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case 162, 13397 Marseille Cedex 20, France

Abstract—In this work, we study a novel type of optical waveguide,
whose properties derive from a periodic arrangement of fibers (not
necessarily circular), and from a central structural defect along which
the light is guided. We first look for propagating modes in photonic
crystal fibers of high index core region which can be single mode
at any wavelength [1–4]. Unlike the first type of photonic crystal
fibers, whose properties derive from a high effective index, there
exists some fundamentally different type of novel optical waveguides
which consist in localizing the guided modes in air regions [4–5].
These propagating modes are localized in a low-index structural defect
thanks to a photonic bandgap guidance for the resonant frequencies
(coming from the photonic crystal cladding). We achieve numerical
computations with the help of a new finite element formulation for
spectral problems arising in the determination of propagating modes
in dielectric waveguides and particularly in optical fibers [7]. The
originality of the paper lies in the fact that we take into account both
the boundness of the crystal (no Bloch wave expansion or periodicity
boundary conditions) and the unboundness of the problem (no artificial
boundary conditions at finite distance). We are thus led to an
unbounded operator (open guide operator) and we must pay a special
attention to its theoretical study before its numerical treatment. For
this, we choose the magnetic field as the variable. It involves both
a transverse field in the section of the guide and a longitudinal field
along its axis. The section of the guide is meshed with triangles and
Whitney finite elements are used, i.e., edge elements for the transverse
field and node elements for the longitudinal field. To deal with the
open problem, a judicious choice of coordinate transformation allows
the finite element modeling of the infinite exterior domain. It is to
be noticed that the discretization of the open guide operator leads
to a generalized eigenvalue problem, solved thanks to the Lanczos
algorithm. The code is validated by a numerical study of the classical
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cylindrical fiber for which the eigenmodes are known in closed form.
We then apply the code to Low Index Photonic Crystal Fibers (LPCF)
and to High Index Photonic Crystal Fibers (HPCF).
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1. INTRODUCTION

Optical fibers and integrated optical waveguides are today finding
wide use in areas covering telecommunications, sensor technology,
spectroscopy, and medicine. As was experimentally shown by Russell
and co-workers [1–5], a special class of components incorporating
photonic crystals can propagate light in a low index medium or be
monomode at all wavelengths in a high index defect. More precisely,
they fashioned a dielectric waveguide with a two-dimensional periodic
variation in the plane perpendicular to the fiber axis, and an invariant
structure along it. One application of such materials is a type of
optical waveguide where light is confined by surrounding it with a
band gap material. The photonic band gap effect (PBG) may be
achieved in periodically structured materials having a periodicity on
the scale of the optical wavelength: this is the well-known ability of
photonic crystals to inhibit the propagation of photons with well-
defined frequencies which has a close analogy with the electronic
properties of semiconductors. Therefore, two-dimensional periodic
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structures in the form of long, fine silica fibers that have a regular
array of tiny air holes running down their length [1–5] constitute two-
dimensional photonic crystals with lattice constants of the order of
micrometers. In the sequel, we will refer to such structures as photonic
crystal fibers (PCF). These microstructure fibers have recently been
used to form both endlessly single-mode crystal fibers based on total
internal reflection thanks to a high defect index core and the crystal
cladding, lossless crystal fibers based on light confinement in a low
defect index core by PBG effect. The first type of PCF is a glass
fiber with a regular array of holes running down its length: we will
call it in the sequel High Photonic Crystal Fiber (HPCF). A single
missing hole in the array forms a region which effectively has a higher
refractive index than the surrounding photonic crystal. This acts as a
waveguide core in which light can become trapped, forming a guided
mode. Russell et al [1–5] have experimentally demonstrated a single-
mode operation in such waveguides in a wavelength range from 337
nm to 1550 nm. Furthermore, it can be theoretically predicted that
this type of PCF remains monomode even for very short wavelengths
using the effective index model of Russell et al [1]. The first step is to
note that in a standard step-index fiber with core radius r and core and
cladding indices nco and ncl, the number of guided modes is determined
by the V value [16]:

V =
2πr

λ

√

n2
co − n2

cl,

which must be less than 2.405 for the fiber to be single mode at
optical wavelengths. Thus, single-mode fibers are in fact multimode
for light of sufficiently short wavelength (with respect to the radius r
of the cavities). Russell et al [1] then propose an explanation for the
monomode property of PCF based on the effective refractive index of
the cladding. They find an empirical rule which determines whether
the fiber is single mode or not:

Veff =
2πd

λ

√

n2
0 − n2

eff ,

where d denotes the center-center spacing between holes, n0 is the
index of silica and

neff =
γeffλ

2π
,

γeff being the maximum propagation constant γ allowed in the
cladding. Veff is then calculated by solving the scalar wave equation
within a unit cell centered on one of the holes. Furthermore, they
noted that for small λ, the scalar wave equation gives:

Λ2∆tF + V 2
effF = 0,
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where F stands for the electromagnetic field of the crystal in silica
regions and ∆t is the transverse part of the Laplacian. When λ tends
towards zero, the field F is excluded from the low index air holes and
is confined to the silica region bounded by the edges of the holes.
For a given ratio of hole size to Λ, the field is therefore an invariant
function of normalized transverse coordinates x

Λ and y
Λ in the short

wavelength limit. The previous equation then implies that Veff is finite
and independent of λ and Λ under these conditions. This situation
contrasts with that for the step index fiber, for which V tends to
infinity as λ tends to zero. Russell and co-workers then conclude that
the limiting value of Veff depends on the relative size of the holes, but
a sufficiently small value of λ compared to the radius r of the holes
guarantees single-mode operation for all wavelengths λ and scales Λ.

The second type of PCF is certainly the more surprising one, since
it enables light propagation in a low index structural defect thanks to
the PBG effect: we will call it in the sequel Low Photonic Crystal
Fiber (LPCF). Its properties have been studied both theoretically and
experimentally in honeycomb photonic crystal fibers made of around
one hundred rods. For the numerical determination of the defect
modes, Broeng et al [4] employed a super-cell enhancement of the
plane-wave method (the basic cell contains the overall guide to take
into account the defect). Let us recall that for a single mode, the full-
vector wave equation of the magnetic field Hk may be obtained from
Maxwell’s equations and expressed as follows:

curl
1

εr
curlHk = −ω

2

c2
Hk,

where k represents the wave propagation vector of the mode and εr is
the relative permittivity of the periodic structure. Taking advantage of
the periodic nature of thc problem, the magnetic field may be expanded
into a sum of plane waves using the Floquet-Bloch’s theorem as follows:

Hk =
∑

G

hk−Ge
−i(k−G)·r,

where G represents a lattice vector in reciprocal space, describing
the periodic structure. The dielectric constant may be expressed as
a Fourier series expansion to obtain:

1

εr
=

∑

G

VGe
iG·r,
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where VG denotes the following Fourier coefficients of 1
εr
:

VG =
1

meas(Y )

∫

Y

1

εr
e−iG·rdr.

In this equation, Y denotes the smallest basic cell that may be used to
represent the cross-section of the guide to be periodized (and meas(Y )
the measure of Y , i.e., the area of Y in 2D and its volume in 3D).
Therefore, a matrix generalized eigenvalue problem is obtained, where,
for a fixed wave vector k, the frequencies ω of the allowed modes in
the periodic structures are found as complex eigenvalues.

The main drawback of this method is that it is necessary to
suppose a priori that the finite size of the crystal cladding has no
influence on the propagating modes, which is far from being obvious.
We will see in the sequel that such an assumption could lead to
unphysical solutions: the bounded cross-section of the PCF induces
a discrete spectrum which corresponds to propagating modes and the
exterior of the photonic guide induces a continuous spectrum (non-
propagating modes). Therefore, one question naturally arises: how
can we make a distinction between physical modes which belong to
the discrete spectrum and that of the continuous one if we consider
the operator associated to the Bloch-wave decomposition?

In this study, we try to give both theoretical and numerical
elements to answer this question. To be complete, we must add that
our modelling allows us only to observe non-dissipative modes: we
therefore have numerical access to the first type of PCF (HPCF).
Concerning the second type (LPCF), we outline an alternative ap-
proach to that of Broeng et al: although this numerical study is not
yet achieved, we explain our battle plan to find such leaky modes.

2. SETUP OF THE PROBLEM

We consider a dielectric waveguide of constant section Ω, invariant
along the z axis and whose permittivity profile ε is supposed to be
a known function (e.g., a piecewise constant function to modelize a
photonic crystal fiber). We are looking for electromagnetic fields (E ,H)
solutions of the following Maxwell equations:











curlH = ε
∂E
∂t

curl E = −µ0
∂H
∂t

(1)

µ0 being the permeability of vacuum.
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Furthermore, choosing a time dependence in e−iωt, and taking
into account the invariance of the guide along its z axis, we define
time-harmonic two-dimensional electric and magnetic fields E and H
by:

{

E(x, y, z, t) = ℜ(E(x, y)e−i(ωt−γz))

H(x, y, z, t) = ℜ(H(x, y)e−i(ωt−γz))
(2)

If [L2(R2)]3 denotes the Hilbert space of square integrable func-
tions on R

2 with values in C
3, we say that (E,H) is a guided mode

when:














(γ, ω) ∈ R
2
+

(E,H) �= (0,0)

E,H ∈ [L2(R2)]3

where ω is the angular frequency in the vacuum and γ denotes the
propagating constant of the guided mode.

For (E,H) satisfying (1), (2) can be written as:

{

curlγH = −iωε0εr(x, y)E (3.1)

curlγE = iωµ0H (3.2)
(3)

where εr denotes the relative permittivity such that 1 ≤ εr ≤ ε+ =
sup(x,y)∈R2 εr(x, y) (bounded and coercive function) and where curlγH
and curlγE are defined by:

{

curlγH(x, y) = curl
(

H(x, y)eiγz
)

e−iγz

curlγE(x, y) = curl
(

E(x, y)eiγz
)

e−iγz
(4)

Furthermore, divγ being an operator analogously defined to curlγ
in (4), it is clear that divγcurlγϕ = 0, ∀ϕ ∈ [D(R2)]3, that is for
smooth vector valued functions ϕ. Thus, denoting by k0 the wave
number ω

√
µ0ε0, we are led to the two following systems of Maxwell’s

type:
{

curlγcurlγE = k2
0εrE

divγ(ε0εrE) = 0
(4′E)

{

curlγ(ε
−1
r curlγH) = k2

0H

divγ(µ0H) = 0
(4′H)
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It must be noticed that H (resp. E) can be deduced from (4′E) (resp.
(4′H)) thanks to (3.2) (resp. (3.1)). Making the obvious remark that
the divergence of H is null, contrary to that of E, we choose a magnetic
formulation. We thus have the following lemma [8]:

Lemma 1 Let s be a positive real. Then, the two following systems
are equivalent in [H1(R2)]3 (space of functions in [L2(R2)]3 whose
gradients are in [L2(R2)]9):

{

curlγ(ε
−1
r curlγH) = k2

0H (5.1)

divγH = 0 (5.2)
(5)

curlγ(ε
−1
r curlγH)− s∇γ(divγH) = k2

0H (6)

Noting that in R
2 \ Ω̄ (exterior of Ω), (6) becomes:

−∆H+ γ2H+ (1− s)∇γ(divγH) = k2
0H,

we take s = 1 to get the vector Helmholtz equation outside Ω. Our
problem reduces to find real (γ, εr) such that there exists H solution
of the problem (P):

{

H ∈ [H1(R2)]3, H �= 0

c(γ;H,H′) = k2
0(H,H

′), ∀H′ ∈ [H1(R2)]3
(P)

where c(γ; ·, ·) is the sesquilinear form defined by:

c(γ;H,H′) =

∫

R2

(

1

εr
curlγH · curlγH′ + divγHdivγH′

)

dxdy.

Note that for all U in [H1(R2)]3, we have:
∫

R2

(|curlγU|2 + |divγU|2)dxdy =
∫

R2

(|∇U|2 + γ2|U|2)dxdy,

where |∇U|2 = Tr((∇U)t∇U) = (∂iiUii)
2. Thus, asuming that

inf
(x,y)∈R2

εr(x, y) = 1, we deduce that c(γ; ·, ·) satisfies, ∀γ ∈ R
+, ∀H ∈

[H1(R2)]3















c(γ;H,H)≥ 1

ε+

∫

R2

(|∇H|2 + γ2|H|2)dxdy≥ min(γ2, 1)

ε+
‖H‖2

H1(R2)

c(γ;H,H)≤
∫

R2

(|∇H|2 + γ2|H|2)dxdy ≤max(γ2, 1)‖H‖2
H1(R2)

(7)
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where ε+ is given by ε+ = sup
(x,y)∈R2

εr(x, y) and ‖H‖2
H1(R2) =

∫

R2

(|∇H|2+

|H|2)dxdy.
The system (7) ensures us that c(γ) is thus continuous and coercive

in [H1(R2)]3 if γ �= 0. From Lax-Milgram lemma, we then deduce that
(5) admits a unique solution in [H1(R2)]3 given by the minimum of the
following functional in the Hilbert space [H1(R2)]3:

R(γ;H,H′) =

∫

R2

1

εr
curlγH · curlγH′dxdy

+s

∫

R2

divγHdivγH′dxdy − k2
0

∫

R2

H · H′dxdy. (8)

Besides, from Lax-Milgram lemma we know that for a given
positive real γ, there is a unique operator C(γ) defined for all H and
H′ in [L2(R2)]3 by (C(γ)H,H′) = c(γ,H,H′). Thanks to (7), it can
be established that [8]:

Lemma 2 Let γ be in R
+. Then the operator C(γ) is a self adjoint

operator and its spectrum σ(C(γ)) satisfies the following inclusion:

σ(C(γ)) ⊂
[

γ2

ε+
,+∞

[

Besides, if we denote by σp(C(γ)) the set of eigenvalues of C(γ), then
γ2

ε+
/∈ σp(C(γ)).
We now develop H(x, y) in its transverse and longitudinal compo-

nents Ht(x, y) and Hl(x, y):

H(x, y) = Ht,1(x, y)ex +Ht,2(x, y)ey +Hl(x, y)ez
= Ht(x, y) +Hl(x, y)ez.

We define the transverse gradient, divergence and curl as

∇tHl(x, y) =
∂Hl

∂x
ex +

∂Hl

∂y
ey,

divt(Ht,1ex +Ht,2ey) =
∂Ht,1

∂x
+
∂Ht,2

∂y
,

curlt(Ht,1ex +Ht,2ey) =
∂Ht,2

∂x
− ∂Ht,1

∂y
,
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and we develop curlγ and divγ in their transverse and longitudinal
components:

divγH =
∂Ht,1

∂x
+
∂Ht,2

∂y
+ iγHl = divtHt + iγHl,

curlγH =

(

∂Hl

∂y
− iγHt,2

)

ex +

(

iγHt,1 −
∂Hl

∂x

)

ey

+

(

∂Ht,2

∂x
− ∂Ht,1

∂y

)

ez

= curltHtez + (∇tHl − iγHt)× ez.

Making use of the Green formula:
∫

R2

(

∇Hl · H̄′
t − Ht · ∇H̄ ′

l

)

dxdy =

∫

R2

(

divtHtH̄
′
l −HldivH̄

′
t

)

dxdy,

we derive the following lemma [8]:

Lemma 3 For all positive real γ, and for H and H′ in [H1(R2)]3, we
have the following equality:

c(γ,H,H′) = d(γ,H,H′) + γ2(H,H′), (9)

with d(γ, ·, ·) defined by:

d(γ,H,H′) = d0(H,H′) + γd1(H,H′) + γ2d2(H,H′),

where d0, d1 and d2 are given by:

d0(H,H′) =

∫

R2

(

1

εr
curltHtcurltH̄

′
t + divtHtdivtH̄

′
t

+
1

εr
∇tHl · ∇tH̄

′
l

)

dxdy,

d1(H,H′) = i

∫

R2

((

1

εr
− 1

)

(Ht · ∇tH̄
′
l −∇tHl · H̄′

t)

)

dxdy,

d2(H,H′) =

∫

R2

(

1

εr
− 1

)

Ht · H̄′
tdxdy.

Remarks: From (9), we see that c(γ) depends on both γ and γ2, i.e.,
εr being fixed, the computation of γ such that (γ, εr) is a solution of
P, is a nonlinear problem. We thus choose to look for ω as a function
of γ (such an approach would not hold for a dispersive media).
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Let us also note that the functions γ ∈ R
+ �−→ Λm(γ) ∈ R

+ are
monotonic, provided that

(

1− 1

ε+

)

(
√
ε+ + 1) < 1,

which is a property shared by all the optical fibers [8]. The functions
Λm are therefore bijective on R

+ and the usual dispersion curve is
straightforward from (DR). To be more precise, the Λm are even
almost everywhere differentiable since they satisfy [8]:

|Λm(γ)− Λm(γ
′)|

|γ − γ′| ≤ 2

(

1− 1

ε+

)

(
√
ε+ + 1)max(γ, γ′).

We thus have an upper estimate for the slope of the curves: the lowest
ε+, the lowest the estimate (therefore the slope) and this estimate is

asymptotically equal to 2(
√
ε++1)max(γ, γ′) for large ε+. One cannot

hope to show stronger properties on the derivatives of the curves, since
there are some branches of eigenvalues crossing each other even in the
case of a step profile optical fiber of circular cross section.

It is worth noting that we are dealing with an unbounded operator,
since d has a support in the overall space R

2 (this would not be the
case for a metallic guide of dielectric rods). We therefore have to deal
with the essential part of the spectrum, that is the set of eigenvalues
of infinite multiplicity, accumulation points of eigenvalues and the
continuous spectrum (bands). It can be shown that for all γ ∈ R

+, the
essential spectrum σess(C(γ)) of C(γ) satisfies [8]:

σess(C(γ)) = [γ2; +∞[.

We see that d1 and d2 are compact perturbations of d0 (note that
1
εr

− 1 is null outside Ω and conclude by the compact embedding of

[H1(Ω)]3 in [L2(Ω)]3), thus they do not change its continuous spectrum
[9]. We then have that:

σess(C(γ)) =
{

Λ + γ2; Λ ∈ σess(C(0))
}

.

Furthermore, the Lemma 3 ensures us that d0(H,H) satisfies for
all H ∈ [H1(R2)]3:

d0(H,H) ≥ 1

ε+

∫

R2

|∇H|2dxdy.

Hence, we deduce that:

σess(C(0)) = R
+.
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0
ω2 /c2

γ2

γ2 /ε+

γ2

cut-off

monomode

multimode

σess

σd

Dispersion curves

Figure 1. Decomposition of the spectrum σ(C(γ)) of the open
guide operator C(γ) in its discrete part σd (which gives the dispersion
curves when γ varies in R

+
⋆ ) and its essential part σess (eigenvalues of

infinite multiplicity, accumulation points of eigenvalues and continuous
spectrum which are probably associated to the diffracting problem).

Furthermore, it can be proven that there are no eigenvalues in the
essential spectrum exccpt for γ2 [8]:

σd(C(γ)) ⊂ ]−∞; γ2].

The operator C(γ) is self adjoint, hence every point which is not
in its essential spectrum is an isolated eigenvalue of finite multiplicity
[9]. From Lemma 2, we thus derive that [8]:

Lemma 4 Every eigenvalue Λj(γ), j ∈ {1, . . . , k}, of the operator
C(γ) satisfies the following dispersion relations (DR):

γ2

sup
x∈R2

εr(x)
< Λ1(γ) ≤ Λ2(γ) ≤ · · · ≤ Λk(γ) ≤ γ2. (DR)

Remarks: An empty discrete spectrum σd(Cγ) corresponds to
frequencies under the cut-off, and an integer k = 1 to a monomode
fiber (Fig. 1).

Thanks to the dispersion relations (DR), we know that every
eigenvalue greater than γ2 belongs to the essential spectrum, which
gives us a numerical criterion to eliminate the modes without any
physical meaning. Nevertheless, we numerically detect some fre-
quencies in the essential spectrum whose associated eigenvectors
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seem to satisfy all the properties of propagating modes (notably
null divergence). We believe that those eigenvectors may give us
information on the diffracting problem in conical incidence.

3. VARIATIONAL METHODS AND FINITE ELEMENTS

3.1. Notions of Differential Geometry

From a differential geometry point of view, the vector fields are the
first order linear differential operators on functions. They have a vector
space structure, one basis of which is the set { ∂·

∂xi } of partial derivatives
with respect to coordinates. The action of a vector field v on a function
f is noted v(f). A 1-form α is a linear map from vector fields v to
scalar functions α(v), also noted 〈α, v〉 to emphasize duality (at one
point of space, a vector field is represented by a vector and a 1-form
by a covector, i.e., a linear map from vectors to real numbers). A
special 1-form associated to a function f is its differential df defined
such that df(v) = v(f). One basis for the vector space of 1-forms is
the set {dxi} of the differentials of the coordinates. A p-form ω is a
multilinear totally skew symmetric map from p vectors v1, . . . , vp to
scalar functions ω(v1, . . . , vp). Functions are identified with 0-forms.
In three-space only 0-, 1-, 2- and 3-forms are not identically equal to
zero (because of the skew-symmetry). 0- and 3-form spaces are one-
dimensional vector spaces while 1- and 2-forms are three-dimensional
vector spaces (neglecting of course the functional aspect where they
are all infinite dimensional). From this point of view, scalar fields from
vector analysis are 0- or 3-forms depending on their physical meaning:
0-forms are pointwise relevant functions while 3-forms are densities to
be integrated on volumes. The vector fields from the vector analysis
are 1-forms and 2-forms: 1-forms are integrands of line integrals while
2-forms are flux densities. Operations on forms include the exterior or
wedge product ∧ that maps pairs of a p-form ω1 and a q-form ω2 on
the (p+ q)-form ω1 ∧ ω2 defined by:

(ω1 ∧ ω2)(v1, . . . , vp+q) =
1

p!q!

∑

π∈Sp+q

[

Sgn(π)ω1(vπ(1), . . . , vπ(p))

× ω2(vπ(p+1), . . . , vπ(p+q))
]

,

where π runs over the set of permutations of p + q indices. The set
{dxi1 ∧ · · · ∧ dxip} of the linearly independent exterior products of p
differentials of the coordinates is a basis for the n!

p!(n−p)! -dimensional

vector space of p-forms. Any p-form can be expressed as a linear
combination of such p-monomials.
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Another fundamental operation on forms is the exterior derivative
d that maps p-forms

ω =
1

p!

n
∑

i1,...,ip=1

ωi1,...,ipdx
i1 ∧ · · · ∧ dxip ,

on (p+ 1)-forms

dω =
1

p!

n
∑

i1,...,ip=1

(dωi1,...,ip) ∧ dxi1 ∧ · · · ∧ dxip ,

where dωi1,...,ip stands for the differential of ωi1,...,ip considered as a
function.

From this definition it is obvious that the exterior derivative of a
function f is its differential df . The opposite operation of the exterior
derivative is the integration of a n-form ω = f(x1, . . . , xn)dx1∧· · ·∧dxn
on a n-dimensional domain M , which is defined by:

∫

M

ω =

∫

Rn

f(x1, . . . , xn)dx1 · · · dxn,

where f is supposed to be zero outside M .
These objects and operations only involve the topology and the

differential structure of the ambient space, i.e., they are independent
of any notion of angle and/or distance. Those notions are introduced
by giving a metric g, i.e., a symmetric bilinear map from two vector
fields v, w to scalar functions numbers g(v, w). The metric allows
the definition of the Hodge star operator ⋆ which maps p-forms on
(n− p)-forms where n is the dimension of the ambient space. In local
coordinates the star operator is defined for an exterior p-monomial by
(using the Einstein summation convention on repeated indices):

⋆dxi1 ∧ · · · ∧ dxip = gi1j1 · · · gipjpdxjp+1 ∧ · · · ∧ dxjnεj1,...,jn
√

|g|
(n− p)! ,

where εj1,...,jn is the Levi-Civita symbol. If the matrix the elements
of which are gij = g(∂ · /∂xi, ∂ · /∂xj) is considered, the gij are the
components of its inverse and |g| = det(gij) is its determinant. By
linearity, the definition of the star operator may be extended to any
form. In three-space, the Hodge star operator maps 0-forms on 3-
forms, 1-forms on 2-forms and conversely. This is why only functions
and vector fields are used in the vector analysis of the three-space with
the Euclidean metric.
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3.2. A Brief Survey on Edge Elements and Whitney Forms

Edge elements is a nickname for recently developed finite-element
bases for vector fields, whose degrees of freedom are not to be
interpreted as the components of some vector field at mesh nodes,
but as circulations of the field along element edges. We will see
in the sequel that they do not impose on the magnetic and electric
fields H and E more continuity than physics requires: edge-element
approximations of (let’s say) H, will have tangential continuity across
material interfaces, but its normal component will not be forced to
(unwanted) continuity by the nature of finite-element interpolants, as
it may happen with some node-based elements. Edge-elements are
part of a discrete algebraic-geometric-differential structure of finite-
element shape functions invented by H. Whitney [6] which assign
degrees of freedom to simplices of a given mesh: nodes, edges, facets,
tetrahedra. This structure, the so-called Whitney complex, closely
matches a continuous structure made of four vector subspaces of L2

and of three differential operators ∇, curl, div, which is known as the
de Rham complex. This complex is called an exact sequence if the image
of each operator domain of this structure is exactly the kernel of the
next operator. Clearly, this statement depends upon the topological
properties of the domains such as connectivity assumptions. We thus
choose the point of view of differential geometry in the sequel.

Consider a simplicial mesh on a three-dimensional manifold D,
that is, a set of tetrahedra which 2 by 2 have in common either a full
facet, or a full edge, or a node (vertex), or nothing, and whose set
union is D. We also assume a numbering of the nodes n, so that edge
e or facet f can alternatively be described by a list of node numbers.
We call T , F , E , N respectively, the sets of tetrahedra (or volumes),
facets, edges and nodes which constitute the mesh. Hence an edge
e element of E will be denoted by the ordered set {i, j} of its two
extremities. A node n element of N will be denoted by {i} (i is the
number of node n) and a facet f element of F will be denoted by
{i, j, k}. We shall adopt from now on the generic term of p-simplices
to refer to nodes (p = 0), edges (p = 1), facets (p = 2) and volumes
(p = 3): more precisely, a p-simplex denotes the convex envelope of
p+1 nodes, i.e., if xi denotes the location of the ith node, the p-simplex

is the set

{

p+1
∑

i=1

βixi, βi ≥ 0,

p+1
∑

i=1

βi = 1

}

. Let us emphasize that if

edge {i, j} belongs to E , or if facet {i, j, k} belongs to F , then {j, i}
does not belong to E , and neither {k, i, j}, {j, k, i}, etc., do belong
to F : each p-simplex appears only once, with a definite orientation.
We shall associate with this tesselation four finite-dimensional vector
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i

j
k

l

m

Figure 2. Two tetrahedra {i, j, k, l} and {m, l, k, j} with a common
facet {j, k, l}.

spaces (i.e., discrete functional spaces), named W p, p = 0 to 3, of
p-forms (see Section 3.1 for a definition of p-forms). For each of these
four vector spaces we may exhibit a basis (not an orthogonal one, but
such that all base functions have a compact support). The elements of
these bases are the node-, edge-, facet-, volume-elements alluded to.

Let us first define λjkli (x) the barycentric coordinate of point
x with respect to node {i} located in xi: this barycentric function
is continuous over D, linear and null elsewhere. Consequently, this
function is entirely defined by its values on the four vertices of the
tetrahedra {i, j, k, l}:

{

λjkli (xi) = 1

λjkli (xm) = 0, if m �= i.
(10)

Let us now denote by Ki the set of integers m such that xm and xi
belong to the same edge. This way, we can define a function Λi whose
support is the set of tetrahedra which have the node {xi} in common
(Fig. 2):

Λi =
∑

{j,k,l}∈K3
i

λjkli ,

(of course, in the case of curved tetrahedra, this should be understood
in the reference space). We are now ready to define Whitney elements
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of order p = 0, 1, 2, 3. They are differential p-forms associated with
p-simplices and generate the spaces W p. For a node n = {i}, we set:

wn(x) = Λi(x). (11)

This is a “Whitney element of order 0,” based at node n. These
elements are nothing else than the familiar piecewise linear, continuous
P 1 elements: the “hat functions,” or “Lagrange elements of polynomial
degree 1,” of finite element theory (P k stands for the set of polynomial
functions of degree ≤ k). To edge e = {i, j}, we assign the “Whitney
element of order 1,” or “edge-element” based at edge e, defined by the
1-form (vector field):

we = Λi∇Λj − Λj∇Λi. (12)

To facet f = {i, j, k}, we assign the “facet-element” defined by the
2-form (vector field):

wf = 2(Λi∇Λj ×∇Λk + Λk∇Λi ×∇Λj + Λj∇Λk ×∇Λi). (13)

Finally, we associate with volume {i, j, k, l} a function whose analytical
expression can be inferred from (12) and (13) (a factor 6 should be
thrown in), but it is piecewise constant (P 0 element), so writing it
down would be pointless. The 1-form in (12) is certainly not continuous
over D, since the λis are not continuously differentiable. But it has
some continuity nevertheless. To see it, consider the gradient (exterior
derivative) of the 0-form Λi:

∇Λi = {∇Λi}+ n[Λi]δΣ,

where δΣ denotes a Dirac mass with support on the tetrahedral facet
opposite to the node i, [Λi] denotes the jump of Λi across this facet,
n denotes the outward normal to this facet and {∇Λi} denotes the
regular part of ∇Λi. Thanks to the continuity of Λj , we both know
that [Λj ] = 0 and [Λj∇Λi] = Λj [∇Λi]. If we then take the rotational
of the 1-form Λj∇Λi, we get that:

curl(Λj∇Λi) = {curl(Λj∇Λi)}+ nΛj × [∇Λi]δΣ.

One cannot hope the continuity of∇Λi on Σ since it is not differentiable

on Σ. Nevertheless, it is obvious from the definition of λjkli :

λjkli (x) =

3
∑

p=1

nijklp xp + a
ijkl

nijkl0 x0 + aijkl
,
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where nijklp is the outward normal to the facet {j, k, l} opposite to the
node {i} (tetrahedron {i, j, k, l}) and aijkl is solely defined by (10).

Besides nijklp and aijkl are the coefficients defining the plane (Fig. 2)

3
∑

k=1

nijklp xk + a
ijkl = 0,

such that∇Λi is colinear to the outward normal n of the previous plane

(whose components are given by the nijklp ). After tedious but easy
computations, the reader can check that for each facet n× [∇λi] = 0.

We can thus conclude that the rotational (exterior derivative) of
the 1-form we is given by:

curlwe = Λicurl∇Λj +∇Λi ×∇Λj − Λjcurl∇Λi −∇Λj ×∇Λi

= 2∇Λi ×∇Λj .

The very fact that curlwe exists as 2-form, and not as a distribution
proves that the tangential part of we on facets of the mesh is
continuous across these facets [10]. In other words, the tangential
component of we on a common facet {j, k, l} of two adjacent tetrahedra
{i, j, k, l} and {m, l, k, j} depends only on its values on the three edges
{j, k}, {k, l}, {l, i} (Fig. 2).

From this remark, we can already infer that Whitney vector fields
of degree 1 (that is, those generated by edge-elements) are exactly
what is needed in order to represent vector field like E (electric field)
or H (magnetic field) in electromagnetic computations: for these fields
(1-forms) have precisely this kind of continuity, i.e., continuity of the
tangential part across material interfaces.

A similar remark holds about facet-elements (p = 2). For this,
let us consider the divergence of (13). We first note that the Poynting
identity ensures us that:

div(Λi∇Λj ×∇Λk) = ∇Λk · curl(Λi∇Λj)− Λi∇Λj · curl(∇Λk).

If we develop the previous equation, we get that:

div(Λi∇Λj ×∇Λk) = ∇Λk · (Λicurl∇Λj +∇Λi ×∇Λj)

−Λi∇Λj · curl(∇Λk).

We have already seen that curl∇Λj = {curl∇Λj} = 0. We therefore
deduce that:

divwf = 6∇Λi · (∇Λj ×∇Λk),
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which is a 3-form. Besides, we can write the exterior derivative of the
2-form wf in terms of continuous form and de Rham current as follows:

divwf = {divwf}+ n · [wf ]δΣ.

We hence conclude that the normal component n · wf of wf is thus
continuous across facets. The facet-elements are thus closely related
to the magnetic and electric flux densities B and D (2-forms). It
is worth noting that the tangential continuity of we and the normal
continuity of wf reveal the deep nature of Whitney elements which are
built to ensure their continuity and that of their exterior derivative.
Furthermore, we satisfies

div(curlwe) = div(∇Λi ×∇Λj)

= ∇Λj · curl∇Λi −∇Λi · curl(∇Λj) = 0,

which is nothing else than ddw = 0. Moreover, using differential forms,
we are able to exhibit a general expression for Whitney forms [11]:

ωs =

p
∑

i=0

(−1)iλidλ0 ∧ · · · ∧ dλi−1 ∧ dλi+1 ∧ · · · ∧ dλp.

Now let us consider p-forms built from Whitney elements, i.e.,
following linear combinations:

u =
∑

s∈S

ūsws,

where the set S of p-simplices is N , E , F or T , according to the value
p. If p = 0 (thus S = N , the set of nodes), the ūs are the nodal values
of u, hence a clear interpretation of the degrees of freedom ūs. If p = 1
(thus S = E), it follows from the very definition of we (12) that its
circulation along edge e (from node {i} to node {j}) is equal to 1, and
to 0 along the other edges. Therefore, in the development of u, the
degree of freedom ūs is the nodal value of u if s is a node, and the
circulation of u along the edge, if s is an edge.

Furthermore, λi(x) being the barycentric coordinate of point
located in xi, it must satisfy:

∑

i

λi(x) = 1, ∀x ∈ D,

where i denotes the nodes of D. This and (12) imply that:
∑

j �=i

w{i,j} = ∇Λi, for all nodes i and j of D.
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Therefore, the gradient of a 0-Whitney element is a linear combination
of 1-Whitney elements, which we may express as follows:

∇W 0 ⊂W 1.

Similarly, one can prove that curlW 1 ⊂ W 2 and divW 2 ⊂ W 3. We
can summarize these injectivity properties of the Whitney complex in
the following diagram:

W 0 ∇−→W 1 curl−→W 2 div−→W 3.

We can express the same phenomena in terms of spaces W
p
of degrees

of freedom:

W
0 G−→W

1 C−→W
2 D−→W

3
,

where W
0
is the set of the node’s values of the field, W

1
is the set

of the circulation along the edges, W
2
is the set of the flow across

the facets and W
3
is the set of the volume integral on the elements.

The symbols G, C, D denote rectangular incidence matrices (whose
entries are all 0, 1 or −1) which represent ∇, curl, div in the bases

provided by Whitney elements. For instance, if h =
∑

e∈E

hewe, then

curlh =
∑

f∈F

Cfe
hewf : the size of C is the number of facets times the

number of edges. If we denote by Nn, Ne, Nf and Nv respectively the
number of nodes (Nn = CardN ), edges, facets and volumes, one can
see that G and D are similarly matrices with Ne lines and Nn column,
and Nv lines and Nf column. The fundamental properties of these
matrices, as shown by the diagram are CG = 0 and DC = 0: there
is an isomorphism between the W p and the W

p
, which are spanned

by the vectors of degrees of freedom. We will see in the sequel that
the magnetic field H actually “lives” in the space of 1-forms and is
therefore well represented at the discrete level as an element of W 1

given by the set of coefficients W
1
(to be determined by our numerical

method).

3.3. A Discrete Analogue to the Variational Problem

The electromagnetic fields and sources may be represented by differen-
tial forms: the magnetic field H and the electric field E are 1-forms, the
magnetic flux density B, the electric flux density D and the current
density J are 2-forms and the charge density ρ is a 3-form. In this
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representation, the vector Maxwell system is given by:






























dH = J+
∂D

∂t

dE = −∂B
∂t

dB = 0

dD = ρ

(14)

The 1-form A and the 0-form V may be introduced as potentials
such that B = dA and E = −∂A

∂t
− dV . All those equations are

obviously independent of the metric. Nevertheless, this one is involved
in the definition of the constitutive relations given by D = ε ⋆ E and
B = µ0 ⋆H.

In this representation, the time harmonic vector Maxwell system
is given by:



























dH = −iωε ⋆E

dE = iωµ ⋆H

d(µ0 ⋆H) = 0

d(ε ⋆E) = 0

(15)

in the absence of current density and volumic charges.
In the case of a two-dimensional electromagnetic problem, invari-

ant by translation along the z-axis, the geometry is described by the
trace of the electric and magnetic fields on the transverse plane. We
choose the magnetic field as the variable and we develop H(x, y) in its
transverse and longitudinal components Ht(x, y) and Hl(x, y):

H(x, y) = Ht,1(x, y)dx+Ht,2(x, y)dy +Hl(x, y)dz

= Ht(x, y) +Hl(x, y)dz.

If we take the exterior derivative to the 1-form Ht, we get that:

dHt =
∂Ht,1

∂y
dy ∧ dx+ ∂Ht,2

∂x
dx ∧ dy =

(

−∂Ht,1

∂y
+
∂Ht,2

∂x

)

dx ∧ dy.

Applying the star Hodge operator ⋆ to Ht, we get that:

⋆Ht = Ht,1dy ∧ dz +Ht,2dz ∧ dx.
If we take the exterior derivative of the previous expression, we

obtain:

d(⋆Ht) =
∂Ht,1

∂x
dx ∧ dy ∧ dz + ∂Ht,2

∂y
dy ∧ dz ∧ dx



Photonic crystal fibers 291

=

(

∂Ht,1

∂x
+
∂Ht,2

∂y

)

dx ∧ dy ∧ dz =
(

∂Ht,1

∂x
+
∂Ht,2

∂y

)

⋆ 1.

We define the transverse gradient, divergence and curl as follows:

∇tHl(x, y) = dHl =
∂Hl

∂x
dx+

∂Hl

∂y
dy,

divt(Ht) = ⋆d ⋆Ht =
∂Ht,1

∂x
+
∂Ht,2

∂y
,

curlt(Ht)dz = ⋆dHt =

(

∂Ht,2

∂x
− ∂Ht,1

∂y

)

dz.

We can thus rewrite the problem (4′H) with the formalism of
differential forms as follows:

{

⋆curlγ(ε
−1
r ⋆ curlγH) = k2

0H

divγ(µ0 ⋆H) = 0
(4′H)

The discretization of the problem is based on Whitney forms.
Assuming some Dirichlet boundary conditions on the boundary ∂θ of
the three-dimensional manifold θ = Ω× R, we derive from (4′H) that:

∫

θ

⋆ ⋆ ε−1
r ⋆ curlγH ∧ curlγH′ =

∫

θ

ε−1
r ⋆ curlγH ∧ curlγH′

= k2
0

∫

θ

⋆H ∧ H
′
, ∀H ∈W 1

0 , (16)

where W p
0 denotes the restriction of the space of p-forms on a finite

element space W p, with null value on ∂θ.
Analogously to [10], we note that the sequence of W p is exact,

i.e., that the image of W p−1 by the operator ∇γ (resp. curlγ ,divγ) is
exactly the kernel of the next operator, thanks to the nullity of its
trace (resp. the tangential and the normal trace). It is thus identified
to the De Rham complex [10]. Let ϕ′ be a test function in W 0. Noting
that ∇γW

0 ⊂ W 1, we take H′ such that H′ = ∇γϕ
′ and derive from

(16) that (if ω �= 0):
∫

θ

µ0 ⋆H ∧∇γϕ′ = 0, ∀ϕ′ ∈W 0. (17)

Bossavit has proved that this property solves the spurious mode
problem for resonant cavities [10]. This weak formulation of null
divergence divγ(µ0⋆H) = 0 still works if µ0 is not constant. Therefore,
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replacing H by E and µ0 by ε0εr, we see that Whitney forms
clearly satisfy divγ(ε0εr ⋆ E) = 0. The electric formulation is thus
straightforward from (16).

Concerning our formulation, we are dealing with H ∈ [H1(R2)]3

which implies that H is null at infinity. The sequence ofW p remaining
exact (the trace conditions are obviously satisfied), the edge elements
still fulfill (17).

We now develop curlγ and divγ in their transverse and longitudinal
components:

divγH =
∂Ht,1

∂x
+
∂Ht,2

∂y
+ iγHl = divtHt + iγHl,

curlγH =

(

∂Hl

∂y
− iγHt,2

)

dx+

(

iγHt,1 −
∂Hl

∂x

)

dy

+

(

∂Ht,2

∂x
− ∂Ht,1

∂y

)

dz

= curltHtdz + (∇tHl − iγHt) ∧ dz.
If we use the star Hodge operator property ⋆dz = dx ∧ dy, we

deduce that:

⋆curlγH ∧ curlγH ′ = ⋆(curltHtdz + (∇tHl − iγHt) ∧ dz)
∧(curltH ′

tdz + (∇tH ′
l + iγH

′
t) ∧ dz)

= curltHtcurltH ′
t ⋆ 1

+ ⋆ (∇tHl − iγHt) ∧ (∇tH ′
l + iγH

′
t)

= curltHtcurltH ′
t ⋆ 1 + ⋆∇tHl ∧∇tH ′

l

−iγ ⋆ Ht ∧∇tH ′
l + iγ ⋆∇tHl ∧H ′

t

+γ2 ⋆ Ht ∧H ′
t.

From a numerical point of view, we minimize the following
functional, which is a discrete analogue to (8):

R(γ;H,H′) =

∫

θ

ε−1
r ⋆ (curltHtcurltH′

t +∇tHl ∧∇tH ′
l

−iγHt ∧∇tH ′
l + iγ∇tHl ∧ H′

t + γ
2Ht ∧ H′

t)

−k2
0

∫

θ

⋆(Ht ∧ H′
t +HlH

′
l).

This formulation involves both a transverse field in the section of
the guide and a longitudinal field along its axis. The section of the
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guide is meshed with triangles and Whitney finite elements are used,
i.e., edge elements for the transverse field and node elements for the
longitudinal field:

H =

{

Ht =
∑n

j αjw
e
j (x, y)e

iγz, in R
2

Hz =
∑n

j βjw
n
j (x, y)e

iγz, in R

where αj denotes the line integral of the transverse component Ht

on the edges, and βj denotes the line integral of the longitudinal
component Hz along one unit of length of the axis of the guide (which
is equivalent to the nodal value). Besides, we

j and wn
j are respectively

the basis functions of Whitney 1-forms and Whitney 0-forms.

3.4. Transformation Method

To deal with the open problem, a judicious choice of coordinate
transformation allows the finite element modeling of the infinite
exterior domain [12]. Considering two disks D(O,A) and D(O,B)
of center O = (0, 0) and radii A and B > A strictly including Ω,

we define a corona C = D(O,B) \ D(O,A). Let (x, y) be a point in

R
2 \D(O,A) (the infinite outer domain) and (X,Y ) be a point in C,

the transformation is then given by:

x = f1(X,Y ) = X[A(B −A)]/[R(B −R)],
y = f2(X,Y ) = Y [A(B −A)]/[R(B −R)],

where R denotes the Euclidean norm
√
X2 + Y 2. This transformation

may be viewed as a mapping of the finite corona C with non
orthogonal coordinate system (X,Y ) to the infinite domain with
cartesian coordinate system (x, y).

This way, the finite element discretization appears as a chained
map from the reference space to the transformed space and from the
transformed space to the physical space. Using discretizations entirely
based on differential forms allows a straightforward formulation of
transformation methods by pull-back of the corresponding weighted
residuals. Following the remark of the preceding section, we fix
γ ∈ R

+ and look for (ω,H) satisfying (8). We are thus led to a linear
generalized eigenvalue system.

It is also to be noticed that taking Dirichlet boundary conditions
at a finite distance (without geometric transformation) from the cross
section of the guide allows to consider an operator with a compact
resolvent (thus artificially eliminates the continuous spectrum) but it
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Figure 3. (a) Reference element. (b) Meshing of the corona equivalent
to the unbounded domain with transformed coordinates. (c) Physical
unbounded domain in cartesian coordinates.

would add the modes of an unphysical metallic guide. As for us, we pay
a special attention to the unboundness of our resolvent operator (and
hence the lack of compacity): the operator remains unbounded under
the transformation method and we therefore use the relations (DR) as
a practical criterion to select the discrete spectrum corresponding to
propagating modes and reject the numerical values corresponding to
the continuous spectrum.

Remarks: Another way to discretize the problem would be to use
vector nodal elements. The main drawback of this method is that
vector nodal elements do not contain the gradients of the scalar nodal
elements. One way of tackling this problem is thus to penalize the
divergence. For this, we develop the divergence in its transverse and
longitudinal components as follows:

divγHdivγV = divtHtdivtH ′
t + γ

2HlH
′
l

+iγ
(

Hl(divtH
′
t)− (divtHt)H ′

l

)

.

The problem of minimization (8) therefore admits a unique solution
thanks to the added term

s

∫

θ

divγHdivγH′ = s

∫

θ

(

divtHtdivtH ′
t + γ

2HlH
′
l

+ iγ(Hl(divtH
′
t)− (divtHt)H ′

l)
)

,

which acts in fact as a constraint which forces the nullity of the
magnetic field divergence (the greater the positive real s, the better
the solution). Furthermore, with nodal elements, vector quantities are



Photonic crystal fibers 295

represented by three functions, one for each component (in cartesian
coordinates). The geometrical meaning is lost together with pull-back
properties and the naturalness of the transformation method. The
practical implementation is then much more cumbersome.

It is worth noting that the edge elements belong to the Hilbert
space:

L2(curl, θ) = {f ∈ L2(θ), curlf ∈ L2(θ), n× f = 0 on ∂θ}

and it has been proven [13] that for a given field ϕ in L2(curl, θ), a
sequence of Whitney edge elements ϕm converges to ϕ for the norm
of L2(curl, θ), provided that the tetrahedra of the mesh tends to 0 in
a given way. Concerning the node elements of W 0 it is classical that
they tend towards a given function ϕ in H1(θ): such a convergence
therefore necessitates to place the study in an inadequate functional
space (H1(θ)), which leads to divergence penalization techniques.

4. NUMERICAL IMPLEMENTATION

Our discrete formulation leads to a generalized eigenvalue problem
solved thanks to the Lanczos algorithm, which allows the computation
of several eigenvalues and their associated eigenvectors for Hermitian
matrices. In the Lanczos algorithm, spectral shifting is required to
give access to a given part of the spectrum and/or to accelerate or
even guarantee the convergence towards a given eigenvalue. The (DR)
relations give a useful practical estimate of the shift to be used to
obtain the lowest frequency modes. The interested reader can get
further details in [16–17].

4.1. The Lanczos Algorithm

The Lanczos algorithm is an iteration method on both eigenvectors
and eigenvalues adapted to the resolution of generalized eigenvalue
problems of the following form [16–17]:

Kx = k2
0Mx (18)

where the matrices K and M (generally called mass and stiffness
matrices) are Hermitian and positive definite. The underlying concept
of this method is that of the power algorithm which is the basis of
all methods using iteration on eigenvectors. The first main property
of the power algorithm holds in its convergence rate towards a given
solution independent of the matrix size, which potentially makes it the
ideal method for very large systems. The second one is that it makes it



296 Guenneau et al.

possible to limit the solving of the eigenvalue problem to the number of
required solutions. One of the main drawbacks of the Lanczos method
is its bad convergence rate for close eigenvalues. One way to tackle
this problem is to use a spectral shift. Let us now introduce the
principle of the Lanczos algorithm: it consists of generating a subspace
including the system fundamental eigensolutions by inverse iteration
on one starting vector called x0. From the latter, we construct the
Krylov sequence

{x0,K
−1Mx0, (K

−1M)2x0, . . .}

the terms of which are made orthogonal to each other by a construction
process of conjugate directions. Starting from an arbitrary vector
x0, the Lanczos algorithm consists of combining inverse iteration
operations and orthogonalization of the successive iterates by applying
the relation:

cp+1xp+1 = K
−1Mxp − apxp − bp−1xp−1,

with coefficients ap, bp−1 and cp+1 determined in such a way that:

{

xtp+1Mxj = 0, j < p+ 1,

xtp+1Mxp+1 = 1.
(19)

One can easily calculate coefficients ap and bp−1 by imposing the
orthogonality of xp+1 with respect to xp and xp−1 with the Gram-
Schmidt algorithm. One get that:

{

ap = x
t
pMK

−1Mxp,

bp−1 = x
t
pMK

−1Mxp−1,
(20)

the orthogonality of xp+1 to xp−2, xp−3 is then deduced by recurrence
thanks to:

xtpMK
−1Mxp−j = x

t
pM(cp+1−jxp+1−j + cp−jxp−j + bp−j−1xp−j−1),

which vanish as soon as j ≥ 2.
Let us now analyse the difficulties of the Lanczos method. First,

it must be noticed that the dominant modes of the system are very
quickly extracted from the started vector so that, after a few iterations,
numerical errors become of the same order of magnitude as the Lanczos
base vectors. The result is that vectors [x0, . . . , xp−2], in relation to
which orthogonality has been achieved, reappear in iterate xp+1. We
overcome this situation by reconstructing the direction’s orthogonality
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by a Gram-Schmidt process, but it is obvious that we lose part of
the method’s benefit. Nevertheless, a selective re-orthogonalization
process leads to a reduction of the cost of the operation.

Theoretically, multiple eigenvectors can not be extracted using
the Lanczos method: indeed, the starting vector contains only a linear
combination of those multiple modes, and this combination remains
unchanged in the course of iterations. In practice, the result of the
degeneration of the orthogonalization process is that multiple solutions
reappear progressively. In the case of a dielectric waveguide of circular
cross section, we know that the degeneracy of the modes induced by the
symmetry is 2. We numerically verify that the eigenvalues belonging
to the discrete spectrum (those with physical meaning) are given twice
(with ten significant figures), but their associated modes are different.
Furthermore, we restart the algorithm with other starting vectors,
therefore we can guarantee effective computation of all eigenvectors
with a multiple eigenvalue.

Another difficulty is that of appearance of parasitic solutions or
even skipping of solutions, which result from the degeneration of the
orthogonalization process and a bad conditioning of matrices K and
M . To overcome this difficulty, we multiply the M matrix by a factor
c2 (c being the celerity of light in vacuum): we then have two matrices
K and c2M with the same order coefficients, which induces a good
starting vector. It is to be noticed that non-converged solutions can
be rejected a posteriori by an error criterion [21].

To conclude this section, we want to say that the Lanczos method
is extremely powerful for the extraction of eigenvalues and makes it
possible to treat very large sparse systems. But its implementation is
delicate and its use sometimes requires precautions. Nowadays, it is
used in most finite element analysis codes.

4.2. Validation of the Code

Let us first note that the GetDP software [14] has been used to set
up the finite element problem. We study the case of a low index step
fiber of circular cross-section (εr = 1.25) to validate our method: it is
then easy to compare our dispersion curve to that derived of weak-
coupling assumptions [18]. In this case, the HE1m modes have a
small azimuthal variation and depend only on the radial position r.
There is therefore no preferred axis of symmetry in the circular cross-
section. In this exceptional case, the transverse magnetic field can
be directed so that it is everywhere parallel to one of an arbitrary
pair of orthogonal directions. If we denote this pair of directions by
x- and y-axes, then there are two fundamental or HE1m modes, one
with its transverse magnetic field parallel to the x-direction, and the
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Figure 4. (a), (e) Projections of a plane of symmetry (Dirichlet
condition) or antisymmetry (Neumann condition). (b) Exterior
boundary of the corona rejected to infinity (Dirichlet boundary
condition). (c) Interface between air and corona (tangential continuity
of the Whitney elements). (d) Interface between core and air
(tangential continuity of the Whitney elements).

other parallel to the y-direction. The symmetry also requires that the
scalar propagation constants of each pair of modes are equal. This
degenerescence of the modes highly depends upon the geometry of the
waveguide cross-section. It is worth noting that if the cross-section
is elliptical, the transverse magnetic field is everywhere parallel to
the major and minor axes of the elliptical cross-section. As for the
circular fiber there are two modes associated with this solution (one
for each polarization). Because the cross-section is not circular, the
propagation constants of these two modes will differ: the difference
is due to polarization, or birefringence properties of the waveguide.
In this sense, the propagation on noncircular waveguides is similar to
propagation in anisotropic media. It is worth noting that with the
exception of the fundamental HE11 mode, every mode is cut off below
a certain value of V (see Section 2).

Thanks to the symmetry of the guide, we just mesh one fourth of
the guide (we could have considered a smaller part of the guide): we
take Dirichlet or Neumann boundary conditions on the x and y axis
to get symmetric or antisymmetric modes versus these axes (Fig. 4).
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Figure 5. Dispersion curves of a fiber of circular cross-section with
relative permittivity εr = 1.25 and a unit radia.

This remark is of importance in the case of PCF structures: we only
consider one fourth of the PCF since their crystal cladding have the
square symmetry. Our validation is all the more significant that we
obtain both the good dispersion curves (Fig. 5) and the associated
expected transverse magnetic fields (Fig. 6) for all the modes [18].
Furthermore, if we choose the formulation with the electric field, our
results strengthen those foreseen by B. Meys [15].

4.3. Numerical Results for the PCF

Let us first discuss the physics underlying photonic propagation in the
first type of photonic crystal fibers (HPCF of glass with air holes),
i.e., with a high index structural defect: we consider a waveguide
of circular cross-section composed of a matrix of index 2 and 80
air holes periodically arranged. We achieve a numerical study of
modes confined in specific parts of the high index region thanks to
the crystal cladding: one can see on figure (Fig. 7) some propagating
modes trapped in the high index core region of the fiber and one can
see the analogous phenomenon on figure (Fig. 8) for modes confined
outside the crystal cladding (and even inside-outside). The most
popular physical interpretation is that the effective index for the crystal
cladding is lower than that one of core and exterior regions and the
modes therefore propagate in these regions. Such an effect is very
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Figure 6. The four hybrid modes HE11, HE21, HE31, HE12

(ordered in increasing frequencies) and the two transverse modes TE01

and TM01 of the circular fiber of radius 1 with relative permittivity
of εr = 1.25 (corresponding to the dispersion curves of Fig. 5) for a
propagation constant γ = 8 m−1. Their associated wave numbers are
k0 = 7.38194, 7.70039, 7.99773, 7.97468, 7.62185 and 7.73754 m−1.

similar to that of the classical waveguides. A second interpretation
can be formulated: we consider the periodic assembly of air holes
as independent fibers (although they are air holes) that are strongly
coupled together. Let us assume that each isolated rod could support
many distinct modes (obviously, these modes are purely complex since
they cannot propagate in air holes), each with a different frequency
ω. When a large number of such rods (in our case 80) are placed in
close proximity, they couple together, and each mode of the single rod
opens up into a passband of modes of the composite structure (when
the number of rods tends to infinity), each passband now covering a
range of ω values. The passbands are separated by band gaps also
known as photonic band gaps. The central high index defect would,
if isolated, support a different set of waveguide modes, thanks to its
different morphology. If the ω value of one of these modes falls within
one of the bands of modes of the periodic cladding, this mode of the
core will be coupled to the spatially extended modes of the periodic
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Figure 7. Magnetic fields and their associated wave numbers k in a
circular HPCF (PCF type 1) of index 2 with 80 unit radius air holes
for a propagation constant γ = 8 m−1.

cladding (everywhere in high index). However, if one of the modes
of the core region falls in between the passbands of the fully periodic
lattice region, then this mode is localized within the core and forms
a PBG guided mode. Thus, at some wavelengths, there is a mode
trapped within the core (resp. outside the crystal cladding), whereas
at other wavelengths modes are extending between the fibers (they
cannot propagate in air holes).

Let us now introduce some qualitative insight into the nature of
the guided modes of a low-index PCF structure: (LPCF with silica
rods). Although rigorous, our numerical study holds only for the non-
dissipative modes. The localized mode is a kind of “leaky mode,”
that is a dissipative mode, and is therefore associated to complex
frequencies. To look for such a mode necessitates to investigate the case
of complex propagation constant γ. For this, it seems more natural to
work with a fixed frequency ω and look for γ: we are thus led to a non-
linear generalized eigenvalue problem with non-hermitian matrices.
Such a “spectral problem” could be numerically solved thanks to an
algorithm of non linear inverse iterations. This algorithm can indeed
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k = 4.0550 m-1

k = 3.3689 m-1
k = 3.3574 m-1

Figure 8. Magnetic fields and their associated wave numbers k in a
circular HPCF (PCF type 1) of index 2 with 80 unit radius air holes
for a propagation constant γ = 8 m−1.

solve our generalized eigenvalue problems which takes the form:

K(γ)X = ω2MX,

where the matrixK is complex non hermitian and depends non-linearly
on γ andM is a complex hermitian matrix. The main difficulty is that
this algorithm only gives one eigenvalue and its associated eigenvector
per calculus. Therefore, we do not investigate the leaky modes in
this paper. Nevertheless, we achieve a numerical study of modes
propagating in fibers of index 2 in a crystal cladding. We clearly see
that such modes propagate in each fiber independently of the other
fibers (which is far from being obvious) (Fig. 9): these modes have the
same frequencies and symmetries (up to a phasis) than the ones of a
single fiber of unit radius and relative permittivity ε = 4. Obviously,
these modes are identical in each fiber up to a phasis. Such a result can
although be interpreted as modes belonging to the Bloch spectrum: in
the Bloch wave decomposition, one only considers a fiber in a unit cell
Y with quasi-periodicity conditions (up to a phasis).



Photonic crystal fibers 303

Figure 9. Magnetic fields and their associated wave numbers k in a
circular LPCF (PCF type 2) of index 1 with 80 unit radius rods of
index 3 for a propagation constant γ = 5 m−1.

5. CONCLUSION

As a conclusion, we want to say a few words about the physical
aspect of the study. Due to the vector treatment of the problem, we
achieve a rigorous numerical study of the physical phenomena arising in
propagation of modes in a photonic crystal fiber. We first compare the
numerical results of the finite element scheme with classical ones: for
this, we study the dispersion curves of a dielectric circular waveguide.
We then study two types of photonic crystal fibers of finite cross
section. In the first type of PCF (HPCF), we numerically characterize
modes which propagates thanks to the photonic band gap effect in a
region of high index surrounding a crystal cladding (fiber of silica with
a periodic assembly of air holes). In the second type of PCF (LPCF),
we numerically show some propagating modes confined in each rod
(silica) of the crystal cladding and which have all the properties of
the modes of a circular fiber: the frequencies and associated modes
of such fibers do not depend on the existence of the other fibers and
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are thus called local modes. We are working at the present time on
the generalization of the method to the computation of leaky modes.
Other remarkable properties of PCF are that linearly polarized light
coupled into the fiber parallel to one axis emerges linearly polarized
and parallel to the same axis even if the fiber is bent or twisted. An
analogous phenomena is even observed concerning the loss of energy
induced by the bends: unlike classical optical waveguides, the PCF
can propagate light without loss of energy in the bends, thanks to the
PBG effect. Such a modelling could be achieved with our formalism,
thanks to adequate geometrical transformation (by the use of pull-back
properties of the edge-elements).
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REFERENCES

1. Birks, T. A., J. C. Knight, and P. St. J. Russell, “Endlessly single-
mode photonic crystal fiber,” Optics Letters, Vol. 22, No. 13, 961–
963, July 1997.

2. Knight, J. C., T. A. Birks, R. F. Cregan, P. St. J. Russell,
and J. P. de Sandro, “Large mode area photonic crystal fibre,”
Electronics Letters, Vol. 34, No. 13, 1347–1348, June 1998.

3. Knight, J. C., T. A. Birks, P. St. J. Russell, and J. P. de Sandro,
“Properties of photonic crystal fiber and the effective index
model,” JOSA A, Vol. 15, 748–, 1998.

4. Broeng, J., D. Mogilevstev, S. E. Barkou, and A. Bjarklev,
“Photonic crystal fibers: a new class of optical waveguides,”
Optical Fiber Technology, 1999.

5. Knight, J. C., J. Broeng, T. A. Birks, and P. St. J. Russell,
“Photonic band gap guidance in optical fibers,” Science, Vol. 282,
1476–1478, November 1998.

6. Whitney, H., Geometric Integration Theory, Princeton Univ.
Press, Princeton, 1957.

7. Guenneau, S., A. Nicolet, F. Zolla, C. Geuzaine, and B. Meys, “A
finite element formulation for spectral problems in optical fibers,”
Compel, Vol. 20, No. 1, 120–131, 2001.

8. Bonnet, A.-S., “Analyse mathématique de la propagation des
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Mathématiques et Applications, Vol. 14, Springer Verlag, 1993.

12. Nicolet, A., J-F. Remacle, B. Meys, A. Genon, and W. Legros,
“Transformation methods in computational electromagnetism,” J.
Appl. Phys., Vol. 75, No. 10, 1994.

13. Dodziuk, J., “Finite-difference approach to the Hodge theory of
harmonic forms,” Amer. J. Math., Vol. 98, 79–104, 1976.

14. Dular, P., C. Geuzaine, F. Henrotte, and W. Legros, “A general
environment for the treatment of discrete problems and its
application to the finite element method,” IEEE Transactions on
Magnetics, Vol. 34, No. 5, 3395–3398, 1998.

15. Meys, B., “Modélisation des champs électromagnétiques aux
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20. Vassallo, C., Théorie des Guides d’Ondes en Electromagnétisme,
CNET, Eyrolles editions, 1985.
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