Edwige Godlewski Pierre-Arnaud Raviart

Numerical Approximation of Hyperbolic Systems of Conservation Laws

With 75 Illustrations

Contents

Preface	
Introduction	1
 Definitions and examples Weak solutions of systems of conservation laws Entropy solutions Notes 	1 11 21 35
I. Nonlinear hyperbolic systems in one space dimension	37
 Linear hyperbolic systems with constant coefficients The nonlinear case. Definitions and examples Simple waves and Riemann invariants Shock waves and contact discontinuities Characteristic curves and entropy conditions Solution of the Riemann problem The Riemann problem for the p-system Notes	37 40 49 60 70 83 87
II. Gas dynamics and reacting flows	99
 Preliminaries Entropy satisfying shock conditions Solution of the Riemann problem Reacting flows. The Chapman-Jouguet theory Reacting flows. The Z.N.D. model for detonations Notes	99 108 126 142 160 166
III. Finite difference schemes for one-dimensional systems	167
 Generalities on finite difference methods for systems Godunov's method 	167 182

viii	Contents

3. Roe's method	196
4. The Osher scheme	229
5. Flux vector splitting methods	237
6. Van Leer's second-order method	245
7. Kinetic schemes for the Euler equations	269
Notes	301
IV. The case of multidimensional systems	303
1. Generalities on multidimensional hyperbolic systems	303
2. The gas dynamics equations in two space dimensions	316
3. Multidimensional finite difference schemes	343
4. Finite-volume methods	360
5. Second-order finite-volume schemes	403
Notes	415
V. An introduction to boundary conditions	417
1. The initial boundary value problem in the linear case	417
2. The nonlinear approach	435
3. Gas dynamics	442
4. Absorbing boundary conditions	446
5. Numerical treatment	453
Notes	460
Bibliography	461
References	461
Index	501