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Abstract
Two-phase flow in porous media is a very active field of research, due to its important 
applications in groundwater pollution, CO

2
 sequestration, or oil and gas production from 

petroleum reservoirs, just to name a few of them. Fractional flow equations, which make 
use of Darcy’s law, for describing the movement of two immiscible fluids in a porous 
medium, are among the most relevant mathematical models in reservoir simulation. This 
work aims to solve a fractional flow model formed by an elliptic equation, representing the 
spatial distribution of the pressure, and a hyperbolic equation describing the space-time 
evolution of water saturation. The numerical solution of the elliptic part is obtained using 
a finite-element (FE) scheme, while the hyperbolic equation is solved by means of two dif-
ferent numerical approaches, both in the finite-volume (FV) framework. One is based on a 
monotonic upstream-centered scheme for conservation laws (MUSCL)-Hancock scheme, 
whereas the other makes use of a weighted essentially non-oscillatory (ENO) reconstruc-
tion. In both cases, a first-order centered (FORCE)-� numerical scheme is applied for inter-
cell flux reconstruction, which constitutes a new contribution in the field of fractional flow 
models describing oil-water movement. A relevant feature of this work is the study of the 
effect of the parameter � on the numerical solution of the models considered. We also show 
that, in the FORCE-� method, when the parameter � increases, the errors diminish and 
the order of accuracy is more properly attained, as verified using a manufactured solution 
technique.
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1  Introduction

Reservoir simulation was a very active field of research since the beginning of petroleum 
engineering in the 1930s. Mathematical modeling and numerical simulation play a fun-
damental role in the analysis of oil reservoir behavior and the study of multiphase flow in 
porous media. First computer codes for reservoir simulation were developed in the dec-
ades of the 1940s and 1950s, when carrying out relevant research in the numerical solution 
of flow equations. Some details on the historical evolution of reservoir simulation can be 
found in [12].

Research on multiphase flow in porous media attracts currently great attention, as it can 
be applied to a number of situations in the field of fluid dynamics, such as groundwater 
pollution, reservoir simulation, water-oil-gas systems, oil and gas recovery, or CO2 seques-
tration in geological structures. Interesting situations commonly encountered are oil-water 
systems, which constitute the aim of the present work. A great number of works devoted to 
multiphase flow in porous media can be found in the literature such as the classical refer-
ences [1, 5, 19, 38, 39], or more recent ones as [7, 16, 26, 41].

In this work, we focus our attention on the mathematical modeling and numerical simu-
lation of the underground movement of oil and water. This movement is favored by con-
nected pores and also fractures that are usually present in the geological medium. The 
typical mathematical models devoted to this kind of applications are systems of parabolic 
equations with saturation and pressure of the different phases as unknowns. It is worth 
mentioning here the frequently used black-oil model, see for instance [37] for details, and 
the so-called compositional models. A comparison of the results obtained with both mod-
els can be found in [3], where numerical simulation was performed by means of a discon-
tinuous Galerkin method for mass transport, coupled with an implicit mixed hybrid finite-
element (FE) scheme for computing pressure and velocity fields. A flexible general purpose 
model for multiphase isothermal or thermal compositional flow simulation in porous media 
was introduced in [40], where numerical simulation results were validated using classical 
benchmark problems based on black-oil and compositional models. Most of the numerical 
schemes commonly used in this context are based on finite-difference and FE numerical 
methods. We refer the reader to the seminal work [27] for a strong background in reservoir 
simulation, comprising physical principles, mathematical models, and numerical resolution 
by finite-difference formulations. There is also some literature on the application of finite-
volume numerical methods in the field of reservoir simulation, see for instance [6, 11, 14, 
18, 20, 23].

A wise combination of statistical techniques and streamlines-based methods in oil reser-
voir applications was described in [25], where a multilevel Montecarlo method combined 
with a stream-based solver was utilized to perform two-phase Buckley-Leverett transport 
simulations of an oil reservoir with uncertain heterogeneous permeability. Going ahead 
with streamline methods for flow simulation in porous media we refer the interested reader 
to [29] where, in addition, other geological applications are put forward.

In this work, we consider a hyperbolic-elliptic fractional flow model, which is a system 
with an elliptic equation for the pressure and a hyperbolic equation for the saturation, as 
described in [8, 13, 22]. In [8], analytical and numerical study of this type of system was 
conducted. A local existence and uniqueness study, based on the Arzela-Ascoli theorem 
applied to oil recovery processes was introduced in [28].

In this work, we solve the elliptic equation using an FE scheme and the hyperbolic 
equation by means of FV methods, due to its better performance in the presence of 
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discontinuities. The pressure gradient is computed at cell interfaces, from the nodal values 
of the pressure, using piecewise linear interpolation, selecting the stencil that minimizes 
the absolute value of the slope, as performed in essentially non-oscillatory (ENO) recon-
struction. Flow velocities are then obtained by making use of Darcy’s law, which relates 
the volumetric flow rate to the pressure gradient.

Prominent studies and detailed analyses of the processes of flow and transport through 
porous media, with emphasis on applications of Darcy’s law, could be found in the classi-
cal reference [5], and also in the more recent one [4].

A relevant feature of this work is the study of the effect of the � parameter appearing in 
the first order centered (FORCE)-� scheme for numerical flux reconstruction, in the con-
text of problems arising in oil-water movement in porous media. These FORCE-� tech-
niques were introduced in [35] for conservative problems, and after that extended to non-
conservative systems in [9]. A deep study of this technique, with a special focus on the 
parameter � and applications to Baer-Nunziato equations for compressible two-phase flow 
was conducted in [36].

As a first approach, we use in this work the MUSCL-Hancock method (MHM) which is 
of particular interest to solve the hyperbolic part of this model, that is the saturation equa-
tion, since it is a simple, but still effective, procedure and second order accurate in space 
and time. In order to increase the order of accuracy, we resort to fifth-order WENO recon-
struction with the RK3-TVD approach for time integration, which can give better results, 
especially for long-time simulations.

In Table 1, we summarize the main parameters and variables used in the mathematical 
model, together with their physical meaning.

The hyperbolic-elliptic model is not commonly used in reservoir modeling, but has 
several advantages derived from the fact that hyperbolic equations represent adequately 
the displacement of water and oil and, from the point of view of computational cost, the 
numerical resolution of this hyperbolic-type equation is less expensive than the usual para-
bolic models, considering stability restrictions.

The main contribution of this work concerns the use of the FORCE-� numerical 
schemes applied to reservoir simulation and oil-water flow in porous media. This technique 
allows obtaining a family of numerical methods, depending on the parameter � , with good 
convergence properties. The rest of this document is structured as follows: in Sect. 2, the 
two-phase flow mathematical model based on an elliptic-hyperbolic coupled formulation is 
described. Section 3 is devoted to a brief overview of the numerical schemes including the 
assessment of the numerical accuracy, using a manufactured solution. Section 4 is focused 
on the numerical resolution of the coupled model, including the extension to a 2D situa-
tion. Finally, conclusions and future research are given.

2 � Mathematical Model

We consider in this work a coupled model pressure-saturation, describing the immisci-
ble movement of oil in direction of the production well. This movement is favored by 
the injection of water into the reservoir, usually done either to keep the pressure in the 
reservoir or to drive the oil towards the production well. Saturation stands for the frac-
tion of the pore volume which is occupied by a particular fluid (oil, gas, or water). The 
oil can flow if a critical saturation is exceeded, otherwise, the oil remains in the pores 
and is not able to flow. In practical applications, usually, the oil is displaced from the 
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reservoir by injecting water or gas. Nonetheless, some amount of oil will remain with-
out being displaced, which gives rise to residual oil saturation.

The addition of saturations of wetting phase, sw , and the non-wetting phase, sn , must 
verify sw + sn = 1 . We note that the non-wetting phase usually refers to oil, while the 
wetting phase commonly refers to water. The usual way to identify wetting and non-wet-
ting phases is by measuring the contact angle � between the fluid and the solid surface. 
When 𝜃 > 90◦ phases are non-wetting, whereas phases with 𝜃 < 90◦ are wetting. See a 
sketch in Fig. 1.

The flow velocity of a particular phase is obtained through Darcy’s law, which in the 
case of multiphase flow adopts the form

where the relative permeability of phase i is given by kri . K represents the total perme-
ability, corresponding to rock permeability which, in this model, has a value of 300 mD 
(millidarcies). These data come from previous works comprising the study of the medium 
and rock-fluid characterization performed by geologists, geophysicists, and petrophysicists.

We consider in this work a hyperbolic-elliptic model describing the oil-water 
movement in the porous medium. Despite there are some references on this type of 

(1)vi = −

(
Kkri

�r

)
�Pi

�x
, i = f luid phase,

Table 1   Main parameters and variables used with their meaning

Parameter/variable Meaning

B Volumetric factor
f
w
(s) Fractional flow function

kro Oil relative permeability
krw Water relative permeability
K Total permeability
P Pressure
pc Capillary pressure
n,w Subscripts used for non-wetting and wetting phases
Qt Specific volumetric injection/production rate
qw Injection/production of water (wetting phase)
qn Injection/production of oil (non-wetting phase)
so,w Saturation: o (oil), w (water)
scw Connate water saturation
sor Residual oil saturation
seff Effective saturation, usually referred to water
vw,o Velocity: o (oil), w (water)
Greek symbols
� Porosity of the rock
� Total mobility
�o,w Mobility: o (oil), w (water)
�o,w Viscosity: o (oil), w (water)
� Fluid density
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mathematical formulation, such as [8, 22] in oil reservoir simulation or [24] in surface-
subsurface flow, it is not very frequent in the literature.

The model we are dealing with is

•	 pressure equation (elliptic) 

•	 saturation equation (hyperbolic) 

In (2), �(sw) stands for the total mobility of both phases combined, that is,

while Qt is a specific volumetric injection/production rate term given by Qt =
qw

�w
+

qo

�o
 . In 

addition, qw and qo are the injection/production of water/oil, respectively, while �i (i = w,o) 
represent the fluid densities and � is the rock porosity. The fractional flow function, which 
is given by

relates the mobility of the wetting phase with the total mobility. The mobilities of each 
phase are �o =

kro

�o

 and �w =
krw

�w

 and the relative permeabilities are krw = (seff)
W and 

kro = (1 − seff)
W , where seff is the effective saturation which is computed according to 

seff =
(

sw−scw

1−scw−sor

)
 with scw being the connate water saturation, which represents the amount 

of water adsorbed on the surface of the grains of the rock divided by the pore volume, and 
sor is the residual oil saturation. The value of the exponent W depends upon the model con-
sidered, see [2] for different choices. In Sect. 4 of this work, details are given on the values 
of the parameters involved.

(2)−
�

�x

(
K�(sw)

�P

�x

)
= Qt,

(3)�
�sw

�t
+

�

�x

(
fw(sw)vw

)
=

qw

�w
.

(4)�(sw) = �w + �o =
krw

�w

+
kro

�o

,

(5)fw(sw) =
�w

�w + �o

Fig. 1   Water as wetting phase, 
oil as non-wetting phase. When 
𝜃 > 90

◦ , the phase is non-wet-
ting, while if 𝜃 < 90

◦ , the phase 
is wetting
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We have also introduced in (3) vw representing the flow velocity given by Darcy’s law. 
Equations (2) and (3) are coupled through the mobility, �(sw) , which is a function of the satu-
ration, as well as the pressure, P, that depends on the flow velocity.

3 � Numerical Schemes

The mathematical model described in the previous section is solved in the present work 
using a finite-element method (FEM) for the pressure equation, and two different FV for-
mulations for the saturation part, which are based on a MUSCL-Hancock approach and a 
WENO5-RK3TVD scheme. A FORCE-� numerical scheme for intercell flux reconstruc-
tion is used in both FV formulations. Most of the details on these numerical techniques are 
skipped here, only some description of the FORCE-� scheme is given, since this is a new 
contribution in reservoir simulation.

As it is well known, Godunov’s theorem (see [15]) states that linear numerical schemes 
for solving partial differential equations, having the property of not generating new extrema 
(monotone scheme), can be at most first-order accurate. According to this theorem, in order 
to obtain monotone schemes of order higher than 1, nonlinear numerical schemes must 
be implemented. One of the numerical techniques used in this work is the MHM, which 
is nonlinear and second-order accurate. In this case, we use the second-order MHM tech-
nique, although we remark that, according to [33], the MUSCL approach allows the con-
struction of very high-order schemes. Further, the WENO methodology improves the order 
of accuracy of the numerical schemes developed.

In order to perform the numerical resolution of the coupled model, the spatial domain 
is discretized into subintervals Sj = [xj, xj+1] , which are finite elements for the case of the 
pressure equation and control volumes when solving, by the FV method, the saturation 
equation. Hence, the nodes used for the pressure are intercell boundaries for saturation. 
The process followed, at each time step, starts by solving the elliptic part, that is the pres-
sure equation, by means of an FE scheme to yield nodal values of the pressure Pj , at the 
nodes with abscissae xj . In this FE approach, linear two-node P1 elements are used.

Next, at the same time step, an FV scheme is applied to solve the saturation equation, 
and the nodes, xj , are taken now as cell interfaces of the control volumes. This is useful 
since the values of the velocity can be straightforward computed at cell interfaces from the 
nodal values of the pressure according to Darcy’s law. These values of the velocity are 
needed to solve the saturation equation. Since we just have point values of the pressure at 
nodes locations, it is necessary to perform a reconstruction process to approximate the 
derivative �Pj

�x
≈ mj with |mj| = min

(
|Pj+1−Pj

xj+1−xj
|, |Pj−Pj−1

xj−xj−1
|, |Pj+1−Pj−1

xj+1−xj−1
|
)
 . Thus, the velocity of 

water at the cell interface j can be obtained according to the formula

By integrating (3) over the control volume Sj and dividing by the length of the control vol-
ume, Δxj , as well as assuming � is constant in the control volume, we have

where sw = sw(x, t) and v
w
= v

w
(x, t);

(6)vw,j = −

(
Kkr

�

)
mj.

(7)�
1

Δxj ∫
xj+1

xj

�sw

�t
dx +

1

Δxj ∫
xj+1

xj

�

�x
(fw(sw)vw)dx =

1

Δxj ∫
xj+1

xj

qw(t)

�w
dx,
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where sw,j = sw,j(t) and vw,j = vw,j(t) with sw,j the cell average of the saturation within cell Sj 
which is given by

Equation (9) can be solved using an efficient ODE solver. In this work, we use the RK3-
TVD scheme, although different solvers could be applied. We remark that numerical 
schemes attaining arbitrary high order of accuracy, such as the ADER approach, are very 
efficient techniques to solve this type of problems. We refer the reader to the relevant pub-
lications [30, 34] for the classical ADER methodology applied to the numerical solution 
of hyperbolic problems and also to [10, 17] for the application of an interesting variant of 
the ADER technique, named local space-time DG (LSTDG), specially focused to problems 
with stiff source terms.

As aforementioned, the FORCE-� numerical technique is used in this work to carry out 
flux reconstruction at cell interfaces. Some details on this technique are given in the next 
subsection.

3.1 � FORCE‑̨  Numerical Flux

The FORCE numerical scheme was introduced by Toro [31, 32] in the context of hyper-
bolic equations. It was proposed as a deterministic version of Glimm’s or random choice 
method. Since it is a centered scheme, it does not make use of the eigenvalues of the Jaco-
bian matrix, as it happens in other classical numerical fluxes, such as upwind or Rusanov’s 
ones. The extension to multi-dimensional problems was proposed in [9, 35, 36] where 
the parameter � was introduced to take into consideration several spatial dimensions. The 
FORCE-� numerical schemes emerged then as a family of numerical methods, �-depend-
ent, that were successfully applied to different hyperbolic problems. The FORCE-� inter-
cell numerical flux, in the context of 1D fractional flow models reads

for the left interface, where � , as indicated above, is a real number, usually related to the 
number of space dimensions, that is � = 1 for 1D, � = 2 for 2D, and � = 3 for 3D. How-
ever, any value of � can be used. In the reference [36], there is a complete study on stabil-
ity, monotonicity, and numerical viscosity of FORCE-� schemes taking values of � up to 
200. Numerical results given in that reference indicate that the CFL number must decrease 
as � increases, in order to ensure stability. This conclusion is also attained in the present 
work.

(8)

�
d

dt

(
1

Δxj ∫
xj+1

xj

swdx

)
+

1

Δxj
(fw(sw,j+1)vw,j+1 − fw(sw,j)vw,j) =

1

Δxj ∫
xj+1

xj

qw(t)

�w
dx,

(9)�
dsw,j(t)

dt
+

1

Δxj

(
fw(sw,j+1)vw,j+1 − fw(sw,j)vw,j

)
=

qw(t)

�w
,

(10)sw,j(t) =
1

Δxj ∫
xj+1

xj

sw(x, t)dx.

(11)f
force,�

w,j−
1

2

=
1

2

(
f
LF,�

w,j−
1

2

+ f
LW,�

w,j−
1

2
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The expression (11) is an arithmetic mean of the � version of the Lax-Friedrichs numer-
ical flux which reads

and the � version of the Lax-Wendroff numerical flux, which is obtained by means of

where

3.2 � Assessment of the Order of Accuracy of the Schemes

We focus our attention on the assessment of the order of accuracy of the numerical 
schemes. We consider the following problem for the evolution of water saturation:

whose solution is sw(x, t) = cos(x(3 − x)t) and Fs is a forcing term. The velocity is set here 
to vw = 0.5 and the fractional flow, fw(sw) , is obtained according to (4) which takes into 
account the mobilities of both water and oil.

The problem is solved using the numerical schemes MUSCL-Hancock and the RK3-
TVD WENO5, in order to assess their convergence and order of accuracy. Flux recon-
struction is fulfilled via the FORCE-� technique and different values of the parameter � 
are considered. Results of the application of MUSCL-Hancock approach are displayed in 
Fig. 2 where both the L2-error norm and the numerical orders of accuracy are shown for the 
values � = 1, 2, 3, 14 . It can be observed that the theoretical order of accuracy is success-
fully attained. Also, we notice that, as the value of � increases, the error norm tends to be 
smaller.

As for the WENO5-RK3TVD approach, convergence results are depicted in Fig.  3, 
showing that, as the value of the parameter � increases, the third order of accuracy is more 
clearly attained (right frame) and also the error norms become smaller and the evolution of 
the norm L2 of the error tends to improve for higher values of � (left frame).

4 � Numerical Examples

We recall that the problem under consideration is the fractional flow oil-water hyperbolic-
elliptic model given by (2) and (3). In these first examples, we omit the source term to deal 
with the homogeneous system. We use the values scw = 0.25 , sor = 0.2 and the exponent 
W = 4 in the case of water and W = 2 when dealing with oil and � = 1 . See [21] for details 
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on the Brooks and Corey model related to water and oil permeabilities, connate saturation, 
and effective saturation. Details on the physical principles of this type of models can be 
found in [2].

In Fig. 4, water saturation and oil saturation profiles are shown for different values of 
the parameter � . The velocity has been assumed constant and its value is vw = 4.0 . The 
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Fig. 2   MUSCL-Hancock approach with FORCE-� reconstruction using a manufactured solution to com-
pute the error norm. Left panel: evolution of the ||error||L2 in a log-log plot taking the values � = 1, 2, 3, 14 . 
Right panel: order of accuracy attained for different mesh sizes. It can be observed that the values of the 
error are smaller for larger values of the parameter �
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panel: order of accuracy attained for different mesh sizes. It can be observed that the values of the error are 
smaller and the order of accuracy is higher for larger values of the parameter �
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output time is t = 3 and 80 control volumes are used in the interval [0, 50]. The results 
show that the solution improves when the value of � increases, as the rarefaction (transi-
tion zone) and the shock wave (representing the flood front) are better resolved. However, 
the price to pay is the size of the time step, since it must be reduced, as � increases, which 
agrees with the conclusions reported in [36]. The size of the time step taken here, in order 
to ensure the stability for all cases considered is Δt = 10−3.

In Fig.  5, x-t contour plots of water (left frames) and oil (right frames) are depicted 
for the case of constant velocity vw = 4.0 and for two different values of the parameter � 
namely � = 1 (top row) and � = 14 (bottom row). The results show that the shock wave 
representing the flood front appears more clearly when the value of � is higher. We now 
consider the situation where the velocity field is computed from the pressure drop in the 
reservoir. Dirichlet boundary conditions are assumed for pressure computation, namely 
P(0)=390, P(50)=186. Results for water and oil saturation are displayed in Fig. 6. It can be 
verified that the profiles are better defined as the value of the parameter � increases.

In Fig. 7, x-t contour plots of water (left frames) and oil (right frames) are depicted for 
the case of velocity obtained by Darcy’s law from the pressure gradient and, as before, for 
� = 1 (top row) and � = 14 (bottom row). In Fig. 8, fractional flow function (left frame), 
water and oil relative permeabilities (right frame) are depicted; numerically obtained for 
variable velocity, � = 14 and time t = 3.

4.1 � Two‑Dimensional (2D) Extension

As an extension to the multi-dimensional case we consider the following problem, written 
in the divergence form:

with suitable boundary and initial conditions. In (16), Qt and Qw are source terms, related 
to oil and water injection/production rates. Hereafter, 2D Cartesian domains are consid-
ered. The numerical scheme applied is the third-order RK TVD method with the FORCE-� 
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Fig. 4   MUSCL-Hancock’s solution for the fractional flow model for different values of the parameter � , 
considering the constant velocity v

w
= 4.0 . Left panel: water saturation profiles. Right panel: oil saturation 

profiles. Output time t = 3
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technique for intercell flux reconstruction. Different values of the parameter � are used 
in the computations. A sketch of the spatial grid is shown in Fig. 9, where the FE mesh 
(represented with the dashed red line in the plot) is used to solve the pressure equation 
and the FV mesh (depicted as the blue solid line in the plot) is used to solve the satu-
ration equation. The FE nodes, where pressure is computed are represented with orange 
circles. We first consider a problem with a manufactured solution aimed to verify the 
convergence of the numerical scheme, given by P(x, y) = exp(x2 − y2) for pressure and 

Fig. 5   MUSCL-Hancock’s contour plots x-t for the fractional flow model for different values of the param-
eter � , considering the constant velocity v

w
= 4.0 . Top row: � = 1 . Bottom row: � = 14 . Left panels: water 

saturation profiles. Right panels: oil saturation profiles. Output time t = 3
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sw(x, y, t) = (1 + t)x2(x − 1)2(y − 1)2y2 for water saturation. At each particular time step, 
we solve the pressure equation (17)

by the FEM using quadrilateral Q1 elements (see Fig. 9), hence, nodal values of the pres-
sure are computed. We remark that, although the equation for the pressure is elliptic, it is 
coupled with the water saturation equation via the mobility, �(sw).

The forcing term FP = 200(1 − x2 − y2)exp(x2 − y2) appears due to the manufactured 
solution considered. The nodal values of the pressure allow to compute the velocity at FV cell 
interfaces, applying Darcy’s law. Once the velocities are obtained, their values are introduced 
in the water saturation equation, (18), which is solved by the FV technique,

where vw,x and vw,y are the components of water velocity in x and y directions, respectively. 
The forcing term appearing in (18), Fs , is readily obtained using some software of sym-
bolic computation (Fig. 10). The value of the parameter � may have an influence on the 
behavior of the solution, as depicted in Fig. 11 using 20 × 20 control volumes. The results 
displayed confirm that higher values of the parameter � give rise to a most accurate solu-
tion. This effect is even more evident, when the number of cells is reduced. We remark that 
this result was previously put forward in the 1D case.

Here we give a short description on the FORCE-� technique in 2D, due to the relevance 
of this procedure in the current application. More details on this technique can be found, for 
instance, in [35, 36]. The 2D FORCE-� scheme applied to a Cartesian mesh, for a control vol-
ume indexed as (I, J) reads

(17)−
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Fig. 6   MUSCL-Hancock’s solution for the fractional flow model for different values of the parameter � 
with non-constant velocity, which is computed according to Darcy’s law. Left panel: water saturation pro-
files. Right panel: oil saturation profiles. Output time t = 3



958	 Communications on Applied Mathematics and Computation (2023) 5:946–964

1 3

where sn
w,I,J

 is the cell average of water saturation for the control volume (I,  J). The 
FORCE-� fluxes in each Cartesian direction and for the right cell interface read

where the Lax-Friedrichs type flux is

(20)
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Fig. 7   MUSCL-Hancock’s contour plots x-t for the fractional flow model for different values of the param-
eter � , considering the non-constant velocity computed using Darcy’s law. Top row: � = 1 . Bottom row: 
� = 14 . Left panels: water saturation profiles. Right panels: oil saturation profiles. Output time t = 3
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and the Lax-Wendroff type flux is

(21)
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where

Now we consider the non-homogeneous problem reading

(23)
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in the space-time domain (x, y) ∈ (0, 1) × (0, 1), t > 0 . As detailed before, the spatial grids 
are staggered for pressure and water saturation. The rectangle displayed in the solid black 
line in Fig. 9 represents the spatial domain. Concerning the oil volumetric factor its value 
is Bo = 1.235 6 and the oil flow rate Qo = 54 . The coefficient K refers to the medium per-
meability, which is taken here as K = 300 mD. In this particular case, we take as the water 
flow rate Qw = 0 . The Dirac’s delta at the RHS of the pressure equation is introduced to 
locate the depression in the upper right coordinate of the domain. The boundary condi-
tions used for pressure computation are P(x, 0, t) = 420 for 0 ⩽ x ⩽ 1 and P(x, 1, t) = 210 
for 0 ⩽ x ⩽ 1 , P(0, y, t) = P(1, y, t) = 210 for 0 ⩽ y ⩽ 1 . The initial condition for water sat-
uration is sw(x, y, 0) = 0.8 for 0 ⩽ y ⩽ 1, 0 ⩽ x ⩽ 0.5 and sw(x, y, 0) = 0.2 elsewhere, while 
boundary conditions are sw(x, y, t) = 0.8 for y = 0, 0 ⩽ x ⩽ 1 and Neumann homogene-
ous in the rest of the boundary. Results for pressure distribution are displayed in Fig. 12, 
whereas water (left plot) and oil (right plot) saturations are shown in Fig. 13.

As a final example, we modify problem (24) introducing an injection of water

(24)
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Fig. 12   Spatial distribution of pressure for an output time t = 0.4

Fig. 13   Spatial distribution of water (left frame) and oil (right frame) saturation for an output time t = 0.4
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Results are shown in Fig. 14, where an increase in water saturation around the injection 
location is visible and, consequently, a decrease in oil saturation appears.

5 � Conclusions

In this work, we have used different numerical schemes to solve a fractional two-phase 
flow model in porous media, describing oil-water movement. The model considered 
here is a hyperbolic-elliptic system, where the elliptic equation represents the distri-
bution of pressure and the hyperbolic part describes the evolution of the saturation 
front. Both equations are coupled via the mobility which is a function of saturation. 
This model differs from the typical one based on two parabolic equations and it is also 
different from the classical Buckley-Leverett model. In order to obtain the numerical 
solution of the coupled model, an FE approach is used for the elliptic part (pressure 
equation) and FV techniques are used to solve the hyperbolic part (saturation equation). 
The FV schemes implemented are a second-order MUSCL-Hancock approach and a 
WENO5-RK3TVD technique with a FORCE-� scheme for intercell flux reconstruction. 
The numerical results are assessed by means of a manufactured solution technique. The 
theoretical order of accuracy is attained in practice and the results have revealed that, in 
the WENO5-RK3TVD FORCE-� approach, for higher values of � the order of accuracy 
is more firmly obtained using higher values of the parameter � . Also the error norms are 
lower for higher values of � . Extension of the numerical methods to a bi-dimensional 
situation is also performed for the coupled model pressure-saturation, including a prob-
lem with exact solution, aimed to validate the proposed model.
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Fig. 14   Spatial distribution of water (left) and oil (right) saturations when an injection of water located at 
the central point of the domain, for an output time t = 0.35
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