacement boundary conditions
applied on the face ABFE are 0.7 mm and 0.8 mm, respectively. It should be noted that the
initial transverse cracks form after 38 cyclic loads when the strain boundary condition is
0.7% and after 23 when it is 0.8%. This can be explained by the fact that a higher stress level
will lead to earlier failure. In addition, the transverse crack density increases quickly after
initial crack formation and then increases slowly. This phenomenon can also be found in
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the experimental results of Kitagawa et al. [27], and the crack density versus stress level
obtained by the proposed method agrees qualitatively with those in reference [27].
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In addition to stress level, the load frequency is also investigated by the proposed
method finally. Figure 14 shows the variation of transverse crack density versus the number
of load cycles under different load frequencies, where the given strain condition of the
whole specimen is 0.8%. Differing from the effect of stress level, as load frequency increases,
initial transverse crack initiation is delayed. Initial cracks are formed after 13 cyclic loads
when the frequency is 2.5 Hz; 5 Hz and 10 Hz have 23 and 44 cyclic loads, respectively. It is
worth noting that, although some empirical formulations, such as Paris’ law [27] based on
the energy release rate, are proposed to predict the crack accumulation phenomenon, the
effect of load frequency on transverse cracking behavior cannot be addressed. However, the
effect of load frequency can be addressed by the proposed entropy-based failure criterion.
Thus, the proposed method can account for the effect of load frequency on transverse crack
growth behaviors of CFRPs better than the conventional methods.
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3.4. Summary and Future Plan

Based on the above discussions, it is believed that the proposed failure model can
characterize the dependency of cyclic load number, stress level and load frequency on
transverse cracking behavior. Only 100 cyclic loads are considered owing to the high
computational cost of three-dimensional simulation. It is necessary to develop a multi-
timescale computational framework to reduce the time cost [50] in the next plan. Owing
to the viscoelastic nature of polymeric matrix, the heat generation phenomenon under
cyclic load is a key factor in estimating the fatigue life of CFRPs [51–55], but it is still not
implemented into the proposed entropy-based failure criterion. Although the proposed
method is only applied to the transverse cracking behavior of cross-ply laminates in this
study, the quasi-isotropic laminates [56–60], delamination caused by the transverse cracks
and components in the civil engineering [61] can also be analyzed. In addition, stiffness
degradation caused by entropy generation should also be considered [62].

4. Conclusions

The transverse cracking behavior of CFRP ply under cyclic load is investigated using
experimental and numerical methods. It is concluded that:

(1) Based on experimental results, it is found that cyclic load level and frequency are two
key factors that affect the crack accumulation behavior. Two obvious transverse cracks
are observed after 104 cyclic loads and 37 transverse cracks occur after 105 cycles in
the experimental test. The final numbers of transverse cracks decrease from 29 to
11 when the load frequency increases from 5 Hz to 10 Hz.

(2) To predict the long-term lifetime of CFRP laminate under fatigue loads, an entropy-
based failure criterion is proposed. Progressive damage and transverse cracking
behavior in CFRP ply are simulated. Numerical results show that as stress levels
rise, transverse initial cracks form earlier, whereas initial transverse crack formation
slows as load frequency rises. When the load frequency is fixed as 5 Hz, the initial
transverse cracks form after 63 cyclic loads when the strain boundary condition is
0.6%, and those of 0.7% and 0.8% are 38 and 23.

(3) In addition, as load frequency increases from 2.5 Hz to 10 Hz, the numbers of cyclic
loads where the initial crack forms increase from 13 to 44. Comparing the proposed
failure model to reference results demonstrates that it can account for the effects of
cyclic load number, stress level and load frequency on transverse cracking behavior.

(4) The proposed entropy-based failure criterion can model the effect of load frequency
on transverse cracking behavior that cannot be addressed by Paris’ law. This may be a
significant contribution to this study. However, many studies, such as those on more
efficient computational frameworks and heat generation under cyclic loading, should
be conducted in order to accurately predict the lifetime of CFRPs under cyclic loading.
These will be presented in future studies.
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