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In order to mitigate high cycle fatigue risks in bladed disks, the prediction of the vibration levels early in the design process is
important. Therefore, the different sources of damping need to be modeled accurately. In this paper the impact of friction in blade
attachments on forced response is investigated both numerically and experimentally. An efficient multiharmonic balance method
is proposed in order to compute the forced response of bladed disks with contact and friction nonlinearities in blade roots. For
experimental validation purposes, a rotating bladed disk was tested in a vacuum chamber, with excitation being provided by
piezoelectric actuators. A model of the rig was built and numerical results were obtained with a normal load dependent coefficient
of friction and a constant material damping ratio. Nonlinear behavior observed experimentally at resonances was well reproduced
and an acceptable correlation was found with experimental resonant frequencies, amplitudes, and amount of damping throughout
the spinning speed and excitation level range. The proposed numerical method can therefore serve to enhance the prediction of
the alternating stresses in bladed disk assemblies.
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1. INTRODUCTION

In gas turbine engines, the nonhomogeneous air flow causes
high-frequency vibrations of rotating bladed disks. Excessive
amplitudes can be responsible for high cycle fatigue failures
(Srinivasan [1]). Thus there is a need for tools able to esti-
mate with sufficient accuracy the dynamic stresses, especially
near resonances. The paper of Seinturier et al. [2] presents an
industrial application of many recent advances in the com-
putation of the forced response and points out some of the
remaining difficulties in this domain.

The amount of damping in the system has a direct influ-
ence on the vibration levels, but it is still very difficult to esti-
mate it precisely. Three main phenomena are responsible for
energy dissipation in bladed disks: material hysteresis, aero-
dynamic damping, and dry friction in joints. In his review
article, Srinivasan [1] provides a comparison of typical Q fac-
tors due to the main sources of damping. Material damping
is very small for the alloys used and is sometimes neglected
in the computations. The level of aerodynamic damping is
generally higher but its prediction is difficult and requires
computational fluid dynamics (CFD) analyses that take into
account blade motion (see Seinturier et al. [2], Berthillier

et al. [3]). Finally, energy dissipations by friction can oc-
cur in many locations, for instance between shrouded blades
or in the joints between the blades and the disk. Moreover
dry friction dampers are widely used to decrease the vibra-
tion level of dangerous resonances. The efficiency of such de-
vices was studied experimentally on a rotating bladed disk in
Tokar’ et al. [4] and theoretically, for instance, in the early
work of Griffin [5]. The harmonic balance method (HBM) is
the most widely used technique for the computation of the
steady-state response with friction damping. Many efforts
have been done in the recent years to propose numerically ef-
ficient implementations of this method (Berthillier et al. [6],
Petrov and Ewins [7], Poudou and Pierre [8], Nacivet et al.
[9]). Among them, the dynamic lagrangian frequency time
(DLFT) method, proposed by Nacivet et al. [9], is character-
ized by its ability to handle directly the nonsmooth contact
laws of unilateral contact and friction.

Experimental studies of blade root damping include the
paper of Rao et al. [10]. Their test rig features a beam with
“T” roots at both ends. A special device based on the thermal
expansion phenomenon is used to pull apart the beam, thus
inducing traction stresses that mimic centrifugal stresses.
The results confirmed the expected decrease of damping as
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the traction force was increased. Experiments on real rotat-
ing components have been reported by Kielb and Abhari [11]
and Tokar’ et al. [4]. In the former study, the same turbine
bladed disk was tested in vacuum with piezoelectric excita-
tion as well as in a shock tunnel. The comparison between
the results revealed that for this particular case the aerody-
namic damping was largely predominant over the structural
damping. The structural damping, attributed essentially to
friction in the firtree attachments, was found to be inversely
proportional to the square of the rotational speed. Tokar’ et
al. [4] measured friction damping in two different blade at-
tachments (dovetail and streamline joints) and provided so-
lutions to increase energy dissipation. It was shown in par-
ticular that the damping ability of dovetail joints could be
improved by the use of antifriction coatings.

The modeling of blade root friction presents some dif-
ficulties. For one blade, the contact interfaces include two or
more flanks which are heavily loaded because of rotation. On
one flank, the contact pressure is neither constant in space
nor in time. High-stress gradients have to be expected near
the edges of the contact zone (Sinclair et al. [12], Beisheim
and Sinclair [13]). Additionally, the normal pressure varies
with time according to the dynamic forcing of the blade and
separation of part of the interface can occur. It is therefore
necessary to include a normal degree of freedom in the con-
tact model. The relative displacements in the tangential di-
rections are of very small amplitude and a microslip behav-
ior is expected. Microslip models have already been used in
the analysis of blades with friction dampers (Menq et al. [14],
Sanliturk et al. [15]), but such models are not applicable in
the case of blade root friction because the normal loads are
not known in advance. The first numerical studies devoted
to the effects of root friction on the forced response of blades
have been published recently (Charleux et al. [16], Petrov
and Ewins [17]). In both cases three-dimensional finite el-
ement models are used and the laws of unilateral contact and
friction are enforced within a certain number of contact ele-
ments distributed over the root flanks, thus allowing for par-
tial slip and partial separation.

In this paper, a DLFT method is used to compute the
forced response of a bladed disk with friction in blade roots.
The main objective of the study is to verify if the method is
able to correctly predict the nonlinear dynamic behavior of
the system. To this end, an experimental validation is pro-
posed. In the next section, the formulation employed to treat
the contact and friction nonlinearties is described. The test
rig is presented in Section 3 and the corresponding numeri-
cal model is detailed in Section 4. Finally in Section 5 the nu-
merical results are compared to the experimental results and
the accuracy of the proposed numerical method is discussed.

2. NUMERICAL METHOD

The DLFT method detailed below allows for the compu-
tation of the steady-state response of structures with con-
tact and friction. It is a harmonic balance formulation and
therefore displacements and forces are assumed to be peri-
odic. Moreover, our presentation in this paper is restricted to

small deformations and small displacements, which means
in particular that the sliding distances are small. We fur-
ther assume that meshes are matching on the contact zones,
which authorizes the use of node-to-node contact elements.
For each contact element, relative displacements and con-
tact forces are computed during resolution according to the
Coulomb law of friction and the unilateral contact law. The
input data required comprise the mass, stiffness, and mate-
rial damping matrices as well as the vector of external forces
for each solid.

2.1. Equations of motion

Let us consider the case of two flexible solids in contact with
friction, for instance a disk and a blade. The equations of
motion obtained after discretization can be written for each
body l as

M
l
ü
l + C

l
u̇
l + K

l
u
l + f

l
c = f

l
ex, (1)

Ml, Cl, and Kl are mass, material damping, and stiffness ma-
trices for the body l. ul, u̇l, ül are the displacement, velocity,
and acceleration vectors, respectively. f lex stands for the exter-
nal forces. The vector of unknown nonlinear contact forces,
f lc, includes normal and tangential components. The contact
zones are defined by the node-to-node contact elements cho-
sen by the user. Rotation of the local axes may be necessary in
order to have one degree of freedom (dof) in the contact nor-
mal direction and two dofs in the tangential plane for each
contact node.

Assuming that the steady-state motion is periodic, a
Galerkin procedure is performed in order to formulate
the equations in the frequency domain. Displacements and
forces are then represented by multiharmonic vectors which
are formed by the Fourier coefficients of the harmonics re-
tained for the resolution. At this point, the size of the prob-
lem can be reduced by performing two exact reductions in
the frequency domain (see Nacivet et al. [9]). In the first one
only the degrees of freedom involved in the contact elements
are retained. Further factor two reduction may be obtained
by presenting the problem in terms of relative displacements.
The equations of motion finally take the following form:

Zr ũr + λ̃ = f̃r , (2)

where ũr , λ̃, and f̃r are the multiharmonic vectors of rela-
tive displacements, Lagrange multipliers, and reduced exter-
nal forces, respectively. Zr represents the reduced dynamic
stiffness matrix. The Lagrange multipliers are equal to the
unknown contact forces. A nonlinear solver is used to deter-
mine the zero of the following function:

f
(

ũr

)
= Zr ũr + λ̃− f̃r . (3)

2.2. Computation of contact forces

For the computation of function f it is necessary to de-

termine the contact forces λ̃ for a given vector of relative
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displacements ũr . Here, λ̃ is formulated as a penalization of
the equations of motion in the frequency domain

λ̃ = f̃r − Zr ũr + ε
(

ũr − x̃r

)
, (4)

where ε is a penalty coefficient and x̃r is a new vector of rela-
tive displacements. It will be seen in the next section that the

pair (λ̃, x̃r) is determined through an alternating frequency
time (AFT) method so that the contact and friction condi-
tions are fulfilled in the time domain. Equation (3) reduces to
f (ũr) = ε(ũr − x̃r). The convergence thus ensures that (2) is
verified and that contact and friction are taken into account
since at this point ũr = x̃r . The value of the penalty coeffi-
cient should be chosen so as to balance the contributions of
the equation of motion to be solved with the contributions
of the contact constraints. Taking the spectral radius of the
dynamic stiffness matrix ρ(Zr) generally gives good results.

2.3. Prediction-correction in the time domain

The contact forces are computed in the time domain where
transition criteria between the three possible states (stick,
slip, and separation) are easily expressed. Equation(4) can be
reformulated as

λ̃ = λ̃u
(

ũr

)
− λ̃x

(
x̃r

)
, (5)

where

λ̃u
(

ũr

)
= f̃r − Zr ũr + εũr , λ̃x

(
x̃r

)
= εx̃r . (6)

The period is split into N time steps. Let us focus now on one
given contact element. For this contact element, the coun-

terparts of λ̃, λ̃u, λ̃x, x̃r in the time domain are {λn}n=1,...,N ,
{λ

n
u}n=1,...,N , {λnx}n=1,...,N , {xn

r }n=1,...,N , respectively. At each it-

eration of the nonlinear solver, λ̃u is calculated and the set
{λ

n
u}n=1,...,N is obtained with an inverse FFT algorithm. A

prediction-correction strategy is used at each time increment
tn to compute the contact forces λn. A predicted contact force
λ
n
pre is calculated assuming that the vector of relative tangen-

tial displacements xT
r remains the same between tn−1 and tn,

and that the normal relative motion xNr is zero. This leads to

λ
n,T
pre = λ

n,T
u − λ

n−1,T
x , λn,N

pre = λn,N
u . (7)

Exponents N and T refer to the normal component and
to the vector of tangential components, respectively. Vectors

(i.e., λn,T
u ) are boldfaced while scalars (i.e., λn,N

u ) are not. The
next step is to correct the contact force so that the complete
contact law is verified. This is done by computing λ

n
x and the

corrected contact force is then given by

λ
n
= λ

n
u − λ

n
x . (8)

In order to calculate λ
n
x , three cases must be distin-

guished.

(i) Separation: λn,N
pre ≥ 0.

The predicted force is a traction force which means that the
contact is lost. The contact force has to be set to zero which
requires

λ
n
x = λ

n
u. (9)

ũr

λ̃u(ũr) = f̃r � Zr ũr + εũr

IFFT

λu
Contact and friction conditions

+ �

λ

λx

FFT

λ̃ f (ũr) = Zr ũr + λ̃� f̃r

Figure 1: Flow chart, computation of the function for the nonlinear
solver.

(ii) Stick: λn,N
pre < 0 and ‖λn,T

pre‖ < µ|λn,N
pre |.

The normal relative displacement is zero and the tangential
relative displacement is constant. This leads to

λn,N
x = 0, λ

n,T
x = λ

n−1,T
x . (10)

(iii) Slip: λn,N
pre < 0 and ‖λn,T

pre‖ ≥ µ|λn,N
pre |.

Again, there is no normal relative displacement. The correc-
tion is made assuming that the normal force does not change
and that the tangential contact force has the same direction as
the tangential predicted force. The tangential relative speed,
implicitly defined by

V
n,T
r =

λ
n,T
x − λ

n−1,T
x

ε dt
, (11)

must be in the direction of the predicted tangential force,
while the contact force must be on the Coulomb cone. There-
fore, λnx is given by

λn,N
x = 0, λ

n,T
x = λ

n−1,T
x + λ

n,T
pre

(
1− µ

∣∣λn,N
pre

∣∣
∥∥λn,T

pre

∥∥

)
. (12)

Once λnx has been determined, the contact force λn is ob-
tained by (8). This operation is repeated along the period for
each contact element. Then, an FFT algorithm is used to ob-
tain the expression of the contact forces in the frequency do-
main and the residual f (ũr) from (3) is returned to the non-
linear solver.

The numerical procedure used is based on a specific es-
timation of forces λ ((5)–(12)) which has been summarized
by a flow chart shown in Figure 1.
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Figure 3: The two instrumented blades.

3. EXPERIMENTAL METHOD

3.1. Test rig

The experimental data were obtained with a test facility de-
signed to gain a better understanding of friction phenomena
in bladed disks. In the present study, the only friction zones
considered are the dovetail joints between the disk and the
blades. A schematic view of the test bench used can be seen in
Figure 2. The rotating disk supports four blades and is placed
in a vacuum chamber so as to minimize the effects of aero-
dynamic forces. The disk is rotating on a hollow shaft sup-
ported by two ball bearings and driven by an electric motor.
The blades considered here are the compressor blades of an
aircraft engine. Two of them are shown in Figure 3.

3.2. Instrumentation

The four blades are placed around the disk as two diametri-
cally opposite pairs as seen in the mesh of Figure 6. Two ad-
jacent blades are equipped with piezoelectric actuators and
strain gauges, while the other two remain bare. The two

equipped blades, herein called blade 1 and blade 2, are shown
in Figure 3. The lead zirconate titanate (PZT) ceramics are
1 cm square flat layers with a thickness of 1 mm. An insu-
lating epoxy adhesive is used to bond them to the airfoils
and to adapt to the slightly curved surface. Two ceramics are
used for each blade, one on the pressure side and one on the
suction side. A parallel wiring together with a suitable orien-
tation of polarization directions allow them to work out of
phase and to generate a flexion motion with a common ten-
sion signal. The PZT layers are placed on high-strain regions
of the first bending mode so as to maximize the effectiveness
of the excitation. A slip ring, located at the extremity of the
shaft, is used to transmit excitation and measurement signals.

3.3. Measurements

The first step of the experimental procedure is to pump the
air out of the vacuum chamber. The results presented in this
paper were obtained with a stabilized pressure of 20 mbar.
Then the bladed disk is set into rotation. Five rotational
speeds were studied from 1000 rpm to 5000 rpm. In order to
study the frequency response around the modes of interest,
a swept sine excitation was provided to the actuators with a
sufficiently slow sweep rate so as to avoid artificial distortions
of responses in case of low damping levels. For each spinning
speed, voltage levels up to 100 V can be applied to the piezo-
electric ceramics. In this study, the retained levels were 10 V,
20 V, 40 V, and 80 V. Frequency response functions were pro-
vided by measuring only the fundamental component and
the half-power bandwidth method was used on an isolated
resonance peak to evaluate the global amount of damping in
the system.

3.4. Experimental results

In the present paper, attention is focused on a narrow fre-
quency range which includes two resonance peaks. An exam-
ple of frequency responses for blades 1 and 2, to an excitation
on blade 2, is shown in Figure 4 for a given excitation level of
80 Volts and for a 3000 rpm rotating speed. For these two
modes, the strain energy is mainly localized in a single blade
which vibrates according to its first bending mode. Such a
phenomenon is due to mistuning between the blades. In the
first resonance (mode 1), blade 1 has the greatest vibration
amplitude among the four blades. The amplitude of blade 2
is much lower and blade 1 and 2 vibrate in phase. In the sec-
ond resonance (mode 2) at a higher normalized frequency
(value around 4), strain energy is mainly localized in blade 2
with blade 1 and 2 vibrating out of phase. Note that strains
are in phase (resp., out of phase) while blades vibrate out of
phase (resp., in phase) as far as strain gauges are not located
on the same side for each blade for this measurement.

Figure 5 shows a set of experimental frequency responses
obtained at 2000 rpm. The excitation was applied on blade 2
only and the response was measured on the same blade. The
resonance of mode 2 is clearly visible while mode 1 is not de-
tected. It can be noted that the peak is shifted to the left as the
excitation voltage is increased, which is evidence of a nonlin-
earity. This effect is more clearly seen in Figure 5(b), where
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Figure 4: Sample of experimental frequency response to an excitation on blade 2 at 3000 rpm.

the strain amplitude was divided by the excitation level. Had
the system been linear, all the curves would have coincided
on this graph. The behavior is linear for low-vibration am-
plitudes but nonlinear in the proximity of the resonance. It is
presumed that as the amplitude increases, the amount of slip
in blade attachments increases resulting in a higher damp-
ing level. Further results will be presented in Section 5 and
compared to numerical results.

4. NUMERICAL MODEL

4.1. Finite element model

A numerical model of the bladed disk was created. The four
blades and the disk were meshed using second-order tetrahe-
dral elements (i.e., 10 nodes per element). The mesh can be
seen in Figure 6. The shaft was modeled with beam elements

and rigid body elements were used to link the shaft and the
three-dimensional mesh of the disk. The two bearings were
modeled with axial and radial linear springs.

The commercial FE code Samcef was used to carry out
the preliminary linear calculations. The model was divided
into five substructures: one for each blade and one for
the disk-shaft assembly. The number of degrees of freedom
(dofs) was reduced in accordance to the Craig & Bampton
component modes synthesis method [18].This method was
applied using a static mode for each contact dof plus ad-
ditional ones for piezoelectric actuators and stain gauges
dofs and finally the reduction basis is completed by dynamic
clamped modes. The reduced basis representing the disk-
shaft assembly encompasses the disk contact nodes and 18
modal dofs. In the present study, 8×3 = 24 contact elements
are defined on each flank of the blade roots, as shown in
Figure 7. The natural frequencies obtained with the reduced
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Figure 5: Experimental frequency responses at 2000 rpm for blade
2 (a) normalized strain response, (b) response/excitation ratio.

model were compared with those obtained with the full-size
model and the accuracy of the reduced model was found to
be acceptable since the relative discrepancy remained under
1% for the first 11 modes, including the two studied modes.
At the present stage, rotation is taken into account but the
frictional contact nonlinearity is not considered: the contact
interfaces are assumed to be perfectly welded. Under this as-
sumption the mass matrix M and the tangent stiffness matrix
Kt for each substructure are computed and retrieved. The
tangent stiffness matrix can be decomposed as

Kt = K−Kc + Kg , (13)

y

zx

+

Figure 6: Mesh of the bladed disk.

x

zy

Figure 7: Localization of the contact nodes on the blade root.

where K is the structural stiffness and Kc is the centrifugal
stiffness. The term−Kc is a stiffness correction due to the ex-
pression of the equations of motion in the rotating frame and
is responsible for a softening effect. Kg is the geometric stiff-
ness matrix which represents the stiffening of the substruc-
ture under the rotation-induced stresses. For each substruc-
ture, the equations to be solved are written in the reduced
basis as

Mü + Cu̇ + Ktu + fc = fex, (14)

where fex stands for the external forces, fc represents the con-
tact forces, and C is a Rayleigh damping matrix. The gyro-
scopic matrix is not taken into account. Indeed, the results
shown in this paper are computed for particular modes of
the structure where there is no shaft bending. In this case, it
was found that the forced response computed with the gy-
roscopic matrix is only very slightly modified and that the
natural frequencies were shifted by less than 0.01%. These re-
sults are in accordance with those of Sinclair et al. [12], who
found with a Ritz method that the modes of a rotating radial
beam were not affected by the Coriolis acceleration.

4.2. Piezoelectric excitation modeling

The piezoelectric actuators were modeled with the simple
unidirectional model shown in Figure 8. In this model, the
thin adhesive film is not taken into account and the load is
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Figure 8: Model of piezoelectric excitation.

assumed to be transferred to the structure via the two ex-
treme points or nodes A and B. The force produced by the
actuator when a voltage Ua is applied to the electrodes can be
written as (Jemai [19])

F1 =
Y11S1

l1
∆l1 −

d31S1Y11

e
Ua, (15)

where d31 is the piezoelectric charge constant of the PZT ce-
ramic, S1 is the area of the cross section, Y11 is the Young
modulus of the ceramic in direction 1. e, l1, and ∆l1 are, re-
spectively, the thickness, the length, and the elongation in di-
rection 1 of the ceramic layer. The stiffness of the piezoelec-
tric actuator between points A and B is denoted by Kp:

Kp =
Y11S1

l1
. (16)

If Ks is the local stiffness of the structure in direction 1 at the
location of the actuator, then F1 can also be expressed as

F1 = −Ks∆l1. (17)

Combining (15), (16), and (17), a simple expression of the
excitation force as a function of the applied voltage is ob-
tained:

F1 =
d31S1Y11

e
(
1 + Kp/Ks

)Ua. (18)

This convenient proportional relationship was used to model
blade excitation. For each piezoelectric actuator, two nodes
located at the position of the ceramic were kept in the Craig-
Bampton reduced basis of the blade. The stiffness of the
structure Ks was obtained by a simple FE computation: op-
posing static forces were applied in direction 1 at nodes A and
B and the calculated relative displacement served to evalu-
ate Ks. The validity of this modeling was verified a posteriori
by the comparison of the experimental and numerical results
(see Section 5).

4.3. Frequency mistuning measurement
and model updating

Mistuning between the four blades is unavoidable because
of manufacturing tolerances and material discrepancies.
Furthermore, in the presented experiment, two blades are
equipped with excitation and measurement devices (blades 1
and 2), while the other two are not. It is important to include

Wedge Holding jaw Strain gauge Tested blade

Screw Piezoelectric ceramic Reflective paper

Figure 9: Frequency mistuning measurement with laser vibrome-
try.

Table 1: Measured frequencies of the first bending mode and devi-
ation from average value.

Blade Normalized Frequency

number frequency deviation (%)

1 3.85 +0.8

2 3.88 +1.6

3 3.76 −1.6

4 3.79 −0.8

mistuning in the numerical calculations, since it is known
to substantially affect the modes and the forced response of
bladed disks (Srinavasan [1], Seinturier et al. [2]).

In order to quantify the frequency mistuning, the four
blades were tested on the small bench shown in Figure 9. The
blades were excited by a hammer blow while a laser vibrom-
eter was used to measure the impulse responses. Piezo actu-
ators and strain gauges were not used in this test. As the fre-
quency depends on boundary conditions, a calibrated tight-
ening torque of 10 Nm was imposed in each case by means of
a M12 (12 mm diameter) screw that squeezes the blade root,
which resulted in a good reproducibility of the measurement.
The mean frequencies gathered in Table 1 were normalized
because of some confidentiality requirements. These results
suggest that the piezoelectric ceramics are responsible for a
slight stiffening effect.

This data was used to update the Young modulus of each
blade finite element model. The densities were also adjusted
after weighing the blades. Finally, impulse responses of the
shaft-disk assembly without the blades were measured at rest
and the found natural frequencies were used to update the
corresponding model. In particular, the bearing spring con-
stants had to be adjusted.
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4.4. Nonlinear analysis

The steady-state solution of (14) was sought with the DLFT
method presented in Section 2. Three-dimensional node-to-
node contact elements were used. They take into account the
variable normal load at the blade root and the 2D stick-slip
motion. There are 192 of them which represent 384 contact
nodes and 1152 nonlinear degrees of freedom. With the lin-
ear dofs added, the total size of the problem is 1290. Using the
reductions in the frequency domain mentioned in Section 2,
the size of the system to be solved by the nonlinear solver is
actually only 576.

In order to facilitate convergence at the first frequency
step of the forced response, the static equilibrium of the
bladed disk subjected to centrifugal loads only is computed.
The relative displacements obtained in the blade root are
then used as a starting point for the calculation of the dy-
namic response.

The steady-state responses presented in this paper were
determined with the first three harmonics and a penalty co-
efficient ε of 2.5× 104. The maximum amplitudes were com-
pared with those obtained with one harmonic. The greatest
variation found was 10% for a rotational speed of 1000 rpm
and an excitation level of 80 V. Computations with five har-
monics were also performed, but the three harmonics results
were improved by less than 1%. Beyond, the calculations be-
came very expensive and brought no further significant im-
provements. So retaining three harmonics offers a good com-
promise between speed and accuracy. For the studied case,
converged results are obtained if the penalty coefficient ε is
chosen from 5×103 to 105. Variations of less than 1% in max-
imum amplitudes are encountered if ε is varied within this
range. Moreover, the spectral radius of the dynamic stiffness
matrix ρ(Zr) is approximately 2.5 × 104 at the studied reso-
nances. This value is actually located in the above-mentioned
range and was chosen for the DLFT computations.

4.5. Nonfrictional damping

In the studied experiment, damping is not due solely to blade
root friction. Energy is also dissipated in materials and in the
instrumentation. Moreover, a certain level of aerodynamic
damping might remain. All these other sources of damping
were represented by an equivalent viscous damping ratio ζ .
In practice, they were introduced in the reduced model in
the form of a Rayleigh damping matrix:

C = αM + βKt, (19)

where α and β are coefficients that were adjusted so as to ob-
tain the desired ζ for the studied resonance. The same value
of ζ was used for all rotational speeds and all excitation lev-
els. It was therefore assumed that any change in the global
amount of damping was due to dry friction in dovetail joints.
In order to choose the value of ζ we considered a case where
energy dissipation by dry friction in root joints is minimal,
that is, at the highest possible spinning speed (5000 rpm) and
at the lowest excitation level. In these conditions, a damping
ratio of 5.5× 10−4 was identified in the response. This value
was assigned to ζ .

4.6. Friction parameters

In the blades studied, an antifriction coating is used to pro-
tect the blade roots from wear and fretting fatigue. Under
these conditions, the coefficient of friction is expected to be
low (about 0.1) and to decrease as the normal load is in-
creased (Rabinowicz [20], Ibrahim [21]). The friction coeffi-
cient was therefore assumed to be governed by the equation
given in Ibrahim [21]:

µ = γN−ν, (20)

where γ is constant, N is the normal load, and ν has a positive
value.

The practical implementation of such a relation for
blade-disk contact requires some precision. It is recalled that
the normal contact pressure is not uniform on the flanks and
has a time-varying component due to vibration. Hence, ac-
cording to (20), the coefficient of friction should vary too.
This was not taken into account however and the coefficient
of friction µ was assumed to be the same for all contact el-
ements and constant in time. For each rotational speed of
interest, the value of µ was chosen thanks to a simplified 2D
static analysis. As can be seen in Figure 10, the centrifugal
force causes normal and tangential static contact forces N
and T because of the flank angle α. Assuming that rotation
brings about macroslip in the blade root—which was con-
firmed later by simulations with the 3D FE model—then

T = µN. (21)

As the experiments and simulations were conducted at five
rotational speeds from 1000 rpm to 5000 rpm, these are de-
noted by Ω j = 1000 j, for j from 1 to 5. N j and µ j are the
corresponding normal force and the coefficient of friction,
respectively. As the centrifugal force is proportional to the
square of the rotational speed, the static equilibrium is given
by

c j2 = N j

(
cosα + µ j sinα

)
, (22)

where c is constant. If we define a normal force ratio by

ψ j =
N j

N1
, (23)

then (20) can be reformulated as

µ j = µ1ψ
−ν

j . (24)

With (23) and (24) and using the j = 1 case to express con-
stant c, (22) becomes

(
cosα + µ1 sinα

)
j2 = ψ j

(
cosα + µ1ψ

−ν

j sinα
)
. (25)

The parameters involved in this equation have the following
values:

(i) flank angle α = 50◦,
(ii) exponent of normal load dependence ν = 0.34,

(iii) coefficient of friction at 1000 rpm µ1 = 0.15 (adjusted
numerical value as explained below).
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Figure 10: Forces in blade root.

Exponent ν was chosen using Seitzman et al. [22], where
molybdenum disulfide coatings for titanium alloys are stud-
ied. The solid lubricant used on the blade roots being of a
similar type, a similar value of ν was assumed. Equation (25)
is nonlinear in ψ j and is solved with a Newton method for j
from 2 to 5 for a given µ1. Therefore, the simplified 2D static
analysis permits choosing a single unknown parameter (here
µ1) to be adjusted. The value of this latter is updated so that
frequency responses obtained by means of the DLFT analy-
sis at several rotating speed match with experimental ones.
The corresponding coefficients of friction obtained by (24)
are listed in Table 2.

The elastoplastic deformations of asperities were not tak-
en into account in the model because of lack of precise infor-
mation about the local characteristics of the contact studied.
This means that when a contact element is in the sticking
state, no relative displacement is permitted.

5. RESULTS

In this last section of the paper the experimental and numer-
ical frequency responses are compared. Attention is mainly
focused on a particular mode of the bladed disk (mode 2
described in Subsection 3.4). A comparison between exper-
imental and numerical frequency responses is presented in
Figure 11. Figures 11(a), 11(c) are the results for blade 1,
and Figures 11(b), 11(d) represent those for blade 2. A good
agreement between numerical and experimental results is
observed both in amplitude and phase curves. Resonance
of mode 1 is visible in the response of blade 1. By dividing
the amplitudes by the excitation level, as done in Figure 5,
a linear behavior could be observed at this resonance. This
was also the case in the simulations since all the contact ele-
ments remained in stick state. Hence, the observed discrep-
ancy most likely means that material damping was under-
estimated for this particular rotational speed. For mode 2,
the experimental peaks are slightly shifted to the left as Ua

is increased from 10 V to 80 V, which is not well reproduced
by the simulation. Among the suspected causes are the level
of discretization and the absence of tangential contact stiff-
nesses in the model.

Table 2: Coefficients of friction used in the model.

Spinning speed Normal force Coefficient of

Ω j(rpm) ratio Ψ j friction µ j

1000 1 0.15

2000 4.25 0.092

3000 9.80 0.069

4000 17.67 0.056

5000 27.86 0.048

5.1. Resonant frequencies

Figure 12 shows the evolution of the resonant frequency for
mode 2 over the speed range. These results are obtained for
the lowest excitation level, which minimizes the frequency
shift due to the nonlinearity. The numerically predicted cen-
trifugal stiffening is in good agreement with the experiment.
But one can notice that the two curves do not have exactly the
same shape. The experimental curve is almost straight, while
the numerical curve bends a little. One possible explanation
for this may be that the model does not include contact stiff-
nesses. Indeed, experiments reported in Ferrero et al. [23]
and Crassous et al. [24] have shown that the tangential con-
tact stiffness increases with normal load. Including such nor-
mal load dependent contact stiffnesses in the model would
straighten the numerical curve.

5.2. Amplitudes and damping

The maximum amplitude at which the blades vibrate is a key
information for the designer interested in preventing high
cycle fatigue problems. Dynamic stresses together with static
stresses are necessary to verify if the blades remain sufficiently
under their endurance limit.

Figure 13 shows the maximum vibration levels of the
bladed disk for the resonant response of mode 2. First of all,
it is important to stress that for a speed of 5000 rpm and an
excitation of 10 V, the amplitudes obtained numerically are
very close to the experimental ones. In this case, energy dis-
sipation in blade roots is minimal and behavior is almost lin-
ear. Furthermore, one can note that in Figure 14(a) the mea-
sured and numerical damping ratios are very close. So with
the same amount of damping, both computations and ex-
periments give the same amplitude, demonstrating the ac-
ceptable accuracy of the simple model used for piezoelectric
actuation. Figure 13 also reveals that, to a good extent, the
numerical model reproduces the main trends observed in the
experiments. Nonetheless, one point of interest seen in (b) is
that the slope of the strain versus speed curves obtained with
the numerical model can be negative for high speeds and low
amplitudes, whereas the experimental curves always exhibit a
positive slope. Kielb and Abhari [11] tested a rotating bladed
disk in a similar facility at speeds up to 20 000 rpm and also
found ever increasing amplitudes. The fact that structural
damping model does not take into account the speed and
prestress influence due to rotating speed can explain the dis-
crepancies between experimental and experimental slopes.
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Figure 11: Numerical and experimental frequency responses at 3000 rpm.

For the highest recorded amplitude (blade 2, 5000 rpm,
80 V), the maximum computed alternate Von Mises stress in
the airfoil part of the blade is approximately 20 MPa. This is
more than twenty times below the endurance limit. Never-
theless, the excitation level was sufficient to produce a signif-
icant nonlinearity for each speed.

The results presented in Figure 14 confirm that the to-
tal damping decreases as the spinning speed increases. The
damping levels are of the same order of magnitude as those
found by Tokar’ et al. [4] and Kielb and Abhari [11]. Experi-
mental curves are rather well reproduced by simulation even

if damping is quite underestimated for low-vibration levels
(curves (a) and (b)). The benefit of taking into account fric-
tion in blade root is obvious in this case, as linear calculations
would have produced horizontal lines with a damping ratio
of 5.5× 10−4.

Among the possible causes of the observed discrepancies
is the assumption made in the model that friction in dovetail
joints is the only source of nonlinearity. For instance as said
before, the possible variation of material damping with vi-
bration amplitude was not taken into account. Moreover, as
the rotational speed increases, centrifugal stiffening could be
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Figure 12: Numerical and experimental resonant frequencies for
Ua = 10 V.

responsible for a decrease in material damping. Smith and
Wereley reported such a phenomenon in the case of rotat-
ing composite beams (Smith and Wereley [25]), but no sim-
ilar experimental work on titanium alloys has been found in
the literature. Another source of error relates to the number
of contact elements used for simulation. Sinclair et al. [12]
showed that very refined grids were necessary to obtain con-
verged contact stresses in dovetail joints, but such discretiza-
tions are not compatible with dynamic computations. In this
study, a compromise was found and 24 contact elements per
flank were used. This is insufficient to accurately predict the
contact stress distribution and therefore also brings about er-
rors in the estimation of slip regions and slip amplitudes.

6. CONCLUSIONS

An attempt to predict the nonlinear forced response of
bladed disks with friction in blade attachments has been pre-
sented. A DLFT method was used to compute the steady-
state response taking into account nonsmooth Coulomb fric-
tion and unilateral contact laws. To validate this method,
experimental testing of a bladed disk rotating in a vacuum
chamber was conducted. With harmonic excitations, the
measured frequency response exhibited a nonlinear behavior
in the vicinity of resonances, attributed to blade root friction.
A three-dimensional finite element model of the rig was con-
structed and updated taking into account mistuning of the
blades.

The simulations were carried out with a normal load
dependent coefficient of friction and a constant material
damping. Under these assumptions, experimental damping
levels have been reproduced with reasonable accuracy for
different rotational speeds and different excitation levels.
The method can therefore be used to better predict the
alternating stresses in bladed disk assemblies. The observed
discrepancies between numerical and experimental results
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Figure 13: Numerical and experimental maximum vibration levels:
(a) blade 1, (b) blade 2.

can be due in particular to the number of contact elements
retained which was insufficient to accurately predict the
distribution of contact stress. Contact stiffnesses, that may
vary with normal load, were not included in the model
presented in this paper and could also play an important
role. There is a need for more experimental data to enhance
the level of modeling and the precision of numerical results.
In particular, material damping should be determined alone
as well as its variation with amplitude and centrifugal load.
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Figure 14: Numerical and experimental equivalent viscous damping ratios: (a) 10 V, (b) 20 V, (c) 40 V, (d) 80 V.
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