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Abstract

This investigation is concerned with the stagnation-point flow of nanofluid past an exponentially stretching sheet. The
presence of Brownian motion and thermophoretic effects yields a coupled nonlinear boundary-value problem (BVP).
Similarity transformations are invoked to reduce the partial differential equations into ordinary ones. Local similarity
solutions are obtained by homotopy analysis method (HAM), which enables us to investigate the effects of parameters at a
fixed location above the sheet. The numerical solutions are also derived using the built-in solver bvp4c of the software
MATLAB. The results indicate that temperature and the thermal boundary layer thickness appreciably increase when the
Brownian motion and thermophoresis effects are strengthened. Moreover the nanoparticles volume fraction is found to
increase when the thermophoretic effect intensifies.
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Introduction

There has been great interest of researchers in the flow and heat

transfer characteristics due to the impulsive motion of stretching

sheet. A variety of technical processes involve the production of

sheeting material which includes both metal and polymer sheets.

The rate of heat transfer at the sheet is largely dependent on the

quality of final product.

Flow past a flat plate with a uniform free stream was reported by

Blasius [1]. In contrast to the Blasius problem, the boundary layer

flow over a continuously moving plate in a quiescent ambient fluid

was explored by Sakiadis [2]. Crane [3] extended this concept for

a sheet which is stretched with the velocity linearly proportional to

the distance from the origin. Since this pioneering work of Crane

[3], the literature concerning the boundary layer flows past a

stretching sheet has been in continuous growing. In fact Crane’s

problem has been considered for several other features such as

viscoelasticity, heat and mass transfer, porosity, magnetic field etc.

(see Rajagopal et al. [4], Mahapatra and Gupta [5], Cortell [6],

Bachok et al. [7], Abbasbandy and Ghehsareh [8], Fang et al. [9],

Hayat et al. [10], Mustafa et al. [11,12] etc.). On the other hand, a

literature survey witnesses that the flow analysis over an

exponentially stretching sheet has been scarcely presented.

Combined heat and mass transfer in the boundary layer flow

over an exponentially stretching sheet has been reported by

Magyari and Keller [13]. Suction and heat transfer characteristics

in the exponentially stretched flow has been studied by Elbashbe-

shy [14]. Viscoelastic effects in the flow over an exponentially

stretching sheet have been described by Khan and Sanjayanand

[15]. Analytic solutions for flow and heat transfer over an

exponentially stretching sheet have been provided by Sajid and

Hayat [16]. Nadeem et al. [17] examined the flow and heat

transfer of viscoelastic (second grade) fluid over an exponentially

sheet in the presence of thermal radiation.

Nanofluid is a liquid suspended with nanometer-sized particles

(diameter less than 50 nm) called nanoparticles. These nanopar-

ticles are typically made of metals, oxides and carbides or carbon

nanotubes. In the past, the concept of nanofluids has been used as

a route to enhance the performance of heat transfer rate in liquids.

Detailed review studies on nanofluids have been conducted by

Daungthongsuk and Wongwises [18], Wang and Mujumdar

[19,20] and Kakaç and Pramuanjaroenkij [21]. Natural convec-

tive boundary layer flow of nanofluid past a vertical flat plate has

been studied by Kuznetsov and Nield [22]. The Cheng-Mincowcz

problem for flow of nanofluid embedded in a porous medium has

been considered by Nield and Kuznetsov [23]. Bachok et al. [24]

examined the flow of nanofluid over a continuously moving

surface with a parallel free stream. Flow of nanofluid over a

linearly stretching sheet has been studied by Khan and Pop [25].

Finite element analysis for flow of nanofluid over a nonlinearly

stretching sheet is presented by Rana and Bhargava [26]. Falkner-

skan problem for flow of nanofluid with with prescribed surface

heat flux is investigated by Yacob et al. [27]. Makinde and Aziz

[28] discussed the effect of convective boundary conditions on the

PLOS ONE | www.plosone.org 1 May 2013 | Volume 8 | Issue 5 | e61859



flow of nanofluid over a stretching sheet. Analytic solutions for

stagnation-point flow of nanofluid over a linearly stretching sheet

are obtained by Mustafa et al. [29].

It is noticed that flow of nanofluid over an exponentially

stretching sheet is never reported in the literature. Thus current

work presents a theoretical study on the stagnation-point flow of

nanofluid over an exponentially stretching sheet. The series

expressions of velocity, temperature and nanoparticles concentra-

tion are developed by homotopy analysis method (HAM)

developed by Liao [30]. This method is successfully applied to

derive analytic solutions of variety of nonlinear problems [30–35].

The numerical solutions are obtained by the software MATLAB.

Graphical results for various values of the parameters are

presented to gain thorough insight towards the physics of the

problem. The numerical values of reduced Nusselt number and

reduced Sherwood number for different values of the parameters

are also tabulated.

Mathematical Formulation

We investigate the laminar boundary layer flow of a nanofluid

in the region of stagnation-point towards an exponentially

stretching sheet situated at y~0. The x{ and y{ axis are taken

along and perpendicular to the sheet and the flow is confined to

y§0. The effects of Brownian motion and thermophoresis are also

accounted. Uw(x)~a exp(x=l) denotes the velocity of the sheet

while the velocity of the external flow is U?(x)~b exp(x=l). Let

Tw~T?zc exp(x=l) and Cw~C?zd exp(x=l) be the temper-

ature and nanoparticles concentration at the sheet where T? and

C? denote the ambient temperature and concentration respec-

tively. The boundary layer equations governing the conservation

of mass, momentum, energy and nanoparticles volume fraction

are (see Kuznetsov and Nield [22], Nield and Kuznetsov [23],

Bachok et al. [24], Khan and Pop [25], Rana and Bhargava [26],

Yacob et al. [27], Makinde and Aziz [28] and Mustafa et al. [29])
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With the boundary conditions

u~Uw(x)~aex=L, v~0, T~Tw(x), C~Cw(x) at y~0,

u?Ue(x)~bex=L, T?T?, C?C? as y??:
ð6Þ

Where u and v are the velocity components along x- and y-

directions respectively, nf is the kinematic viscosity, a is the

thermal diffusivity, DB is the Brownian motion coefficient, DT is

the thermophoretic diffusion coefficient and t(~ rcð Þp= rcð Þf ) is

the ratio of effective heat capacity of the nanoparticle material to

heat capacity of the fluid.

We introduce

g~
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Inserting Eq. (7) into Eqs. (2)–(5) yield the following ordinary

differential equations

f ’’’zff ’’{2f ’2z2l2~0, ð8Þ
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Here l is the velocity ratio, Pr is the Prandtl number, Le is the

Lewis number, Nb is the Brownian motion parameter and Nt is

the thermophoresis parameter. It is clear that x{coordinate can

not be eliminated from Eqs. (9) and (10) because Nb and Nt are

functions of x. Thus we look for the availability of local similarity

solutions which permits us to investigate the behaviors of these

parameters at a fixed location above the sheet. Nb~0 corresponds

to the case when there is no thermal transport generated by the

nanoparticles concentration gradients.

The skin friction coefficient Cf , the local Nusselt number Nu

and the local Sherwood number Sh are given by

Cf ~

m
Lu

Ly

� �
y~0

rU2
w

,Nu~{

x
LT

Ly

� �
y~0
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,Sh~{

x
LC

Ly

� �
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Using (7) in (13) one obtains

ffiffiffiffiffiffiffiffi
2Re
p

Cf ~f 00(0),

ffiffiffiffiffiffi
2L

x

r
Nu=Re1=2

x ~{h0(0)~Nur,

ffiffiffiffiffiffi
2L

x

r
Sh=Re1=2

x ~{q0(0)~Shr:

ð14Þ

where Re~UwL=nf is the Reynolds number and Rex~Uwx=nf

denotes the local Reynolds number.
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Methods of Solution

3.1 Homotopy analytic solution
Rule of solution expression and the involved boundary

conditions direct us to choose the following initial guesses f0, h0

and w0 of f (g),h(g) and w(g)

f0(g)~lgz(1{l) 1{exp({g)ð Þ, h0(g)~w0(g)~exp({g),ð15Þ

The auxiliary linear operators are chosen as

Lf :
d3

dg3
{

d

dg
, Lh:

d2

dg2
{1, Lw(w):

d2

dg2
{1: ð16Þ

If q[0,1� denotes the embedding parameter and B is the non-

zero auxiliary parameter then the generalized homotopic equa-

tions are constructed as follows:
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1{qð ÞLw W g,qð Þ{w0 gð Þ½ �~qBN w F (g,q),H(g,q),W g,qð Þ½ �, ð19Þ
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Using Maclaurin’s series about q
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Lqm

����
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, ð28Þ

the final solutions are retrieved at q~1. The functions fm,hm and

wm can be obtained from the deformation of Eqs. (17)–(22).

Explicitly the deformation problems corresponding to Eqs. (17)–

(22) are

Lf fm gð Þ{xmfm{1 gð Þ½ �~BRf
m gð Þ, ð29Þ

Lh hm gð Þ{xmhm{1 gð Þ½ �~BRh
m gð Þ, ð30Þ

Lw wm gð Þ{xmwm{1 gð Þ½ �~BRw
m gð Þ, ð31Þ

fm(0)~0,f ’m(0)~0,f ’m(?)~0, hm(0)~0, hm(?)~0, and

wm(0)~0, wm(?)~0, ð32Þ

Rf
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f 000m{1z
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fm{1{kf 00k {2f 0m{1{kf 0k
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Rq
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Eqs. (29)–(36) can be easily solved by using the symbolic

computation software Mathematica for m~1,2,3::::
3.1.1 Error analysis and convergence of the homotopy

solutions. The auxiliary parameter B in Eqs. (26)–(28) has a key

role in the convergence of HAM solutions (see Liao [30]). To select

appropriate value of B we have displayed the so-called B{curves

at 15th-order of approximations for different values of parameter l
in Figs. 1, 2, and 3. Here the valid range of B can be obtained from

the flat portion of B{curves. The interval of convergence for

l~1=2 is ½{0:5,{0:2�. Further range of B shrinks as we increase

the values of l. To see the accuracy of solutions we define the

averaged residuals (see Ref. [36] for details) for the functions f ,h
and w as

Em,1(B)~
1

L

XK

i~0

N f

Xm

j~0

fj iDxð Þ
 !" #2

, ð37Þ
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L
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N w
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wj iDxð Þ
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, ð39Þ

where Dx~10=L and L~20. The averaged residual errors Em,1,

Em,2 and Em,3 have been plotted versus B for some fixed values of

parameters in Figs. 4, 5, and 6. From these figures we can obtain

the best possible value of convergence-control parameter by

calculating the minimum values of Em,1, Em,2 and Em,3.

3.2 Numerical method
Eqs. (8)–(10) subject to the boundary conditions (11) have been

solved numerically by using the built in function bvp4c of the

software MATLAB. This software uses the higher order finite

difference code that implements a collocation formula (see

Shampine et al. [37] for more details). It will be seen shortly

that numerical solutions are in a very good agreement with the

homotopy solutions for all the values of the embedding param-

eters.

Numerical Results and Discussion

The representative results for velocity, temperature and

nanoparticles concentration are provided graphically and in

tabular form. There is a considerable increase in the velocity with

an increase in velocity ratio l for some fixed values of parameters

(see Fig. 7). It is evident from this figure that when lw1, the

thickness of the boundary layer decreases with the increase in l.

Here the straining motion near the stagnation region increases so

the acceleration of the external stream increases which causes a

reduction in the boundary layer thickness and as a consequence

Figure 1. h,curves for the function f.
doi:10.1371/journal.pone.0061859.g001

Figure 2. h ,curves for the function h.
doi:10.1371/journal.pone.0061859.g002

Figure 3. h ,curves for the function w.
doi:10.1371/journal.pone.0061859.g003
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the horizontal velocity increases. On the other hand, when lv1,

the flow has an inverted boundary layer structure. Here the sheet

velocity Uw(x) exceeds the velocity of external stream U?(x). It is

also noticed that boundary layer is not formed when l~1. Fig. 8 is

plotted to perceive the effects of Brownian motion and thermo-

phoresis parameters on the temperature. There is a substantial

increase in the temperature and the thermal boundary layer

thickness with an increase in Nb and Nt. The growth in the

thermal boundary layer thickness is compensated with smaller rate

of heat transfer at the sheet. Fig. 9 portrays the behavior of Prandtl

number Pr on the temperature h. An increase in Pr rapidly shifts

the profiles towards the boundary causing a diminution in the

thickness of thermal boundary layer. A bigger Prandtl number has

a relatively lower thermal diffusivity. Thus an increase in Pr
reduces conduction and thereby increases the variation in the

thermal characteristics. As expected, the variation in the

temperature is more pronounced for smaller values of Pr than

its larger values. Fig. 10 depicts the effect of velocity ratio l on the

temperature h. The temperature and the thermal boundary layer

thickness decrease with an increase in l. Fig. 11 plots the

concentration function versus g for different values of the

Brownian motion parameter Nb. Here unlike the temperature h,

concentration boundary layer reduces as Nb increases which

thereby enhances the nanoparticles concentration at the sheet.

Further we noticed that concentration w is only affected for the

values of Nb in the range 0vNbƒ2. The influence of

thermophoresis parameter Nt on the concentration boundary

layer is noticed in Fig. 12. An abnormal increase in the

concentration w is found for a weaker Brownian motion (Nb~0:2).

In fact an over shoot in the concentration function occurs as we

gradually increase Nt. On the other hand, when the effect of

Brownian motion is increased i.e Nb changes from 0:2 to 1, there

is a little increase in the concentration w with an increase in Nt.

This outcome is attributed to the fact that an increase in Nt
Figure 5. Averaged residual error for the function h.
doi:10.1371/journal.pone.0061859.g005

Figure 6. Averaged residual error for the function w.
doi:10.1371/journal.pone.0061859.g006

Figure 7. Influence of l on f ’ gð Þ.
doi:10.1371/journal.pone.0061859.g007

Figure 8. Influence of Nb and Nt on h gð Þ.
doi:10.1371/journal.pone.0061859.g008

Figure 4. Averaged residual error for the function f.
doi:10.1371/journal.pone.0061859.g004
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appreciably enhances the mass flux due to temperature gradient

which in turn rises the nanoparticles concentration. The behavior

of Lewis number Le on the concentration field w is presented in

Fig. 13. As Le gradually increases, this corresponds to a weaker

molecular diffusivity and thinner concentration boundary layer. In

accordance with [27] the variation in w with Le is prominent neat

the stretching wall. Fig. 14 shows that the influence of l on the

nanoparticles concentration w is virtually similar to that accounted

for the temperature h.

Reduced Nusselt number Nur~({h
0
(0)) for different values of

Nb is plotted versus Nt in the Fig. 15. It is observed that for a

weaker thermophoretic effect, there is a significant decrease in the

rate of heat transfer at the sheet with an increase in Nb. However

when the strength of thermophoretic is increased i.e Nb changes

from 0:1 to 2 the absolute decrease in Nur with an increase in Nt
is negligible. This reduction actually occurs due to the excessive

movement of nanoparticles from the stretching wall to the

quiescent fluid. Fig. 16 shows the simultaneous effects of Nb and

Nt on the reduced sherwood number Shr. There is a slight

increase in Shr with an increase in Nb when the thermophoretic

effect is weak. However this increase is significant when the

thermophoretic effect intensifies. The variations of Nur and Shr
with the velocity ratio l is sketched in the Figs. 17 and 18. The

Figure 9. Influence of Pr on h gð Þ.
doi:10.1371/journal.pone.0061859.g009

Figure 10. Influence of l on h gð Þ.
doi:10.1371/journal.pone.0061859.g010

Figure 11. Influence of Nb on w gð Þ.
doi:10.1371/journal.pone.0061859.g011

Figure 12. Influence of Nt on w gð Þ.
doi:10.1371/journal.pone.0061859.g012

Figure 13. Influence of Le on w gð Þ.
doi:10.1371/journal.pone.0061859.g013

Flow of Nanofluid over a Moving Surface
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Figure 14. Influence of l on w gð Þ.
doi:10.1371/journal.pone.0061859.g014

Figure 15. Influence of Nb and Nt on Nur.
doi:10.1371/journal.pone.0061859.g015

Figure 16. Influence of Nb and Nt on Shr.
doi:10.1371/journal.pone.0061859.g016

Figure 17. Influence of l and Pr on Nur.
doi:10.1371/journal.pone.0061859.g017

Figure 18. Influence of l and Le on Shr.
doi:10.1371/journal.pone.0061859.g018

Table 1. Numerical values of skin friction coefficient f ’’(0) for
different values of velocity ratio parameter l.

l
ffiffiffiffiffiffiffiffiffi
2Re
p

Cf ~f 99(0)

HAM Numerical

0 21.281809 21.281810

0:1 21.253580 21.253580

0:2 21.195118 21.195120

0:5 20.879833 20.879835

0:8 20.397767 20.397771

1:2 0.451568 0.451571

doi:10.1371/journal.pone.0061859.t001
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dimensionless heat and mass transfer rates at the sheet increase

when l is increased. In Table 1 the dimensionless velocity gradient

on the sheet is approximated for various values of l. We observed

that skin friction coefficient is reduced by assuming sufficiently

large values of l. The numerical values of Nur and Shr
corresponding to different values of Pr and Le have been given

in Table 2. It is clear from this table that numerical and analytical

solutions are in a very good agreement. We noticed earlier that

increase in Pr and Le reduce the thermal boundary layer thickness

and curves become steeper. The reduced Nusselt and Sherwood

numbers, being proportional to the corresponding initial slopes,

increase with an increase in Pr and Le respectively.

Conclusions

Flow of nanofluid in the region of stagnation-point towards an

exponentially stretching sheet is studied. The developed mathematical

problems have been solved for series solutions. A very good averaged

residual error of about 10{10 is achieved at only 15th-order of

approximations in nearly all the cases. The numerical solutions are

computed by the built-in solver bvp4c of the software MATLAB.

Analytic and numerical solutions are found in excellent agreement for

all the values of embedding parameters. It is observed that the velocity

ratio l has a dual behavior on the momentum boundary layer. An

increase in the strengths of Brownian motion and thermophoretic effects

causes an appreciable increase in the temperature and the thermal

boundary layer thickness. The current analysis for the case of regular

fluid, which is not yet reported can be obtained by setting Nb~Nt~0.
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21. Kakaç S, Pramuanjaroenkij A (2009) Review of convective heat transfer

enhancement with nanofluids. Int J Heat Mass Transfer 52: 3187–3196.

22. Kuznetsov AV, Nield DA (2010) Natural convective boundary-layer flow of a

nanofluid past a vertical plate. Int J Thermal Sci 49: 243–247.

23. Nield DA, Kuznetsov AV (2009) The Cheng–Minkowycz problem for natural

convective boundary-layer flow in a porous medium saturated by a nanofluid.

Int J Heat Mass Transfer 52: 5792–5795.

24. Bachok N, Ishak A, Pop I (2010) Boundary-layer flow of nanofluids over a

moving surface in a flowing fluid. Int J Therm Sci 49: 1663–1668.

25. Khan WA, Pop I (2010) Boundary-layer flow of a nanofluid past a stretching

sheet. Int J Heat Mass Transfer 53: 2477–2483.

26. Rana P, Bhargava R (2012) Flow and heat transfer of a nanofluid over a

nonlinearly stretching sheet: A numerical study. Comm Nonlinear Sci Num

Simul 17: 212–226.

27. Makinde OD, Aziz A (2011) Boundary layer flow of a nanofluid past a stretching

sheet with a convective boundary condition. Int J Therm Sci 50: 1326–1332.

28. Yacob NA, Ishak A, Nazar R, Pop I (2011) Falkner.Skan problem for a static

and moving wedge with prescribed surface heat flux in a nanofluid. Int Comm

Heat Mass Transfer 38: 149–153.

Table 2. Numerical values of Nur and Shr for different values of Pr and Le when l~0:2, Nb~Nt~0:1 and B~{0:7.

Pr Le Nur = 2h9(0) Shr = 2w9(0)

HAM Numerical HAM Numerical

0.4 1 0.74994 0.74994 0.97397 0.97399

0.7 1.03426 1.03430 0.77875 0.77875

1.0 1.26024 1.26020 0.61269 0.61269

1.2 1.39072 1.39070 0.51328 0.51328

1.0 0.4 1.28094 1.28090 20:11720 20.11720

0.7 1.26862 1.26860 0.29218 0.29218

1.2 1.25588 1.25590 0.79694 0.76965

1.5 1.25052 1.25050 1.04315 1.04320

doi:10.1371/journal.pone.0061859.t002

Flow of Nanofluid over a Moving Surface

PLOS ONE | www.plosone.org 8 May 2013 | Volume 8 | Issue 5 | e61859



29. Mustafa M, Hayat T, Pop I, Asghar S, Obaidat S (2011) Stagnation-point flow

of a nanofluid towards a stretching sheet. Int J Heat Mass Transfer 54: 5588–
5594.

30. Liao SJ (2009) Notes on the homotopy analysis method: Some definitions and

theorems. Comm Non-linear Sci Num Simul 14: 983–997.
31. Liao SJ (2010) On the relationship between the homotopy analysis method and

Euler transform. Comm Nonlinear Sci Numer Simul 15: 1421–1431:
32. Abbasbandy S, Shirzadi A (2011) A new application of the homotopy analysis

method: Solving the Sturm–Liouville problems. Comm Nonlinear Sci Num

Simul 16: 112–126.
33. Mustafa M, Hayat T, Obaidat S (2012) On heat and mass transfer in the

unsteady squeezing flow between parallel plates. Mecc 47: 1581–1589.

34. Hayat T, Mustafa M, Asghar S (2010) Unsteady flow with heat and mass

transfer of a third grade fluid over a stretching surface in the presence of

chemical reaction. Non-Linear Anal RWA 11: 3186–3197.

35. Rashidi MM, Pour SAM, Abbasbandy S (2011) Analytic approximate solutions

for heat transfer of a micropolar fluid through a porous medium with radiation.

Comm Nonlinear Sci Num Simul 16: 1874–1889.

36. Liao S (2010) An optimal homotopy-analysis approach for strongly nonlinear

differential equations. Comm Nonlinear Sci Num Simul 15: 2003–2016.

37. Shampine LF, Kierzenka J, Reichelt MW (2003) Solving boundary value

problems for ordinary differential equations in MATLAB with bvp4cTutorial

Notes. Available at http://www.mathworks.com/bvp_tutorial.

Flow of Nanofluid over a Moving Surface

PLOS ONE | www.plosone.org 9 May 2013 | Volume 8 | Issue 5 | e61859


