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Abstract. This paper is concerned with the numerical approximation
of a free boundary problem associated with a predator-prey ecological
model. Taking into account the local dynamic of the system, a stable
finite difference scheme is used, and numerical results are presented.

1 Introduction

In recent years, the two-species predator-prey ecological models have received
increasing research attention. Various forms of the systems have been proposed,
especially on the following coupled systems of two reaction-diffusion equations:

{
Pt − d1ΔP = P (a1 − b11P + c12Q), x ∈ Ω, t > 0,
Qt − d2ΔQ = Q(a2 − b21P − c22Q), x ∈ Ω, t > 0,

(1)

where di, ai, bij , cij are positive constants. In biological terms, P and Q rep-
resent, respectively, the spatial densities of predator and prey species that are
interacting and migrating in the habitat Ω, di denotes its respective diffusion
rate, and the real number ai describes its net birth rate. b11 and c22 are the
coefficients of intra-specific competitions, and b21 and c12 are the coefficients of
inter-specific competitions. In the case that c12 is replaced by −c12, (1) is the
well-known Lotka-Volterra competition model.

Movement plays a role in structuring the interactions between individuals,
their environment and their species. Next to the first passage time concept (in the
context of animal movement, first passage time is the time taken for an animal to
reach a specified site for the first time), the free boundary predator-prey models
represent a new modality of understanding the effect of the landscape on animal
movement and search time.

The remainder of the article is organized as follows. In the next section we
briefly describe the free boundary predator-prey model. Section 3 is devoted to
the description of the numerical approach. The numerical results are presented
and discussed in Section 4. Finally, Section 5 is dedicated to the presentation of
some conclusions and objectives for future work.
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2 Free Boundary Problem

The asymptotic behavior of species have been known in the literature for domains
with fixed boundary. In what follows, we consider that the predator species are
initially limited to a specific part of the domain. To be more specific, let us
consider the one-dimensional case. Assume that the prey species migrates in the
habitat (0, l) and the predator disperses through random diffusion only in a part
of the habitat (0, l), namely 0 < x < h(t), then there is no predator in the
remaining part.

Let the diffusivity of the predator be d1. Then the number of predator pop-
ulations flowing across the boundary x = h(t) from time t to time t + Δt is
JΔt = −d1(∂P/∂x)Δt. These predators disperse from x = h(t) to x = h(t+Δt)
during the time interval [t, t + Δt] and the size of the population decides the
length h(t + Δt) − h(t). Supposing

−d1
∂P

∂x
Δt = f [h(t + Δt) − h(t)],

we know that the function f is increasing and f(0) = 0. Ecologically, this means
that the size is increasing with respect to the moving length. Using the Taylor
expansion of the function f one obtains

f [h(t+Δt)−h(t)] = 0+ f
′
(0)[h(t+Δt)−h(t)]+

1
2
f

′′
(0)[h(t + Δt) − h(t)]2 + ...

and therefore

−d1
∂P

∂x
= f

′
(0)

[h(t + Δt) − h(t)]
Δt

+
1
2
f

′′
(0)

[h(t + Δt) − h(t)]2

Δt
+ ...

Now, letting Δt → 0, we arrive at

−d1
∂P

∂x
= f

′
(0)h

′
(t).

Here, f
′
(0) is a positive constant since f is increasing and depends on the diffu-

sivity of the predator in the part where no predator exists. If f
′
(0) is big enough,

then the predator can disperse easily in the new area.
Denoting μ = d1/f

′
(0), then the conditions on the interface (free boundary)

are
P = 0, − μ

∂P

∂x
= h

′
(t).

If all populations do not attempt to emigrate from inside, then there is no flux
crossing the fixed boundary, that is, the homogeneous Neumann boundary con-
ditions hold

∂P

∂x
(0, t) =

∂Q

∂x
(0, t) =

∂Q

∂x
(0, t) = 0.
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In such case, we have the problem for P (x, t) and Q(x, t) with a free boundary
x = h(t) such that

(P )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pt − d1Pxx = P (a1 − b11P + c12Q), 0 < x < h(t), t > 0,
Qt − d2Qxx = Q(a2 − b21P − c22Q), 0 < x < l, t > 0,
P (x, t) = 0, h(t) < x < l, t > 0,
P = 0, h′(t) = −μ∂P

∂x , x = h(t), t ≥ 0,
∂P
∂x (0, t) = ∂Q

∂x (0, t) = ∂Q
∂x (l, t) = 0, t > 0,

h(0) = b, (0 < b < l),
P (x, 0) = P0(x) ≥ 0, 0 ≤ x ≤ b,
Q(x, 0) = Q0(x) ≥ 0, 0 ≤ x ≤ l,

where the initial values P0, Q0 are nonnegative and satisfy P0(x) ∈ C2[0, b],
P0(x) > 0, for x ∈ [0, b), P

′
0 < 0, Q0(x) ∈ C2[0, l] and the consistency conditions

P
′
0(0) = Q

′
0(0) = Q

′
0(l) = 0.

In the absence of Q, the problem is reduced to the one-phase Stefan problem,
which accounts for phase transitions between solid and fluid states such as the
melting of ice in contact with water. The existence, uniqueness and asymptotic
behavior of the solution for (1) are known ([8]).

The results for free boundary problems have been applied to many areas, for
example, the decrease of oxygen in a muscle in the vicinity of a clotted bloodves-
sel, the etching problem, the combustion process, the American option pricing
problem ([6]), chemical vapour deposition in a hot wall reactor, image process-
ing ([1]), wound healing and tumour growth ([4], [5] and [7]), the temperature
distribution for polythermal ice sheets ([3]).

3 Numerical Approximation

The discretization is carried out by finite differences. The grids with equidistant
nodes are denoted by:

0 = x1 < x2 < ... < x2n+1 = l, xn+1 = b; 0 = t1 < t2 < ... < tm+1 = T.

Furthermore, we choose : xj = (j − 1)h, j = 1, 2, ..., 2n + 1 with h = 1
n , and

ti = (i − 1)k, i = 1, 2...., m + 1, with k = T
m .

To obtain the numerical approximation of problem (P ), we use the standard
implicit scheme which is unconditionally stable.

Let P
(i)
j and Q

(i)
j be the approximations of P (ti, xj) and Q(ti, xj). The initial

conditions yield:

P
(1)
j = P0(xj), j = 1, n; Q

(1)
j = Q0(xj), j = 1, 2n + 1.

Our next goal is to pass from some level i (t = ti) to the next level i+1
(t = ti+1), for i = 1, m. First, we need to determine the free boundary h(ti+1),
before calculating the solution of the system (P ) at time level ti+1. Thus, we
search for an interval [xp, xp+1] such that h(ti) ∈ [xp, xp+1]. Then, in order to
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match the points from the free boundary with the grid points, we evaluate and
compare the distances between h(ti) and xp and h(ti) and xp+1, respectively.
The lowest value of this distance gives us the point xf which represents the
corresponding grid boundary point at time level ti.

From the free boundary conditions we get:

h(ti+1) = −μ
k

h
[P (xf , ti) − P (xf−1, ti)] + h(ti).

Using a Taylor’s series expansion we get the following discretization for the
system equations:

−d1kP
(i+1)
j−1 + (h2 + 2d1k − a1kh2)P (i+1)

j − kh2c12P
(i+1)
j+1 Q

(i+1)
j+1

+b11kh2(P (i+1)
j )2 − d1kPj+1 − h2P

(i)
j = 0, j = 2, f − 1,

for the first equation, and

−d2kQ
(i+1)
j−1 + (h2 + 2d2k − a2kh2)Q(i+1)

j + b21kh2Q
(i+1)
j+1 P

(i+1)
j+1

+c22kh2(Q(i+1)
j )2 − d2kQ

(i+1)
j+1 − h2Q

(i)
j = 0, j = 2, 2n,

for the second one.
The discretization of equation corresponding to the boundary condition leads

to
Q

(i+1)
2 = Q

(i+1)
1 ; Q

(i+1)
2n+1 = Q

(i+1)
2n ; P

(i+1)
2 = P

(i+1)
1 ;

Moreover, we have P
(i+1)
j = 0, j = f, 2n.

If we denote by α1 = h2 + d2k − a2kh2, α2 = h2 + 2d2k − a2kh2, β1 =
h2 + d1k − a1kh2 and β2 = h2 + 2d1k − a1kh2, we obtain the discrete problem
(Ph):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1Q
(i+1)
2 + b21kh2Q

(i+1)
2 P

(i+1)
2 + c22kh2(Q

(i+1)
2 )2 − d2kQ

(i+1)
3 − h2Q

(i)
2 = 0,

−d2kQ
(i+1)
j−1 + α2Q

(i+1)
j + b21kh2Q

(i+1)
j+1 P

(i+1)
j+1 + c22kh2(Q

(i+1)
j )2

−d2kQ
(i+1)
j+1 − h2Q

(i)
j = 0, j = 3, 2n − 1,

−d2kQ
(i+1)
2n−1 + α1Q

(i+1)
2n + b21kh2Q

(i+1)
2n P

(i+1)
2n + c22kh2(Q

(i+1)
2n )2 − h2Q

(i)
2n = 0,

β1P
(i+1)
2 − c12kh2P

(i+1)
2 Q

(i+1)
2 + b11kh2(P

(i+1)
2 )2 − d1kP

(i+1)
3 − h2P

(i)
2 = 0,

−d1kP
(i+1)
j−1 + β2P

(i+1)
j − c12kh2P

(i+1)
j Q

(i+1)
j + b11kh2(P

(i+1)
j )2

−d1kP
(i+1)
j+1 − h2P

(i)
j = 0, j = 3, f − 2,

−d1kP
(i+1)
f−2 + β2P

(i+1)
f−1 − c12kh2P

(i+1)
f−1 Q

(i+1)
f−1 + b11kh2(P

(i+1)
f−1 )2 − h2P

(i)
f−1 = 0,

P i+1
j = 0, j = f, 2n,

which is a nonlinear algebraic system with 4n−2 equations and 4n−2 unknowns.

Remark 1. We use P
(i+1)
j for j = f, 2n as unknowns, even if these are equal

to zero, in order to get an algebraic system which has the number of equations
equal to the number of unknowns.
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To solve this nonlinear system, we use the Newton-Raphson method. We intro-
duce the unknowns xi according to

xi = Qi+1, i = 1, 2n − 1; xj = Pj−(2n−2), j = 2n, 4n− 2

Next, the problem (Ph) can be rewritten as:

fl(x1, x2, ..., x4n−2) = 0, l = 1, 4n − 2, (2)

where fl represents the equation (l) of the discretized system.
If we denote by X = (x1, x2, ..., x4n−2), then in the neighborhood of X , each

of the functions fl can be expanded in Taylor series as

fl(X + δX) = fl(X) +
4n−2∑
v=1

∂fl

∂xv
δxv + O(δX2).

By neglecting the terms of order δX2 and higher, we obtain a set of lin-
ear equations for the correction δX , that move each function closer to zero
simultaneously:

4n−2∑
v=1

alvδxv = βl, l = 1, 4n− 2,

where
alv =

∂fl

∂xv
; βl = −fl(X).

This linear system can be solved by a direct method or an iterative one. The
corrections are then added to solution vector:

xnew
i = xold

i + δxi.

To start this algorithm, we have to choose an initial estimate of the system’s
solution(at every time level i), and also a stopping criterion for ending the iter-
ation process, which in our case was defined by

||δX ||max ≤ 10−3.

In the sequel, we present the Jacobian matrix corresponding to the system (2).

J =
(

A B
C D

)
,

where:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q2 q1 0 0 · · · · · · 0
q1 q3 q1 0 · · · · · · 0
0 q1 q4 q1 0 · · · 0
0 0 q1 q5 q1 0 · · ·
· · · · · · · · · . . . . . . . . . · · ·
0 0 · · · · · · q1 q2n−1 q1

0 0 · · · · · · 0 q1 q2n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎝

p2 0 · · · · · · 0
0 p3 0 · · · 0

· · · · · · . . . · · · · · ·
0 · · · · · · p2n−1 0
0 0 · · · 0 p2n

⎞
⎟⎟⎟⎟⎟⎠

,
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C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s2 0 · · · · · · · · · · · · · · · 0
0 s3 0 · · · · · · · · · · · · 0

· · · · · · . . . · · · · · · · · · · · · · · ·
0 · · · · · · sf−2 0 · · · · · · 0
0 0 · · · 0 sf−1 0 · · · 0
0 · · · · · · · · · · · · 0 · · · · · ·
0 · · · · · · · · · · · · · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, D=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r2 r1 0 0 · · · · · · · · · · · · 0
r1 r3 r1 0 · · · · · · · · · · · · 0
0 r1 r4 r1 0 · · · · · · · · · 0

· · · · · · . . . . . . . . . · · · · · · · · ·
0 0 · · · r1 rf−1 0 · · · · · · 0
0 0 · · · · · · 0 1 0 · · · 0
0 · · · · · · · · · · · · · · · 1 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · · · · · · · · · · · · · · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q1 = −d2k,
q2 = h2 + d2k − a2kh2 + b21kh2P2 + 2c22kh2Q2,
ql = h2 + 2d2k − a2kh2 + b21kh2Pl + 2c22kh2Ql, l = 3, 2n− 1,

q2n = h2 + d2k − a2kh2 + b21kh2P2n + 2c22kh2Q2n,
pl = b21kh2Ql, l = 2, 2n,

sl = −kh2c12Pl, l = 2, f − 1,
r1 = −d1k,
r2 = h2 + d1k − a1kh2 − kh2c12Q2 + 2b11kh2P2,

rl = h2 + 2d1k − a1kh2 − kh2c12Ql + 2b11kh2Pl, l = 3, f − 1.

Remark 2

a) Matrices C and D have a special form, owing to the free boundary h(t).
b) The overall error satisfies :

(i). ||Q(i)
j − Q(xj , ti)||max = O(h2) + O(k), j = 1, 2n + 1, i = 2, n + 1,

(ii). ||P (i)
j − P (xj , ti)||max = O(h2) + O(k), j = 1, 2n + 1, i = 2, n + 1.

These error estimates are deduced from the Taylor series expansions of Q(xj , ti)
and P (xj , ti).

4 Numerical Results

The numerical tests have been performed with the following values of the param-
eters: l = 2, T = 1, d1 = 0.31, d2 = 0.7, a1 = 0.5, a2 = 1.5, b11 = 0.9, c22 = 1.3,
b21 = 0.4, c21 = 1, maxit = 100, eps = 0.001, μ = 0.35, k1 = 1, k2 = 0.5, b = 1,
P0(b) = 0.3, n = m = 31.

Here maxit is the maximum number of iterations for Newton-Raphson method,
eps the stopping criterion also for Newton-Raphson method, k1 and k2 the initial
values (at time step t = 1) for Q and P .

The free boundary corresponding to the prey and predator is shown in
Figure 1.

We used the Newton Raphson method for nonlinear systems to get these
results. As we told before, this algorithm needs, at every time step, some initial
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Fig. 1. The profiles of the state variables Q (left side) and P (right side), respectively

values for the solutions Q and P , in order to start it. In our case, at time level
i+1, we choose as initial estimations to be the values of Q and P obtained at
time step i.

Next, if we analyze the results in a different way (for a similar interpretation
of the inverse Stefan problem see [2], pp. 132-137), separating the values of P
respectively Q depending on the initial values, we see that a new free boundary
arises. The behavior of this free boundary is shown in Figure 2. The meaning of
the symbols in these figures is specified as

I : a grid node (ti, xj) such that Q(ti, xj) = k1, P (ti, xj) = k2;
+ : a grid node (ti, xj) such that Q(ti, xj) > k1, P (ti, xj) > k2;
− : a grid node (ti, xj) such that Q(ti, xj) < k1, P (ti, xj) < k2;
0 : a grid node (ti, xj) such that P (ti, xj) = 0;

Fig. 2. The projection on the horizontal plane (x, t) of the variation profiles for Q (left
side) and P (right side), respectively. The free boundary delimits the areas between
negative and positive values for state variables.
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5 Conclusions

In this study we focused on the numerical approximation of a free boundary
problem for a predator-prey model. Using an implicit scheme, we obtained a non-
linear system of algebraic equations, which was solved with Newton-Raphson
method. The numerical solution was determined by using Matlab software.

For the model considered here, it is assumed that the number of predators
flowing across the free boundary is increasing with respect to the moving length.
Similar free boundary condition can be found in [4] for modeling the corneal
stimulus cell density in the healed region. From ecological point of view, one
more reasonable assumption is possibly that the motion of predators relies on
the prey. In other words, the higher the density of the prey at the free boundary,
the larger the flux of the predators should be.

Compared with the existing models such as tumor growth, to the best of our
knowledge, there are very few results from the free boundary problems describing
ecological models. As a future task, we intend to discretize this problem using
spectral methods both in 1D and 2D cases, and also, in order to manipulate the
free boundary, we want to place the problem into an optimal control framework.
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