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Abstract. We consider the nonlinear degenerate diffusion equation. The most strik-

ing manifestation of the nonlinearity and degeneracy is an appearance of interfaces. Un-

der some condition imposed on the initial function, the interfaces do not move on some

time interval [0, t*]. In this paper, from numerical points of view, we try to determine

the value of t*, which is called the waiting time.

1. Introduction. From numerical points of view, we are concerned with the time

when isentropic flow of an ideal gas through a one-dimensional homogeneous porous

medium begins to move. Such a flow is described by the equation

ut = (um)xx, lei1, t > 0, (1.1)

where u = u{x,t) represents the density of the gas and m > 1 is a constant. (1.1) is

called the porous medium equation, which is also known as a simple model in the fields

of the grand water, population dynamics, and radiative heat transfer problems (see [3],

[13] and the references therein). In this paper we shall consider the initial value problem

for (1.1) with

u(x, 0) = uo(x), x e I1, (1-2)

where Uq is a nonnegative function. The existence and uniqueness of the weak solution

of (1.1)—(1.2) are shown by Oleinik, Kalashnikov, and Yui-Lin [16]. They also derive

several properties of the solution. One of the important properties is the finite speed of

propagation; if 5(0) is compact in M1, so is S(t) for all t > 0, where S(t) = suppit(-,i).

The behavior of S(t) is studied by many authors ([7], [10], [12], and [17]). Kalashnikov [10]

shows that there exist functions Q(t) (i = 1,2) satisfying S(t) — [Ci (^)^ C2(^)] for all t > 0.
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The function Ci (i) (resp. C2 (t)) is called the left fresp. right) interface. It is shown in [12]

that there exist some constants t* (i = 1,2) satisfying

an - o(o) if / 0 %t;\

< RjXiW if t*<t<r.

When t* is positive, we call t* the waiting time of the interface (i, which indicates the

time when the interface Q(t) begins to move. In the following, we focus our attention

on the waiting time of the left interface Ci(i), an(i simplify the notations by putting

£(t) = C\(t) and t* — ty. Without loss of generality, we may assume ("(0) = 0; that is,

suppito = [0, a] for some a > 0.

Aronson [2] shows the following example which has a waiting time. Let the initial

function be given by

u0(x) =
srn2/{m-1] x, if 0 < x < 7r,

0, otherwise,

then t* — (m — l)/2m(m + 1). In general, Knerr [12] proves that

t* > 0 if uq{x) < cx2^m_1' on x £ [0,(5],

t* = 0 if uq(x) > ex1 011 x € [0, <5]

for some constants c > 0, <5 > 0 and 7 < 2/(m — 1). Vazquez [19] has gone even further.

Let M(x) — J* uo(€)d£- Then

M (x)
t* > 0 if and only if sup —;——77 -7 < 00. (1.3)

x>q

The upper and lower bounds of the waiting time are obtained as follows.

Theorem 1.1 (Aronson, Caffarelli, and Kamin [4]). If

i/l" '1 (;>:) = ax2 + o(x2) as i|0 and u'0n~1(x) < f3x2 on x > 0 (1.4)

hold for some constants a > 0 and (3 > 0, then

(m — l)/2m(m + 1 )/3 < t* < (m — l)/2m(m + l)a. (1-5)

In particular, if a —■ then t* = (m — l)/2m(m + 1 )a.

Some physical background of the waiting time is stated by Lacey, Ockendon, and

Tayler [13]. Kath and Cohen [11] study the waiting time when m — 1 is sufficiently small

and obtain an estimate for t* up to terms which are o(m — 1). The determination of

the waiting time is also important to study the regularity of the interface. Caffarelli

and Friedman [7] show ( 6 C1 ([0, t*) U (<*, 00)). The regularity of £(£) at t = t* are

obtained by Aronson, Caffarelli, and Kamin [4] as follows (see also [5] and [19]). If

(m—l)/2m(m+l)fl < t* < (m— l)/2m(m+l)a, then ( 0 C1. If t* = (in 1 )/'2m(m • I ).l

then a = /3 and ( £ C1. Here a and fJ are the constants in Theorem 1.1.
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To illustrate the results stated above, Aronson, Caffarelli, and Kamin [4] considered

the following example:

„ i. . I (1 — 9) sin2 ® + 0sin4 x, if 0 < x < n,

< w = \ : _ (i-6)
I (J, otherwise,

where 6 6 [0,1] is a parameter. Applying Theorem 1.1 to (1.6), they show t* = (m —

l)/2m(m + 1)(1 — 9) for 0 < 9 < however, the waiting time for | < 9 < 1 cannot

be explicitly determined. The waiting time is also studied by Alikakos [1], Chipot and

Sideris [8], Lacey [14], and Vazquez [19]. However, they do not explicitly determine the

waiting time for 9 £ (4,1],

In numerical points of view, there are some numerical methods to estimate the waiting

time t*. Tomoeda and Mimura [18], Mimura, Nakaki, and Tomoeda [15], Gurtin, Mac-

Camy, and Socolovsky [9], and Bertsch and Dal Passo [6] introduce interface tracking

algorithms to (1.1)—(1.2), and show the numerical simulations in the case of (1.6) with

9 = 0, 9 = i, and 9=1. However, especially in the case of 9 = ^ the numerical waiting

time cannot be clearly estimated (see Fig. 1). Therefore, we need a numerical method

to determine the waiting time.

In this paper we try to determine the waiting time t* from a numerical point of view,

and we obtain

(m - l)/2m{m + 1) J < < (m — l)/2m(m + 1 )a, (1.7)

where is the numerical waiting time determined by the scheme in Sec. 3, and a and

(3 are the constants in Theorem 1.1.

We briefly explain our idea, which plays an important role in the approximation of

waiting time. The initial function Uo(x) is approximated by the piecewise-linear inter-

polation in usual difference scheme. This implies that the derivative of the numerical

initial function is discontinuous at the interface, and then the numerical interface initially

moves, even if the waiting time is positive. To avoid this numerical inconsistency, we

transform (1.1)—(1.2) into an another problem (2.4)-(2.7), in which the solution blows

up at the waiting time (see Theorem 2.3). Thus our numerical scheme is reduced to the

approximations to the blow-up time of the solution of (2.4)-(2.7). Unfortunately, we do

not succeed in proving the convergence of the scheme. However, as is shown in Sec. 4,

our scheme gives good numerical approximations.

2. A Blow-Up Problem. Let us assume that i/n(.r) = 0{xp) (x j 0) for some

constant p > 0. Then (1.3) yields that t* > 0 if and only if p > 2/(m — 1), which implies

limwo(^)/a;2^'m^:L' exists. (2.1)
icjO

We define f(x,t) by

f{x,t) = u(x,t)/x2l(m-l\ (2.2)

Then one can expect that sup is finite if t < t*, and that sup blows up as

tit*, which shall be proved later in Theorem 2.3.
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Since suppu(-,t) is compact for t > 0, there exists a constant L(> a > 0) such that

u(x,t) = 0 for (.r. t) E [L, oo) x [0, £*]. (2-3)

By using this constant L, we consider the following blow-up problem, which is obtained

from (1.1) (1.2) and (2.2).

ft = x\fm)xx + -^-x(Dx + 2^(m + 1} r, 0 < x < L, t> 0, (2.4)
m — 1 (m — 1)

/t(0, i) = 2|"(m |J)/T"(°' <), « > 0. (2.5)
(ra — 1)^

f(L,t) = 0, t>0, (2.6)

/(®,0) = 0<x<L. (2.7)

Throughout this paper we impose

Condition 2.1. A continuous function /o(x) defined on [0, L] satisfies

fo > 0 on (0, a) and f0 = 0 on [a, L\ (2.8)

for some constant a e (0, L), and xf™(x) is Lipschitz continuous on [0, L\.

Definition 2.2. A continuous function f{x,t) defined on (x,t) € [0. L\ x [0, T*) is

said to be a weak solution of (2.4)-(2.7) if a function

'x2/(m-if a; G [0,L],

0. otherwise
u(x,t)

is the weak solution of (1.1)—(1.2) on 0 < t < T*.

The existence and uniqueness of the weak solution of (1.1)—(1.2) is obtained when

Uq1 € Lip(K:) (see [16]). Hence Condition 2.1 implies that the unique weak solution of

(2.4)-(2.7) exists.

Under this definition we have

Theorem 2.3. Let

T* = sup{£ > 0; sup{f(x,t); 0 < x < L} < oo}, (2.9)

where / is the weak solution of (2.4)-(2.7). Then t* = T* holds.

Proof. Let to be an arbitrary nonnegative number satisfying to < T*. Then f(x,to) <

C (0 < x < L) holds for some constant C > 0. Since

M(x,to)= [X u(Z, to) d£ = fX (d,to) dt; < C(m-Vx(m+mrn-1),
Jo Jo m + 1

it follows from (1.3) that to < t*. Hence we have T* < t*.

On the other hand, let ti < t*. Then, from Lemma 1.1 in [4], for any r € (0. /,*), there

exists a constant Cq{t) > 0 satisfying

um~i{x,t) C0{t) ^ n
 ^2  ^ ^T7 on x > °' te Ir' ̂ 1-

Putting t = t — <i and C\ = C0(ti)/(t* - ti), we have

u^lxM) „
 ^  < C\ on x > 0.
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Thus it follows from (2.2) that f(x,t\) < C\^m 1\ which means t\ < T*. Hence we

have t* < T*, and the proof is complete. □

Remark 2.4. Since t* < oo (see [12]), we find that the solution of (2.4)-(2.7) always

blows up in finite time. We call T* the blow-up time of the problem (2.4)-(2.7).

Prom Theorem 2.3, to know the value of waiting time t*, it suffices to compute the

blow-up time of f(x, t). In the following section, we introduce a numerical scheme to the

blow-up problem.

3. Numerical Scheme. We use a set of irregular nodal points [xj }o<j</v satisfying

0 = xq < xi < ■ ■ ■ < Xj < ■ ■ ■ < xn — L, (3.1)

where N £ N. We denote by /" the numerical approximations to f(xj,tn), where {tn}n>o

is an increasing sequence which is determined later. Our difference scheme is written in

the following form: For n > 0,

ffi+1   fn 0 ( ( fn \m ( fn\m ( fn\m ( fn \m \
ii h =x2 1 j wj+i; Uj) \Jj) \Jj-i) 1 ,32v

t-ri 1 — l \ *^jf+1 ^ j ^ j ^j — 1 J

4m (fjn+1)m ~ (/jT
H z~Xj

m — 1 3 Xj+1 — Xj

+ {1£j£N_lh
^n+1

#n+l _iftU . _ + W (3.3)

/ iv ~~ (3-4)

= 0 and /° = /o(Zj) (0 < j < N), (3.5)

where

is a solution of

2m(m+l) A 1/(1 m) if o

$(i;z) = <( "-i V >U' (3.6)
if z = 0

= (t>0), $(0;z) = z. (3.7)

We determine a time step Atn = tn+1 — tn > 0 satisfying

Atn < At* (3.8)

(m — l)hjhj-i(hi + hj-i)
= min   —      

i<j<iv 4mxjj?hj-i(hj + /ij-i) + 2(m - l)x^(/ij_i7" + hj7™_x)

and
m—1

o<j'<N 2m(m + 1)(/

where h,j = Xj+i — x: and

(/;+i)m - (/")

A£n < AC = ^ mm r   1Wf„v„_i • (3.9)

if
ij={ (3.10)

if /;.
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To show that the numerical solution blows up (see Theorem 3.2), we impose

liininf     > 0- (3-11)
n—»oo mm{At*, At**}

We define a numerical blow-up time by

= lim tn. (3.12)
n—>oo

In view of Theorem 2.3, we call 7)* the numerical waiting time of (1.1)—(1.2).

We note that the third term of the right hand side of (3.2) approximates that of (2.4);

that is,

$(tn+1 - *»; /,"•) - /r *(*«+! -/,") ^ ^(0; f?)

^n+1

at J (to. — 1)^ J (to — 1)J

We impose the conditions (3.8) and (3.9) on Atn. The former is the usual condition in

construction of difference scheme for ft = x2(fm)xx + The latter guarantees

the existence of the solution of (3.7) on the interval [0, A£**).

We obtain the following basic inequality:

Theorem 3.1. Under (3.8)-(3.9), the estimate

0 < /; < $(in; ll/o||oc) (3.13)

holds for all 0 < j < N and n > 0, where || ■ Hoc = || • ||l=°([o,z,])-

Proof. It is clear that (3.13) holds for j = 0 and j = N. So we shall show (3.13) for

1 < j < TV — 1. The proof shall be done by induction on n(> 0). For n = 0, (3.13) holds

by (2.8) and (3.5). Assume that (3.13) holds for some n > 0. We shall show

o < /;+! < $(tn+1; H/olU) for 1 < j < N - 1. (3.14)

It follows from (3.2) that

/«+! = {9?f? + AtnA?} + {(l~0?)f? + AtnB?} (3.15)

+ {$(A tn;/;)-/;},

where 0" e [0, lj is some constant determined later and

o C ( fn \rn ( fn\rri ( fn\m (fix \r
An 2 2 J v/j +J Uj ) \Jj ) Uj-l)

1 J h i -(- h

f (/"+! J7" - (/")"' (/")m ~ (/"-1 )m ]

-i I hj-1 J

5"
4m _ (/jvir-i/rr

— -Xi

3 to, - 1 hj

By using (3.10), we have

»:;/? + A= Atnp]f?+1 + (^ - Atn(p] + #)) /; + A

(1 - fl;)/; + A^B? = Mnr?f?+1 + ((1 - 0?) - Atnr?) //,
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where p", q™, and r™ are nonnegative numbers given by

2 2 7?" n 2 2 7?n-l J n 4m 7?
P^ = xil 7  , >  7 7~"^ ) arl(l ri =  7xj, >

J 3 hj + hj-i hj 3 3 hj + hj—i hj-i 3 m — 1 h.j

respectively. Let 0™ = (p™ + </™)/(p™ + g" + r"). Then we have from (3.8)

0? - Ain(P? + ?") > 0 and (1 - 0?) - At„r? > 0,

which implies

07 min{/;+1,/;, /;_j < 0?/; + At„A? < 0? max{/;+1, /;,(3.16)

(1 - 0?) min{/"+1, /"} < (1 - 0?)/; + AinB? < (1 - 0?) max{tf+1, j?}. (3.17)

On the other hand, it follows from (3.6) and (3.9) that

0 < <&(Atn; /?) - /J1 < $(Atn; max /j1) - max /?. (3.18)
J J 0 <j<N J 0 <]<N J

From (3.15)—(3.18), we obtain

min /" < /"+1 < $(Afn; max /").
0<j<NJj J ~ 0<j<NJ3 '

Hence, by the inductive hypothesis,

0 < /;+1 < $(Ai„;$(tn; H/olU)) = $(tn+1; ||/o||oo),

which implies (3.14). Hence our induction on n is complete, which gives the proof. □

The above theorem shows a comparison result in the numerical scheme. We may expect

that the comparison result similar to (3.13) holds for the solution of (2.4). Unfortunately

we are unable to prove it.

We now show that this numerical solution always blows up under some conditions

imposed on the nodal points.

Theorem 3.2. Under (3.8)-(3.9) and (3.11), assume

xi rn(m +1) ,
xi <a and   <   — —, 3.19)

~ (m — 1)(3to — 1)

where a is the constant in Condition 2.1. Then

lim max /" = oo. (3.20)
n-»oo o<j<N J

Proof. Since /" > 0 (0 < j < N, n > 0) holds by Theorem 3.1, it follows from (3.2)

(/rr

>3

that

/r+1 - /r > r o 2 r i 1 i 4 m 1
A t„

+

1 "i 1 f H 7xi 
X\ — Xq j TO — 1 X2 ~ X1

$(Atn; ft) - f?
A t„.

= 2 xi 3?n - 1 + $(Atn; /f) - /f

X2 — X\ TO — 1 A tn

Using (3.7), we have

$(A%i/f) - fx 2m(m+l) fn)m ^ 2m(m + V f fnV,
^ - ®t(£n,/l ) - (m_1)2 *($n,/l) > (m_1)2 C/l )
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for some £„ € (0, Atn). Hence we obtain

pn+1fn+L _ rn

Jl At h > P(/Dm, (3.21)

where

2(3m — 1) f m(m + 1) X\
P = -21!m — 1 [ (?7i — l)(3m — 1) ^2 ~~ xi

We note that p is a positive constant by (3.19).

Suppose that (3.20) does not hold. Then there exists a constant Ci > 0 and a sequence

of integers {nfc}fc>o satisfying

no < ni <■■■< rik <■■ ■ and f"k < C\ (0 < j < N, k > 0). (3.22)

From (3.8)—(3.11) and (3.22), we can easily obtain

Atnk > C2 (k > 0) (3.23)

for some constant C2 > 0. Since {f[ik}k>o is a bounded and increasing sequence from

(3.21) and (3.22), /™fc converges to some constant fi(> fi) as k —> oo. In view of (3.21)

and (3.23),

/r+i-/r >pc2(/rr (*>o).
Letting fc —> oo, we have

o > pCiir > pc2(f°r.

On the other hand, /{' > 0 holds by (2.8) and (3.19). This is a contradiction, which gives

the proof. □

By using Theorem 3.1, let us show the estimate (1.7) stated in Sec. 1.

Theorem 3.3. Assume (1-4) in Theorem 1.1. Let the same assumptions as in Theo-

rem 3.1 be satisfied. Then

(m - l)/2m(m+ l)/3 < < {m - l)/2m(m+ 1 )a (1.7)

holds, where a and (3 are the constants defined by (1.4).

Proof. Since (1.4) implies that /o(0) = we have from (3.3)

$(in;a1/(m~1)) = /^ (n > 0).

It follows from (3.6) that $(<; a1^"1-1)) is bounded if t < (m — l)/2m(m + l)a. Hence

tn < (to — l)/2m(m + l)a holds for n > 0, which yields < (m — l)/2m(m + l)a.

On the other hand, it follows from (1.4) that ||/o||oo < . By Theorems 3.1

and 3.2,

&(tn; /31//^m_1')) > max f" —> oo as n —> oo.V '-0 <j<NJj

Thus we have > (rn — l)/2m(m + 1 )/3, and the proof is complete. □
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4. Numerical simulations. Now let us show some numerical simulations for m = 2

and the initial function (1.6). Throughout this section, we use

Th = min | tn' o<?<Nf?>10 /' (4'1}

instead of (3.12). The constant L which satisfies (2.3) is taken as L = 5, because (1.6) and

(2.3) implies L > ir. The nodal points {%j}o<j<N, which satisfy (3.19), are determined

by xq = 0, xj+1 = Xj + hj (0 < j < N — 2) and x^ = L, where

V12, if 0 < xj < 0.01,

hj =

VJ

2"11, if 0.01 < Xj < 0.1, ,3 4.2

2"10, if 0.1 < Xj < 1,

2~9, if 1 < x, < L.

In order to obtain an accurate numerical waiting time , we need a lot of nodal points

{xj} near the origin x = 0, because the numerical solution f" blows up at those points.

This is the reason why we use the irregular mesh points (3.1).

Figure 1 shows the numerical interfaces (h(t) by the interface tracking scheme by

Mimura, Nakaki, and Tomoeda [15], and the numerical waiting times 7)* by the present

scheme (3.2)-(3.5) for 0 = 0, 1. The convergence of these numerical interfaces is proved

in [15]. Comparing the numerical interfaces and numerical waiting times, we can say that

our numerical waiting times are reliable.

When the initial function is given by (1.6), it seems that the numerical waiting time

T]* decreases as the mesh width decreases. To demonstrate this, we choose

2n~12, if 0 < Xj < 0.01,

2N~n, if 0.01 < Xj < 0.1,

2n'w, if 0.1 < Xj < 1, ( j

2JV"9, if 1 < Xj < L.

and compute the numerical waiting time = T£(N). In Fig. 2, we show En =

(T£(N) — Tj*(0)) /T^(0) with N = 1,2, ,5 and 0 = |,1. One can find that En

is nonnegative and decreases as N decreases. Figure 3 displays the upper and lower

bounds of the waiting time given by (1.5) in Theorem 1.1, and the numerical waiting

times by the present scheme (3.2)-(3.5) for 0 = 0,0.1, 0.2,..., 1. We use the mesh

points generated by (4.2). Aronson [3] conjectures that the interface ((t) is not smooth

at t = t* when | < 8 < 1. Our simulation suggests that the conjecture is true, because,

for | < 0 < 1, it seems that t* < (m— l)/2m(m + 1 )a, which implies ( ^ C1 (see Sec. 1).

However, we are not able to give the mathematical proof.

hj —
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0 = 0.0

Fig. 1. Numerical interface Ch(t) by the interface tracking

scheme [15] with the mesh width Ax = 0.01, and numerical wait-

ing time by the present scheme. The initial function is given by

(1.6).
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0.04

Fig. 2. Relative error JSjv with N = 1,2, • ■ ■ ,5 and 6 = 1.

0.5

0.4

0.3
01 upper bound

numerical waiting time

lower bound

0 0.2 0.4 0.6 0.8
0

Fig. 3. Upper and lower bounds of waiting time in Theorem 1.1, and

numerical waiting time by the present scheme. The initial function

is given by (1.6).
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