Edwige Godlewski Pierre-Arnaud Raviart ## Numerical Approximation of Hyperbolic Systems of Conservation Laws With 75 Illustrations ## Contents | Preface | | |---|--| | Introduction | 1 | | Definitions and examples Weak solutions of systems of conservation laws Entropy solutions Notes | 1
11
21
35 | | I. Nonlinear hyperbolic systems in one space dimension | 37 | | Linear hyperbolic systems with constant coefficients The nonlinear case. Definitions and examples Simple waves and Riemann invariants Shock waves and contact discontinuities Characteristic curves and entropy conditions Solution of the Riemann problem The Riemann problem for the p-system Notes | 37
40
49
60
70
83
87 | | II. Gas dynamics and reacting flows | 99 | | Preliminaries Entropy satisfying shock conditions Solution of the Riemann problem Reacting flows. The Chapman-Jouguet theory Reacting flows. The Z.N.D. model for detonations Notes | 99
108
126
142
160
166 | | III. Finite difference schemes for one-dimensional systems | 167 | | Generalities on finite difference methods for systems Godunov's method | 167
182 | | viii | Contents | |------|----------| | | | | 3. Roe's method | 196 | |--|-----| | 4. The Osher scheme | 229 | | 5. Flux vector splitting methods | 237 | | 6. Van Leer's second-order method | 245 | | 7. Kinetic schemes for the Euler equations | 269 | | Notes | 301 | | IV. The case of multidimensional systems | 303 | | 1. Generalities on multidimensional hyperbolic systems | 303 | | 2. The gas dynamics equations in two space dimensions | 316 | | 3. Multidimensional finite difference schemes | 343 | | 4. Finite-volume methods | 360 | | 5. Second-order finite-volume schemes | 403 | | Notes | 415 | | V. An introduction to boundary conditions | 417 | | 1. The initial boundary value problem in the linear case | 417 | | 2. The nonlinear approach | 435 | | 3. Gas dynamics | 442 | | 4. Absorbing boundary conditions | 446 | | 5. Numerical treatment | 453 | | Notes | 460 | | Bibliography | 461 | | References | 461 | | Index | 501 |