
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

 

Newcastle University ePrints - eprint.ncl.ac.uk 

 

Francksen RM, Whittingham MJ, Ludwig SC, Roos S, Baines D.  

Numerical and functional responses of Common Buzzards Buteo buteo to 

prey abundance on a Scottish grouse moor.  

Ibis 2017 

DOI: https://doi.org/10.1111/ibi.12471 

 

Copyright: 

This is the peer reviewed version of the following article: Francksen RM, Whittingham MJ, Ludwig SC, 

Roos S, Baines D. Numerical and functional responses of Common Buzzards Buteo buteo to prey 

abundance on a Scottish grouse moor. Ibis 2017, which has been published in final form at 

https://doi.org/10.1111/ibi.12471. This article may be used for non-commercial purposes in accordance 

with Wiley Terms and Conditions for Self-Archiving. 

DOI link to article: 

https://doi.org/10.1111/ibi.12471  

Date deposited:   

09/03/2017 

Embargo release date: 

05 March 2018  

http://eprint.ncl.ac.uk/
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=233076
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=233076
https://doi.org/10.1111/ibi.12471
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=233076
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=233076
https://doi.org/10.1111/ibi.12471
https://doi.org/10.1111/ibi.12471


Running head: Common Buzzard responses to prey on a grouse moor 1 

 2 

 3 

Numerical and functional responses of Common Buzzards Buteo buteo on a Scottish grouse 4 

moor 5 

 6 

RICHARD M. FRANCKSEN1,2*, MARK J. WHITTINGHAM2,  7 

SONJA C. LUDWIG1,3, STAFFAN ROOS4 & DAVID BAINES3 8 
 9 
 10 

1Langholm Moor Demonstration Project, The Estate Office, Ewesbank, Langholm, DG13 OND, UK 11 
2School of Biology, Newcastle University, Ridley 2, Newcastle-Upon-Tyne, NE1 7RU, UK 12 
3Game and Wildlife Conservation Trust, The Coach House, Eggleston, Co. Durham, DL12 0AG, UK 13 
4RSPB Centre for Conservation Science, RSPB Scotland, 2 Lochside View, Edinburgh, EH12 9DH, 14 

UK 15 

 16 

* Corresponding author. 17 

Email: r.francksen@gmail.com 18 

 19 

 20 

Predators will often respond to reductions in preferred prey by switching to alternative prey resources. 21 

However, this may not apply to all alternative prey groups in patchy landscapes. We investigated the 22 

demographic and aggregative numerical and functional responses of Common Buzzards Buteo buteo, 23 

in relation to variations in prey abundance, on a moor managed for Red Grouse Lagopus lagopus 24 

scotica in south-west Scotland over three consecutive breeding and non-breeding seasons. We 25 

hypothesised that predation of Red Grouse by Buzzards would increase when abundance of their 26 

preferred Field Vole Microtus agrestis prey declined. As vole abundance fluctuated, Buzzards 27 

responded functionally by eating voles in relation to their abundance, but did not respond 28 

demographically in terms of either breeding success or density. During a vole crash year, Buzzards 29 

selected a wider range of prey typical of enclosed farmland habitats found on the moorland edge, but 30 

fewer grouse from the heather moorland. During a vole peak year, prey remains suggested a linear 31 

relationship between grouse density and the number of grouse eaten (type 1 functional response), 32 

which was not evident in either intermediate or vole crash years. Buzzard foraging intensity varied 33 

between years as vole abundance fluctuated, and foraging intensity declined with increasing heather 34 

cover. Our findings did not support the hypothesis that predation of Red Grouse would increase when 35 

vole abundance was low. Instead, they suggest that Buzzards predated grouse incidentally while 36 

hunting for voles, which may increase when vole abundances are high through promoting foraging in 37 

heather moorland habitats where grouse are more numerous. Our results suggest that declines in main 38 

prey may not result in increased predation of all alternative prey groups when predators inhabit patchy 39 

landscapes. We suggest that when investigating predator diet and impacts on prey, knowledge of all 40 

resources and habitats that are available to predators is important. 41 

 42 
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Predators may respond either numerically or functionally to fluctuations in prey abundance and 45 

availability (Solomon 1949, Holling 1959a, b, 1965). Numerical responses can be further divided into 46 

demographic and aggregative responses. Demographic numerical responses occur through changes in 47 

breeding density, breeding success or survival (Andersson & Erlinge 1977, Reif et al. 2004), although 48 

they may be influenced by predator mobility, reproductive potential and generation time (Korpimäki 49 

& Norrdahl 1991, Redpath & Thirgood 1999). Aggregative numerical responses occur when 50 

individuals aggregate to forage in areas of greater net energy gains (Baker & Brooks 1981, Stephens 51 

& Krebs 1986), and are influenced by the territoriality and mobility of predators as well as the 52 

depletion rates of prey (Thirgood et al. 2003, Mckinnon et al. 2013). Functional responses involve a 53 

change in predator diet towards the most abundant or rewarding prey type. As the profitability of a 54 

preferred prey type declines, a predator may increasingly select an alternative prey (alternative prey 55 

hypothesis; Angelstam et al. 1984, Reif et al. 2001), or widen its diet by taking a larger range of 56 

alternative prey as a greater range of alternative prey are selected (Pyke et al. 1977, Salamolard et al. 57 

2000). However, even in relatively simple ecosystems, the availability of two or more alternative prey 58 

can lead to complex interactions between predators and prey (Newton 1998, Zárybnická et al. 2015). 59 

For instance, predator responses can also affect predation rates  on incidental prey, which are not the 60 

primary focus of a predator (incidental prey hypothesis; Cornell 1976, Vickery et al. 1992). If 61 

incidental and preferred prey have similar habitat requirements, predation may increase on incidental 62 

prey groups when the density of preferred prey is high (Selås 2001, Valkama et al. 2005). Conversely, 63 

if incidental prey coexist in space with important alternative prey groups, but both are spatially 64 

separated from preferred prey, incidental predation may be higher when main prey density is low 65 

(Mckinnon et al. 2013). The nature of these responses will depend on the range and juxtaposition of 66 

habitats and prey available to predators, as well as their relative profitability (Smout et al. 2010). 67 

Numerical and functional responses of predators can influence predation rates on prey (Redpath & 68 

Thirgood 1999, Tornberg et al. 2012, Mckinnon et al. 2013), and as such, understanding their nature 69 

is essential for effective management of both predators and prey (Morrison et al. 2012).  70 

The Common Buzzard Buteo buteo (hereafter ‘Buzzard’) is a generalist raptor whose 71 

preferred prey comprises small mammals, especially voles Microtus spp., and European Rabbits 72 

Oryctolagus cuniculus (Graham et al. 1995, Reif et al. 2001). When available, Buzzards may also 73 

select Red Grouse Lagopus lagopus scotica as alternative prey (Graham et al. 1995), which are an 74 

economically important gamebird in parts of upland Britain (Sotherton et al. 2009). Buzzards were 75 

restricted to western areas of Britain during much of the 20th century due to persecution throughout 76 

the 18th, 19th and early 20th centuries, and their subsequent recovery was hampered by the effects of 77 

organochlorine pesticides and the collapse of rabbit populations from myxomatosis during the 1950s 78 

and 1960s  (Moore 1957, Parkin & Knox 2010, Balmer et al. 2014). Since the 1970s, population 79 

recovery and range expansion in Britain (Musgrove et al. 2013, Balmer et al. 2014) has created 80 



concern amongst some game managers about the impact of Buzzard predation on gamebirds (Lees et 81 

al. 2013, Parrott 2015). 82 

Studies in Fennoscandia on the functional responses of generalist predators, including 83 

Buzzards, have shown that predation of grouse Tetraonidae spp. increased when vole abundance was 84 

low (Reif et al. 2001, Tornberg et al. 2012, 2016). Therefore, we hypothesised that Buzzard predation 85 

of Red Grouse would increase when vole abundance was low. We investigated the demographic and 86 

aggregative numerical and functional responses of Buzzards in an area of heather moorland managed 87 

for Red Grouse, and in the neighbouring farmland and forest peripheries. In particular, we were 88 

interested in determining how any response of Buzzards could influence predation of Red Grouse. 89 

 90 

METHODS 91 

 92 

Study area 93 

The study was conducted at Langholm Moor in south-west Scotland (55°10’N, 02°55’E) between 94 

2011 and 2014. The study area consisted of c. 220 km2 of a mosaic of semi-natural, unenclosed 95 

acidic-grassland and heather Calluna vulgaris moorland, which has been fragmented by livestock 96 

grazing (Thirgood et al. 2003), surrounded by enclosed fields of improved grassland, coniferous 97 

forest and mixed deciduous woodland (Redpath & Thirgood 1997, Francksen et al. 2016). The study 98 

area was chosen to include 114 km2 managed under the Langholm Moor Demonstration Project 99 

(LMDP; Langholm Moor Demonstration Project 2014) plus a 2 km buffer zone, the latter chosen to 100 

include Buzzards which may hunt within the LMDP area based on previous estimates of home range 101 

size at Langholm (Graham et al. 1995). Management to benefit Red Grouse for potential shooting, 102 

including rotational heather burning and legal control of corvids, foxes and mustelids, was undertaken 103 

by a team of five gamekeepers within the area designated under the LMDP. Between 2009 and 2011, 104 

prior to the start of data collection for the current study, sheep density on the study area was reduced 105 

by 21% from 0.75 sheep per hectare to 0.59 sheep per hectare to promote heather recovery. 106 

Furthermore, 37% of the remaining sheep flock was grazed away from the study area between 107 

October and March each year (Langholm Moor Demonstration Project 2014). All raptors were strictly 108 

protected from interference. 109 

 110 

Prey abundance 111 

To interpret any numerical (demographic and aggregative) and functional responses observed in 112 

Buzzards, we assessed the abundances of Field Voles Microtus agrestis and lagomorphs, which are 113 

key prey for Buzzards in Britain, and Red Grouse, which are alternative Buzzard prey (Graham et al. 114 

1995) of interest to our study. On sites in Britain such as ours, Red Grouse are principally associated 115 

with areas of heather-dominated moorland, where the heather provides food and nesting cover 116 



(Jenkins et al. 1963). Field Voles are most numerous in the grass-dominated areas of moorland 117 

vegetation (Redpath & Thirgood 1997, Wheeler 2008). On our study site, sightings of lagomorphs, 118 

either rabbit or Brown Hare Lepus europaeus, during other prey surveys indicated their abundance 119 

within the heather-dominated moorland and acidic grassland habitats was low (< 0.1 individuals/km) 120 

in all years. Instead, lagomorphs were largely confined to the enclosed fields on the moorland 121 

periphery, where other alternative prey of Buzzards are also likely to be most abundant (Tubbs 1974, 122 

Redpath & Thirgood 1997, Thirgood et al. 2003). 123 

Field Vole abundance was assessed annually in March/April from 50 unbaited snap traps set 124 

over two nights at 10 locations across the study area, i.e. 1000 trap nights per annum (Redpath et al. 125 

1995) between 2011 and 2014 inclusive. All trapping locations were on the heather-moorland and 126 

unenclosed acidic-grassland areas within the LMDP area. The number of voles caught per 100 trap 127 

nights was used as an annual abundance index. Field Voles comprised 83% of all small mammals 128 

trapped over all trap lines. Annual variation in vole abundance between 2011 and 2013 was assessed 129 

by comparing the annual mean number of voles trapped per 100 trap nights at the ten trapping 130 

locations with a two-way ANOVA, specifying year and individual trapping location as factors. For 131 

this analysis, we were not interested in any effect of trapping location, but we included it in the model 132 

as part of the data structure. The purpose was to relate any variation in vole abundance to any 133 

evidence of Buzzard responses during the same period.  134 

Red Grouse were counted twice each year: in March or early-April to assess pre-breeding 135 

density and in July to assess post-breeding density. Counts were conducted in ten 0.5 km2 moorland 136 

blocks using a pointing dog (Jenkins et al. 1963). Within each block, transects spaced 150 m apart 137 

were walked with the dog quartering either side of the transect. Additionally, grouse were also 138 

counted on 18 transects across the moorland part of the study area (mean transect length = 1.95 km, 139 

range = 0.96 – 3.46; see Redpath & Thirgood 1997 and Langholm Moor Demonstration Project 2014 140 

for more details of survey methods). Distance sampling corrections were applied to grouse data to 141 

correct for detectability differences between individual dogs and observers. The perpendicular 142 

distance from the transect line to the point at which each single grouse or group of grouse were 143 

flushed was recorded, and subsequently an effective strip width using a detectability curve was 144 

calculated using the program DISTANCE (Thomas & Buckland 2010). Mean densities (grouse/km2) 145 

were then calculated for each block or transect using: 146 

 147 

𝐺𝑟𝑜𝑢𝑠𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =  
𝑇𝑜𝑡𝑎𝑙 𝑔𝑟𝑜𝑢𝑠𝑒 𝑐𝑜𝑢𝑛𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑒𝑐𝑡 𝑙𝑒𝑛𝑔𝑡ℎ × (𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑠𝑡𝑟𝑖𝑝 𝑤𝑖𝑑𝑡ℎ × 2)
 148 

 149 

Annual variation in pre- and post-breeding grouse densities were assessed by comparing the annual 150 

mean densities from the ten blocks and 18 transects (n = 28), again with a two-way ANOVA with 151 

year and transect as factors. 152 



Lagomorphs were counted on twelve 1-km transects in the enclosed fields on the moorland 153 

periphery, which were walked between 05:00 and 09:00 in June 2012 and June 2013. Rabbits 154 

comprised 94% of all lagomorphs seen, and so the number of rabbits seen per km of transect was used 155 

as the annual index. Between-year variation in rabbit abundance was tested with a paired t-test. 156 

 157 

Buzzard responses 158 

Demographic numerical response 159 

To assess the demographic numerical response, Buzzard nests were located within the study area both 160 

on and off the moor between 2011 – 2013 inclusive. Searches were conducted in suitable nesting 161 

sites, especially where displaying Buzzards were seen from vantage points in early spring (Hardey et 162 

al. 2013). Nests were considered active if they were freshly lined, had fresh prey remains and/or 163 

pellets nearby, or if territorial adults were heard calling (Tubbs 1974, Hardey et al. 2013). Between 164 

2011 and 2013, 58 active Buzzard nests were found in 29 territories. The same territory was assumed 165 

if nests were found within the same 1 km2 in each year, according to approximate territory sizes at 166 

Langholm (Graham et al. 1995). The nearest-neighbour distance (NND) was calculated for all nests in 167 

each year, excluding nests where we felt the nearest neighbour may have been missed (2011: 15 nests 168 

used, 1 excluded; 2012: 12 used, 4 excluded; 2013: 21 used, 5 excluded). 169 

Breeding success was expressed as the number of chicks fledged, first from all successful 170 

nests (where at least one chick fledged), and then from all breeding attempts (including failed nests 171 

and territories where pairs failed to lay eggs). The latter was the same as chicks per pair because no 172 

pairs were observed to lay repeat clutches if their first attempt failed. Chicks were considered to have 173 

fledged if seen at the nest site at ≥ 4 weeks old (Hardey et al. 2013). The mean annual breeding 174 

density was compared between years with ANOVA. Breeding success data could not be normalised 175 

and so non-parametric Kruskal-Wallis tests were used to analyse between-year differences. 176 

 177 

Aggregative numerical response 178 

To assess the aggregative numerical response, we explored Buzzard foraging patterns during three 179 

breeding seasons (2012 – 2014) and three non-breeding seasons (winters 2011/12 – 2013/14). 180 

Observations of Buzzards were conducted from fixed vantage points over moorland blocks of 181 

approximately 1 km2. Summer observations were conducted twice per month in May, June and July 182 

for three hours on each occasion over 10 blocks in 2012 and 12 in 2013 and 2014, giving a total of 183 

552 hours. Observations were conducted once per month in winter (October – March) over nine of the 184 

blocks in 2011/12 and over 12 in 2012/13 and 2013/14, totalling 661 hours. Observations were made 185 

only under appropriate weather conditions, when blocks were scanned for hunting Buzzards 186 

(quartering, soaring, hovering and scanning while perched) every two minutes.  187 



Habitat composition within the 12 observation blocks was estimated from the Land Cover 188 

Map 2007 dataset (Morton et al. 2011), whereby each 25 × 25-m grid cell was categorized by its 189 

dominant habitat class. The habitat composition of each block was calculated within ArcGIS. Heather 190 

moorland (dwarf shrub heathland and ericaceous bog) and grassland (rough, neutral and acidic 191 

grassland) together averaged 96% of habitat within the blocks (range: 90 – 100%), therefore one 192 

habitat composition index was derived by log-transforming the ratio of heather moorland to grassland. 193 

Vole abundance data were available for all observed blocks within the period that foraging patterns 194 

were assessed, whilst grouse were counted on ten observation blocks only because the remaining two 195 

blocks contained little or no heather. For the purposes of analyses, we assumed that grouse were 196 

absent from these two blocks, which was supported by no grouse being observed during general 197 

breeding bird surveys. There were no differences in results from models that either included or 198 

excluded these two blocks, so here we include them. 199 

We explored Buzzard foraging patterns using GLMMs with Poisson errors and log-link 200 

functions. The number of sightings of Buzzards hunting summed across visits within each season for 201 

each block was used as the response variable, with total scans per season and block fitted as an offset 202 

and block as a random factor. We were not interested in the effect of ‘block’ in itself, but included this 203 

as random factor as an important part of the model structure. We summed data across visits within 204 

each season. We related Buzzard foraging intensity to spatial variation in the heather-grass ratio and 205 

the spatial and temporal variation in grouse and vole indices (covariates), but not lagomorphs, which 206 

were uniformly low in abundance (<0.1 individuals / km) on all blocks, and year (factor), with first-207 

order interactions between year and the covariates to explore differing relationships between years. 208 

Separate models were constructed to explore relationships during summer and winter. For all models, 209 

we calculated Wald statistics using the Anova function of the car package in R version 3.2.2 (Fox & 210 

Weisberg 2011, R Core Team 2013). Significant interactions with year were explored using separate 211 

GLMs for each year, which included habitat and prey index covariates. Overdispersion of models was 212 

tested using the gof function of the aods3 package in R (Lesnoff & Lancelot 2014), and where 213 

necessary accounted for by including an observation-level random effect (OLRE; Bates et al. 2012). 214 

In all models, no two variables were found to be strongly correlated (r < |0.45|; Dormann et al. 2013), 215 

so all were retained. 216 

 217 

Functional response 218 

Diet data were obtained from three sources in three breeding seasons (2011-13): motion-triggered nest 219 

cameras, collection of prey remains and collection of regurgitated pellets from the vicinity of nests. 220 

Camera image data were collected from each of 32 nests for at least three days during each of three 221 

post-hatching periods: < one week, one to four weeks and > four weeks within a mean nestling period 222 

of 50 days (± 0.74 se). Overall, 2,320 hours of footage were collected (mean hours per nest 80 ± 15), 223 

yielding 1,005 prey deliveries (mean per nest 31 ± 3). Of these, prey in 136 deliveries (14%) were 224 



obscured and could not be identified, and were excluded. Prey remains and regurgitated pellets were 225 

collected from inside, and within a 50-m radius of, 46 of the 58 nests. The remaining 12 nests either 226 

failed to hatch chicks or were discovered too late in the nestling period to yield samples. Searches 227 

were conducted at the end of each camera recording period when batteries and memory cards were 228 

replaced, and again during the first week post-fledging, yielding 664 prey remains (14 ± 1 per nest) 229 

and 295 pellets (6 ± 1 per nest). Analysis of pellets yielded 655 prey items. Prey were identified to the 230 

lowest possible taxonomic level, and were assumed to represent one individual, unless it was obvious 231 

that more than one was present (Redpath et al. 2001). Equipment and detailed methods for collection 232 

of prey composition data are described in Francksen et al. (2016). All diet data were expressed as the 233 

proportion of prey items in each prey group. 234 

Annual diet breadth (range of prey selected by Buzzards) was calculated for each diet 235 

assessment method and nest following Levins (1968), whereby: 236 

𝐷𝑖𝑒𝑡 𝑏𝑟𝑒𝑎𝑑𝑡ℎ =  
1

∑ 𝑝𝑗
2
 237 

where pj is the proportion of total frequency of prey group j. Annual variation in diet breadth was 238 

explored using a two-way ANOVA with year and territory specified as factors, the latter to recognise 239 

that some nests within the same territories were sampled in multiple years. 240 

To estimate the local grouse density around each Buzzard nest for comparisons with diet, we 241 

used post-breeding grouse counts (July) as they coincided more closely with when Buzzards 242 

provisioned chicks (early-May to late-July) than did spring counts (March/early-April). Grouse 243 

densities from the ten blocks and 18 transects were plotted onto a map of the study area. The 18 244 

transects were divided into 34 sections of approximately 1 km length. Grouse density at the centre 245 

point of each transect section was used in kriging analysis in ArcMap (version 10.3) to estimate Red 246 

Grouse density contours across the study area in each year. The LMDP area is surrounded by mature 247 

commercial conifer forest and improved farmland, which are unsuitable for Red Grouse, hence 248 

interpolation of grouse density was limited to this area containing suitable grouse habitat, producing a 249 

raster map with a 500-m cell size of grouse density, onto which Buzzard nest locations were then 250 

plotted. A circle of 1-km radius around each nest represented an approximate average summer 251 

territory size (Graham et al. 1995), within which grouse density was estimated using the mean of the 252 

estimated cell values from the underlying grouse density layer, weighted by the area of each cell 253 

within the circle. 254 

To determine whether the proportion of grouse in Buzzard diet varied between years (2011-255 

2013) and in relation to grouse density, we constructed GLMMs with binomial distributions and logit-256 

link functions. The response variable was grouse as a proportion of total identified prey at each 257 

Buzzard nest, or the proportion of pellets containing grouse in the case of pellet data. ‘Year’ was 258 

included as a factor, ‘local grouse density’ as a covariate, and ‘territory’ as a random effect to account 259 

for nests that were sampled within the same territory in successive years. An interaction term between 260 



year and local grouse density was included to explore whether the consumption rate of grouse varied 261 

between years. Separate models were constructed for each of the three diet assessment methods and 262 

significance determined with Wald statistics. Again, we checked for overdispersion and adjusted 263 

using an OLRE when necessary (Bates et al. 2012).  264 

 265 

RESULTS 266 

 267 

Demographic numerical response of Buzzards 268 

Within the three breeding seasons when demographic Buzzard data were collected, vole indices at the 269 

ten trapping locations varied almost 12-fold between years, from 0.6 in 2013 to 7.0 / 100 trap nights in 270 

2011 (F2,18 = 8.09, p = 0.003; Table 1). No variation in pre-breeding grouse density was detected (F2,54 271 

= 0.38, P = 0.686), but post-breeding density varied from 78 grouse/km2 in 2011, to 138 in 2013 (F2,54 272 

= 6.23, P = 0.004). Lagomorph density did not vary significantly between 2012 and 2013 (paired t11 = 273 

-0.29, P = 0.779). 274 

We found no demographic numerical response by Buzzards to fluctuations in prey abundance 275 

(Table 2). We detected no annual variations in either nearest neighbour distance (NND; F2,45 = 1.53, P 276 

= 0.227), or breeding success (Kruskal-Wallis rank-sum tests: all breeding attempts: H = 1.12, df = 2, 277 

P = 0.57; successful nests only: H = 0.16, df = 2, P = 0.92). 278 

Aggregative numerical response by Buzzards 279 

Following the crash in vole abundance in 2013, vole abundance rapidly increased to a peak in 2014 of 280 

5.5 (± 0.8) voles per 100 trap nights. During the three summers between 2012 and 2014, Buzzard 281 

foraging intensity within the observation blocks (sightings of Buzzards hunting per 100 scans) was 282 

three-times higher in 2014 when voles peaked compared to 2013 when voles crashed. Furthermore, 283 

Buzzard foraging intensity during the three winters between 2011/12 and 2013/14 was nine-times 284 

higher in 2013/14 when voles peaked compared to 2012/13 when voles crashed (Table 3). The 285 

number of sightings of Buzzards hunting during observations varied significantly between summers 286 

(χ2
2 = 12.73, P = 0.002) and winters (χ2

2 = 21.83, P < 0.001). In both summer and winter, Buzzard 287 

foraging intensity declined with increasing heather cover (Tables 4a & b). During winter, Buzzards 288 

foraged more in areas with greater pre-breeding grouse densities (χ2
1 = 6.72, P = 0.01; Fig. 1), and the 289 

relationship was best explained as a type 1 (linear) response (R2 = 0.18), compared to either a type 2 290 

(R2 = 0.06) or type 3 (R2 = 0.12) response. Spatial variation in vole abundance had no effect on winter 291 

Buzzard foraging, and spatial variation in the densities of grouse and voles was not related to summer 292 

Buzzard foraging patterns. 293 

 294 

Functional response of Buzzards 295 



As vole indices declined from 2011 to 2013, the proportion of voles provisioned to Buzzard chicks 296 

also declined (52 – 20% in cameras; 16 – 1% in remains; 51 – 31% in pellets; Table 5). Instead, 297 

Buzzards provisioned more ‘other small mammals’ (moles, shrews and mice), ‘other large birds’ 298 

(corvids, waders and pigeons) and lagomorphs. Diet breadth differed between years for camera 299 

images (F2,9 = 5.75, P = 0.025) and pellets (F2,15 = 6.58, P = 0.009), being greatest in 2013 when voles 300 

crashed, and although not significant, followed the same pattern when considering prey remains (F2, 15 301 

= 0.82, P = 0.460; Table 6). 302 

The proportion of grouse in Buzzard diet declined across years when considering prey 303 

remains (χ2
2 = 20.07, P < 0.001) and pellets (χ2

2 = 10.36, P = 0.006), but not for camera images (χ2
2 = 304 

3.50, P = 0.17). The spatial relationship between grouse density and grouse in Buzzard diet differed 305 

between years when considering prey remains data (χ2
2 = 7.01, P = 0.03), with more grouse consumed 306 

at Buzzard nests located in areas with higher grouse densities during the peak vole year of 2011 than 307 

in ones with lower grouse densities (χ2
1 = 15.39, P < 0.001; parameter estimate = 0.06 ± 0.01), but not 308 

in either of the other years, 2012 and 2013 (χ2
1 ≤ 2.23, P ≥ 0.13; Fig. 2). The relationship in 2011 most 309 

closely fitted a type 1 (linear) response (R2 = 0.33) compared to either a type 2 (R2 = 0.30) or type 3 310 

(R2 = 0.09 ) response, There was no relationship between grouse density and grouse in Buzzard diet 311 

using pellets (χ2
1 = 1.53, P = 0.22) or camera data (χ2

1 = 2.23, P = 0.13). 312 

DISCUSSION 313 

 314 

The impact of predation on prey populations largely depends on the numerical and functional 315 

responses of predators (Solomon 1949, Holling 1959a, b, 1965). In this study, we documented the 316 

demographic and aggregative numerical and functional responses of Common Buzzards, the most 317 

numerous avian predator on our study area. Our results showed that when vole abundance was 318 

reduced, Buzzard hunting intensity declined across our study area, and breeding Buzzards selected 319 

more prey typical of the enclosed farmland habitats on the moorland periphery, which appeared to 320 

result in a reduction in incidental predation on Red Grouse.  321 

Predation rates on incidental prey largely depend on the spatial distribution of prey. For 322 

example, Selås (2001) found that incidental predation of Adders Vipera berus by Buzzards increased 323 

during peak vole years, because Adders (also vole predators) were attracted to vole rich habitats in 324 

these years. Similarly, Kenward (1999) found that predation rates on released pheasants by Goshawks 325 

Accipiter gentilis were greater when rabbit abundance was higher. On the other hand, Mckinnon et al. 326 

(2013) found that incidental predation of shore-bird nests by Arctic Foxes Vulpes lagopus increased 327 

during years of low abundance of their preferred Lemming Lemmus trimucronatus prey, because 328 

foxes were then attracted to goose nests which were in close proximity to shore-bird nests. Studies 329 

showing that generalist predators increase their predation of grouse species when vole abundances are 330 

low (Reif et al. 2001, Tornberg et al. 2012, 2016) have often been conducted in comparatively 331 

homogenous landscapes (Zárybnická et al. 2015). Our study involved a heterogeneous landscape of 332 



heather and grass mosaics managed for grouse, surrounded by woodland and enclosed fields of 333 

improved grassland (Redpath & Thirgood 1997, Francksen et al. 2016). In this varied landscape, 334 

different prey groups are likely to be more patchily distributed. Furthermore, historical overgrazing by 335 

sheep has resulted in a heather-grass mosaic on our study area (Thirgood et al. 2003), which is likely 336 

to promote the spatial proximity or even coexistence of voles and grouse (Redpath & Thirgood 1997, 337 

Wheeler 2008). On the other hand, the enclosed fields on the moorland periphery, which are generally 338 

separated from the heather-moor by 1-2km on our study area, support higher abundances of 339 

alternative prey such as rabbits, moles, earthworms, corvids and pigeons (Glue 1967, Swann & 340 

Etheridge 1995, Redpath & Thirgood 1997). Here, Buzzards showed both an aggregate numerical and 341 

functional response to fewer voles by hunting away from the moor and, in doing so, by widening their 342 

diet breadth and selecting a greater range of alternative prey more typical of farmland habitats, 343 

thereby reducing their incidental predation on grouse. This was in direct contrast to our hypothesis 344 

that predation on grouse would decline when vole abundance was high, and contrasts with the 345 

findings of a number of studies conducted in Fennoscandia (Reif et al. 2001, Tornberg et al. 2012, 346 

2016). 347 

It is important to note that whilst all methods of diet assessment showed that Buzzards 348 

increased their selection of prey associated with farmland and moorland fringe habitats as vole 349 

abundance declined, a corresponding decrease in predation on Red Grouse was apparent only from 350 

prey remains and pellet data, and not from camera image data. All methods of diet assessment carry 351 

sources of inherent bias (Redpath et al. 2001, Francksen et al. 2016). For example, prey remains and 352 

pellets may overestimate larger and more conspicuous prey, while direct observations, such as with 353 

cameras, may miss prey that are relatively rarely selected or delivered to nests by raptors (Simmons et 354 

al. 1991, Sonerud 1992, Lewis et al. 2004). Indeed, in this study we found Red Grouse remains at 355 

Buzzard nests at which camera data recorded no grouse delivered.  Therefore, whilst we cannot be 356 

certain that our findings have not been affected by some of these inherent biases, a change in Buzzard 357 

diet was apparent across all methods whereby a greater proportion of total diet consisted of prey 358 

associated with farmland habitats found on the moorland fringe. 359 

On our study area, Hen Harriers Circus cyanaeus have shown a demographic numerical 360 

response of elevated breeding density in response to small mammal and passerine abundances, and 361 

were predicted to have more impact on grouse when these main prey abundances were high (Redpath 362 

& Thirgood 1999). However, we found no evidence of a demographic numerical response by 363 

Buzzards to vole abundance, symptomatic of the generalist nature of Buzzards that are able to switch 364 

to alternative prey to offset reductions in preferred prey, so that breeding performance is not affected 365 

(Reif et al. 2004). However, Buzzard foraging patterns indicated an aggregative numerical response 366 

(Baker & Brooks 1981, Smout et al. 2010, Mckinnon et al. 2013), whereby more were seen foraging 367 

on moorland observation blocks during a peak vole year, and that there was a general tendency for 368 

more Buzzard sightings where there was less heather cover. The absence of any relationship between 369 



spatial variations in vole abundance and Buzzard foraging patterns seemingly contradicts previous 370 

studies of Buteo species (Baker & Brooks 1981, Preston 1990). However, as Thirgood et al. (2003) 371 

concluded, the spatial scale at which we assessed raptor foraging may have been too coarse to detect 372 

spatial responses of Buzzards to variation in voles, which may occur at scales of 1-ha or less. 373 

The shape of the functional response curve is critical for assessment of predation impacts on 374 

prey (Korpimäki & Norrdahl 1991, Redpath & Thirgood 1999, Salamolard et al. 2000). Here, we 375 

found evidence from prey remains that Buzzards responded to grouse density in a linear fashion (i.e. a 376 

type 1 response), but only during a peak vole year. Seemingly, this was because Buzzards focused on 377 

important alternative prey groups occurring outside grouse habitats when vole abundance was low. 378 

Whilst prey remains can overestimate the occurrence of large birds in raptor diet (Redpath et al. 379 

2001a, Lewis et al. 2004), this bias is likely to be relatively constant between years (Francksen et al. 380 

2016). Our analyses of the functional curve shape were also unavoidably linked to the spread of 381 

grouse densities available to us on our study area. Indeed, a type 2 response was a worse fit for our 382 

data than a type 1 response, but only marginally so. This may indicate that Buzzard predation rates on 383 

Red Grouse would plateau at higher grouse densities. However, without measuring predation rates 384 

over the range of densities that grouse may reach on other moors,  density-dependent processes may 385 

not have been fully explored in this study (Redpath & Thirgood 1999). This remains an important area 386 

of future research. 387 

Responses of generalist predators and any effects these have on predation rates of prey will 388 

depend on a number of factors, including the range and juxtaposition of habitats and prey, and the 389 

relative profitability of prey resources (Redpath & Thirgood 1999, Smout et al. 2010, Mckinnon et al. 390 

2013). As such, predator responses may vary between locations with varying physical and biological 391 

conditions (Salamolard et al. 2000). Our study was conducted on an area of heather-moorland 392 

managed for potential Red Grouse shooting, which included control of generalist predators (i.e. foxes, 393 

mustelids and carrion crows; Ludwig et al. in press). Generalist predators can limit populations of 394 

both small mammals (Andersson & Erlinge 1977, Erlinge et al. 1983) and Red Grouse (Fletcher et al. 395 

2010, Ludwig et al. in press). Consequently, the reduced abundance of legally controllable generalist 396 

predators during this study (Ludwig et al. in press) may have influenced the nature of the responses of 397 

Buzzards that we documented here. Equally, our results may have also been influenced by habitat 398 

management measures aiming to increase heather cover (Ludwig et al. in press). Heather-dominated 399 

habitats provide inherently poorer conditions for voles compared to grass dominated habitats 400 

(Wheeler 2008), and whilst reducing sheep grazing can lead to increases in heather cover and a 401 

resulting decline in vole abundance on upland areas (Evans et al. 2006, Wheeler 2008) this may only 402 

be seen over a period of more than 10 years (see Smith et al. 2001 and references therein). On our 403 

study area, sheep numbers were reduced prior to the start of this study with the aim of stimulating 404 

heather recovery (Ludwig et al. in press). Other studies have found that, in the years immediately 405 

following reductions in grazing, vegetation height and vole abundances increase, before heather cover 406 



increases and vole abundance declines once more (Hill et al. 1992, Hope et al. 1996, Smith et al. 407 

2001). Therefore, it remains uncertain whether the responses of Buzzards we documented here would 408 

occur following any long-term recovery of heather. Clearly, there is a need for further study, over a 409 

greater time period than that studied here, to fully explore these predator-prey-habitat relationships.   410 

Our results may have implications for management efforts aimed at mitigating grouse losses 411 

to raptors. High mortality rates of Red Grouse chicks and breeding adults, predominately attributed to 412 

raptor predation, have been identified as an important factor in determining overall breeding success 413 

of grouse at Langholm since 2008 (Ludwig et al. in press). Although grouse formed a minor part of 414 

Buzzard diet, the response of Buzzards to fluctuating vole abundance may be indicative of the 415 

responses of other generalist predators (controlled or not). By maintaining habitats rich in preferred 416 

prey on the moorland periphery, or alternatively by making heather-moorland habitats less attractive 417 

by increasing heather cover, it may be possible to exploit the natural flexibility in the foraging 418 

behaviour of Buzzards and encourage them to forage away from Red Grouse habitats (Lõhmus 2003). 419 

Whilst reductions in sheep grazing may promote vole abundance in the short-term (Smith et al. 2001), 420 

over a longer time-period grazing reductions can promote heather recovery with the dual benefit to 421 

grouse managers of providing more habitat for grouse (Jenkins et al. 1963) and reducing vole 422 

abundance (Wheeler 2008), with an associated reduction in incidental predation from generalist 423 

predators.  424 

Here, we have provided some evidence that increased vole abundance may increase generalist 425 

predation on Red Grouse. However, it is important to note the short period of study, in which results 426 

from just one year can have a sizeable effect on conclusions. The true nature of the interactions 427 

between habitat, predators, and prey is likely to be more complex than those documented here. 428 

Improving our understanding of these responses will rely on further study over a greater time period, 429 

and at other sites with different habitat compositions and prey resources. The effect of predator 430 

responses and apparent competition between prey should be further investigated to explore how 431 

bottom-up and top-down processes may act together or in opposition (Smout et al. 2010). Our results 432 

suggest that, in an ideal world with unlimited funding, studies investigating predator-prey dynamics 433 

and their management should consider all resources and habitats available to predators. 434 
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Tables and Figures 581 

Table 1. Abundances of three Buzzard prey groups at Langholm Moor between 2011 - 2013. Note 582 

that densities are presented in different units. Red Grouse densities combine data from block counts 583 

and transects. Significant variations between years (P < 0.05) are highlighted in bold. Data are means 584 

± se. 585 

 2011 2012 2013 

Voles/100 trap nights (n=10) 7.0 ± 1.9 4.0 ± 1.0 0.6 ± 0.3 

Pre-breeding grouse/km2 (n=28) 46.9 + 5.4 48.7 + 4.9 49.8 + 4.3 

Post-breeding grouse/km2 (n=28) 77.5 + 9.7 94.6 + 12.0 138.3 + 17.5 

Rabbits/km (n = 12) N/A 8.0 ± 1.2 8.3 ± 1.9 

 586 

Table 2. Buzzard breeding density (nearest neighbour distance, NND) and breeding success at 587 

Langholm Moor between 2011 and 2013. No measures varied significantly between years. Data are 588 

means ± se for breeding density, or means ± sd for breeding success. 589 

 2011 2012 2013 

Breeding density (NND) (km) 1.61 ± 0.21 (n=15) 2.06 ± 0.23 (n=12) 1.62 ± 0.20 (n=21) 

Breeding success (chicks per breeding attempt) 1.56 ± 0.89 (n=16) 1.69 ± 0.79 (n=16) 1.39 ± 0.90 (n=26) 

Breeding success (chicks per successful nest) 1.79 ± 0.70 (n=14) 1.80 ± 0.68 (n=15) 1.71 ± 0.64 (n=21) 

 590 

Table 3. Indices of voles, Red Grouse and foraging Buzzards at Langholm Moor in three summers 591 

(2012 – 2014) and three winters (2011/12 – 2013/14). Values are means ± se. n = number of blocks. 592 

Vole and grouse densities were calculated from counts on all twelve blocks in each year. 593 

Summer 

 

2012 

(n=10) 

2013 

(n=12) 

2014 

(n=12) 

Voles / 100 trap nights 4.0 ± 1.0 0.6 ± 0.3 5.5 ± 0.8 

Post-breeding grouse km-2 67.2 ± 14.2 108.3 ± 23.0 103.8 ± 20.3 

Buzzards / 100 scans 7.89 ± 2.02 5.55 ± 2.00 15.69 ± 3.86 

Winter 

 

2011/12 

(n=9) 

2012/13 

(n=12) 

2013/14 

(n=12) 

Voles / 100 trap nights 4.0 ± 1.0 0.6 ± 0.3 5.5 ± 0.8 

Pre-breeding grouse km-2 33.8 ± 8.2 40.5 ± 7.0 67.8 ± 12.0 

Buzzards / 100 scans 7.18 ± 2.06 1.01 ± 0.29 9.29 ± 1.41 

 594 

  595 



Table 4. Relationships between the foraging patterns of Buzzards and measures of prey density and 596 

habitat composition in a) summer and b) winter. Habitat composition refers to the log-transformed 597 

ratio of heather moorland to grassland. Main effects were tested across the whole study (n = 3 years: 598 

2012 – 2014) or during each year separately when there was a significant interaction with year. Main 599 

effects were tested with interaction terms excluded. Parameter estimates were taken from a full model.  600 

a) Summer 601 

b) Winter 602 

 603 

  604 

 Interaction with year  Main effects 

 Χ2
2 P  Parameter 

estimate ± se 

Χ2 df P 

Year - -  - 12.73 2 0.002 

Post-breeding grouse 1.53 0.46  0.01 ± 0.01 1.23 1 0.27 

Vole index 1.98 0.37  -0.02 ± 0.06 0.08 1 0.77 

Habitat composition  6.06 0.04 2012 -0.14 ± 0.06 6.22 1 0.01 

   2013 -0.30 ± 0.08 12.80 1 <0.001 

   2014 -0.12 ± 0.11 1.13 1 0.29 

 Interaction with year  Main effects 

 Χ2
2 P  Parameter 

estimate ± se 

Χ2 df P 

Year - -  - 21.83 2 <0.001 

Pre-breeding grouse 0.96 0.62  0.06 ± 0.02 6.72 1 0.01 

Vole index 2.57 0.28  0.03 ± 0.07 0.20 1 0.65 

Habitat composition  7.31 0.03 2011/12 -0.36 ± 0.11 11.20 1 <0.001 

   2012/13 -0.18 ± 0.06 6.26 1 0.01 

   2013/14 -0.07 ± 0.08 0.79 1 0.37 



Table 5. Prey composition (%) delivered to Buzzard nests determined by three different methods. 605 

Data are pooled across nests within each of three years. Unidentified prey in camera images (n = 136) 606 

were removed. 607 
  Camera images  Prey remains  Pellets 

  2011 2012 2013  2011 2012 2013  2011 2012 2013 

n (Identified prey items) 249 266 354  160 169 335  128 141 386 

n (nests sampled) 11 10 11  15 13 18  15 13 18 

Small mammals            

Field Vole 52.2 40.2 20.1  15.6 5.9 0.9  50.8 38.3 30.6 

Mole 9.2 10.5 11.3  1.9 3.0 5.4     

Other small mammals 5.2 9.4 22.3  1.3 3.6 0.9  7.0 12.8 14.5 

Large mammals            

Lagomorph spp. 4.8 1.5 8.2  20.6 21.9 28.4  3.1 10.6 17.9 

Other large mammals 4.4 4.9 2.0  1.9 0.0 0.6     

Small passerines 10.8 7.5 11.6  15.6 17.8 14.0  6.3 9.2 9.6 

Large birds            

Red Grouse 0.0 2.6 0.8  11.9 5.3 2.1  4.7 2.8 2.3 

Pheasant 2.0 0.8 0.8  15.0 17.2 17.9  1.6 0.7 2.3 

Other large birds 0.0 1.9 5.1  9.4 15.4 21.8  2.3 2.8 3.1 

Other prey            

Invertebrates 0.8 0.8 0.3  5.6 1.8 3.6  22.7 22.0 19.2 

Amphibians and reptiles  10.4 19.9 17.5  1.3 8.3 4.5  1.6 0.7 0.5 

 608 

Table 6. Average diet breadth (Levins’ Index ± se) calculated from prey at Buzzard nests in each of 609 

three years using three methods of assessment; camera images n = 32 nests; prey remains n = 46; 610 

pellets n = 46). Significant variation between years highlighted in bold (see text). 611 

 2011 2012 2013 

Camera images 3.24 ± 0.19 3.64 ± 0.39 4.72 ± 0.31 

Prey remains 3.65 ± 0.29 4.27 ± 0.41 4.39 ± 0.27 

Pellets 3.29 ± 0.15 3.81 ± 0.23 4.11 ± 0.19 
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