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Numerical Approximation of Mindlin-Reissner Plates
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Abstract. We consider a finite element approximation of the so-called Mindlin-Reissner

formulation for moderately thick elastic plates. We show that stability and optimal error

bounds hold independently of the value of the thickness.

1. Introduction. The so-called Mindlin-Reissner model for moderately thin plates

is often used by engineers in connection with plate and shell problems. It is well

known that many numerical schemes for this model are satisfactory only when the

thickness parameter t is "not too small". For a very small t, some bad behavior

(such as the "locking" phenomenon) might occur. Here we present a method which

is uniformly good as t goes to zero, and we prove optimal error estimates for

transversal displacement, rotations and shear stresses, with constants independent

of/.

An outline of the paper is as follows. In Section 2 we recall the Mindlin-Reissner

formulation and we construct a "model sequence" of problems {^,},>0> where t is

the thickness of the plate. In Section 3 we describe our discretization procedure and

we prove optimal error bounds.

A different kind of discretization of this Mindlin-Reissner model is discussed in

[4]. For the one-dimensional case, a deep analysis is done in [1]. For some recent

survey on other techniques used in the engineering literature, see [5], [8].

2. The Mindlin-Reissner Model. Let ß be, for the sake of simplicity, a convex

polygon in R2. The plate will occupy, in the undeformed configuration, the region

ß X ]-t, t[ (t = thickness, > 0). If (0,0,/3) is the (vertical) load per unit volume

acting on the plate, the Mindlin-Reissner model can be written as

(2.1)    Minimizen:= ^a(ß,ß)+ ^-\\vw - ß\\2    - [ f3wdxdydz,
§,*> 2-        2 -  "•"     Jax]-t,t[

where ß and w are functions of (x, y) e £2 and

" (R     .. E f  l(dßx        3jB2\3„l     I   3A      9/M3t,2

(2'2) +^(^+M^+^W
3v       dx j\ 3v       dx
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and where /, v, and E respectively denote thickness, Poisson's ratio and Young's

module. One also has X = Ek/2(1 + v), with k = correction factor, to account for

the vanishing of the stress field on the upper and lower face of the plate. See, for

instance, [3] for more details.

In order to study the behavior of the discretization of (2.1) for smaller and smaller

/, we need a sequence of problems such that the corresponding solutions remain

bounded. For this we assume in (2.1) that a sequence of loads f3(t) is given by

(2.3) h(f,x,y,z) = —g(x, v);

hence for any (>0we consider the problem

(2.4) Minimizell,:= -z-a(ß,ß) + ^-||vw - ß\\     - i3 ( gwdxdy.
ß.w Z. L ^ß

For the sake of simplicity, we shall consider the case of a clamped plate. This implies

that the minimum in (2.4) has to be taken under the kinematic constraint ß = w = 0

on 9fi. More precisely, we set

V=l(0_,t)\Oe(Hx(ü))2,tzHx(Q)),

and we look for (ß, w) e V.

The following proposition holds (cf. [9], [4]).

Proposition 2.1. For every t > 0, problem (2.4) has a unique solution ß(t), w(t).

Moreover, we have, as t -* 0,

{ß(t),w(t)) ^ (ß,w)    inV,

whereß = V_wand£A2w = 12(1 - v2)g.

Moreover, for numerical purposes, it is also convenient to have a bound on the

quantities

(2.5) y_(t):=r2{vw(t)-ß(t)),

related to the shear stresses. For this we introduce the space

' H0(rol;Q):= |tj|tj e (L2(ïï))2,rot^ G L2(ti),t)_ -t = 0on3QJ,

M|2Wo(ro.:0):=   NlL +11^110,0.

(here rotrj = (3tj2/3jc - 3tj1/3v) and t = unit counterclockwise tangent to 3fi).

We also introduce

í{T,|7,G//-1(ñ),divr,G/í-1(fi)),

(2.6) r:=(//0(rot;fi))'S       -- "

lhllr:= kl-i.û+lldiv!lLi,o-

Then we have (cf. [9], [4]), denoting < • , • ) duality between i/0(rot; ñ) and T,

Proposition 2.2. The sequence (2.5) is bounded in T; moreover, as t -» 0,

(2.7) y_(t)-*y   inT,

with a(ß, tj) + <y, tj> = 0 for all i)_ e (H,,1)2.
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Our purpose is now to find a discretization procedure for (2.1) such that, on the

model sequence (2.4), the corresponding error estimates hold uniformly in t > 0.

To do that, we first give a different formulation of (2.4). The new formulation will

be better suited for our discretization scheme. For this purpose, we give a different

characterization of the space T defined in (2.6).

Proposition 2.3. Every element ijeT can be written in a unique way as

(2.8) ,_-v* + £o,P       (»,:_(£._£)),

with «f/ G //0>(ß) andp G L2(ß)/R. Moreover,

(2-9) NlrHWL + IMllWR-

Proof. Set x:= divTj G H'X(Q). Then \p is the unique solution of At// = x in ß,

\j/ G Hq(ü). Note that now div(^ - Vt/0 = 0. Hence, tj - v^ = rotp, and p is

determined in L2(ß)/R (that is, up to a constant). Then we have (2.8). The proof of

(2.9) is immediate.

Remark 2.1. It must be noted that y G //0(rot; ß) could be written as y = V^

+ rot/? with <// g Hl and p g H\Q)/R. The difference between #0(r°t; ß) and T

can thus be understood as a matter of regularity of the p component. This also

explains the convergence results that follow.

Note now that problem (2.4) can be written as follows:

Find ß(t), w(t), 4>(t), p{t) g {HXQ)2 X Hi X Hx0 X Hx/R such that

(2.10) a{ß(t),ri)-X{vjP(t)+ TO^p(t),v) = 0   VtjG^1)2,

(2.11) X(VjK0,Vf) = (*,*)   V£g//0\

(2.12) (vw(0-/*(0,vx) = í2(v.H0!vx)  Vxeff¿,

(2.13) (-£(0,rot^) = ?2( rot/>(/), rot?)   Vq^Hx/R.

Note that Eqs. (2.12), (2.13) are equivalent to

(2.14) vw(t)-ß(t) = t2(^p(t) + rot/>(0),

so that, using (2.14), Eqs. (2.10), (2.11) imply

(2.15) a(ß(t),V_)+Xt-2{vw(t)-ß(t),Vi-Tl) = (g,i:)   neHxV-n_<í(Hl)2.

Now the equivalence between (2.4) and (2.10)-(2.13) is clear, since (2.15) is just the

variational formulation of (2.4). It follows from Proposition 2.2 that, in particular,

^(f ) will be bounded in Hi and p(t) will be bounded in L2(ß)/R as t -» 0.

We point out that Eqs. (2.10), (2.13) have a "more natural" ordering. More

precisely, for g given, say, in L2(ß), one can start by solving (2.11) first. Then

joining together (2.10) and (2.13) we have

a(£(0.u)-A(rotM0,!)-X(v«H0,?l)   ^v^(Hl)2,

-(ß(t),T_ot.q) = t2(T(Xp(t),rot.q)   Vq(=Hx/R.
(2.16)
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We remark that, by setting

(2.17) ^ := (-7,2,7,0,

problem (2.16) can be written as

(2 18)    /û(^(0,i)+(M0,divU) = x(v<M0^)  viG(#o)2>

\ {divß ^(t),q) = t2(vp(t),Vq)    V? G Hx/R,

which is very closely related to a Stokes problem with a "penalty term" i2||V/?||o/2.

It is clear that (2.18) (and hence (2.16)) can be uniquely solved. Finally, one can deal

with Eq. (2.12), which is again a standard problem in the unknown w(t).

We can therefore summarize this by saying that the system (2.10)—(2.13) is

equivalent to two elliptic problems (in the variables i//(f) and w(t)) and one

Stokes-like problem (in the variables ß(t) and p(t)). We further point out the

following a priori bound.

Proposition 2.4. Ifß(t), w(t), \¡/(t), p(t) is the solution of (2.10)-(2.13), we have

(2.19) \\ß(t) \\2 + \\w(t) ||, + IltHO II2 + IP(t) \i + t\p(t) I, < c||g||o,

with c independent of t.

Proof. The bound

(2.20) 11^(0112 <c|| g Ho

is trivial from (2.11). Consider now the variables ß(t) and p(t), and introduce the

auxiliary problem

aißU),^) - X(wt.p(t),V_) = X(vtH0,T,)    Vt,g (Hx)2,

-(ß(t),rotiq) = 0   V(7GL2/R,

where ß(t) and p(t) are sought in (Hi)2 X L2/R. It is easy to check that (cf.

Ladyzhenskaya [10] or Temam [12])

(2.21) |£(0|, + \P(t)li <c|^(OK<c||g||o.

Set now/?*(i) := ß(t) - ß(t) and p*(t) := p(t) - p(t). We have

(222)  ia(ß*>V.)-X{^P*'V.) = 0   Vt,g(//01)2,

\ -(§*, rot q) = t2(rotp*, rot q) + t2( rot p(t), rot q)   Vq g Hx/R.

Choose now v = ß* and q = p* in (2.22); then

a{ß*,ß*) + Xt2\p*\l = -Xt2( rot. p(t), rot p*) < c/2[/?*|x||g||0,

where we used (2.21). This implies \p*\x < c||g||0 which, from (2.21) again, gives

(2.23) \p(t)\i^c\\g\\0.

From (2.20), (2.23) and (2.10) one has now easily

(2.24) ||/?(0|Uc||g||0.
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The other inequalities in (2.19) follow from (2.12) and (2.13), using (2.20), (2.23),

(2.24).
Remark 2.2. The result (2.19) does not improve when g is more regular or the

domain ß is smoother. For instance, one does not have, in general, H/KOII2

bounded uniformly in t, even for smooth g and ß. The reason for this lies in the fact

that the normal derivative of p(t) vanishes at 3ß. Since this is not true for

p(0) = lim, _ 0p(t), we have a boundary layer effect.

3. Discretization and Error Bounds. Let, as usual, (^}Ä be a sequence of

decompositions of ß into triangles. For each #,, we set

J?xx:= {<b\<¡><=C0(Ü),<t>\TG!?x VTG^},

&\ := <e\ n #¿(0),

B3:= {<p|<pG C°(ß),<i»|rG^3 fliK/$|a7.= 0Vre *„}.

Note that S£\   and &\   are usual spaces of piecewise linear functions, while B3

consists of cubic bubble functions. We define now

H„:= {¿Î O B3f;    Wh:= ¿\;    Th := (v^1) e( rot J?x).

According to the formulation (2.10)—(2.13), we can now write the discretized

problem as follows:

Find/?„(i), wh(t), 4,h(t), ph(t) <EHhXWhX &\ X &\ such that

(3.1) A(v^(0,VÍ) = (g,f)   V* e &\,

(3.2) a{ßh(t),V_)-X{roi.ph(t),7L) = X{v}ph(t),7L)   Vt, g//„,

(3.3) -(^(0,rot9) = /2(rot^(0,£Otî)   VqeJ?},

(3.4) (vwA(0,Vx) = (§„(t) + t2V#h(t),Vx)   Vxeif,

It is clear that (3.1) has a unique solution. Moreover, we have by standard

arguments (cf. [11], [7])

(3.5) ||*Ä(0 -+(/)¡i < calilo.

Let us consider now problem (3.2), (3.3). Keeping the analogy with the Stokes

problem (see (2.18)), we see that the choice of the spaces Hh and S£\ corresponds to

the use of the MINI element of [2]. In particular, we easily obtain from [2] that

(tj, rot q)
(3.6) Inf   Sup-^ c> 0,

with c independent of h. We now want to estimate the difference between (ß(t), p(t))

and (ßh(t), ph(t)). We have first

\\ß -ßni + ̂ W^ip -ph)\\l
(3 7) * a(ê -ê»ê ~Êh) + aí2( rot (/> - ph), rot (p - Ph))

= la(ß -êh'Ê 'i) + Aí2( rot(/> - ph), rot (p - q))]

+ [°(ß -ßk-l - ßk) + A/2( rot (p - ph), rot (q - ph))\ = I + II
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for all î, g Hh and q g 2\. Then,

a(ß -ßh,V- êh) = X{(?2i(P - Pn)>V- Ê*) +(v(* - W'l~ ßh)},

Xt2( rot (p - ph), rot (q - Phj) = X(ßh - ß, rot (q - ph)),

so that

U = X{{v(t-th),Tl-ßh)+{ro1.(p-ph),Ti-ß)

+ {ßh-ß,M(q-ph))}.

Choosing for tj and q the best approximations of ß(t) and />(i) in Hh and ■£?/,

respectively, we get from (3.7), (3.8) and (3.5)

Wß-ß.W2+ xt2\p-ph\2x
(3.9) -    "

^ ch^Wß -§,¡1 + Xt\p - ph\x +\\q -/>J|^(a)/« + A}-||g||o,

where we also made use of (2.19).

On the other hand, from (3.6) we have

i (i|, rot(^-g))

\\Ph - q\\L\ü)/R < t sup-—-

i 0    i7»-rot(Ph-p))    „       „

,, 1n, <   -  Sup  -=J--  +ll/'-îlk2(0)/H
(3.10) c ne». IlH.H»

Sup {U{ßh-ß,7,) + (v(«h - ^),T,))/h||1 + AM!

<cport{|^-^»|1 + A|g|o},

which, inserted into (3.9), gives

(3.11) \\ß -ßh\\2 + Xt2\p-pf,\\ < ch{\\ß -ßhl + Xt\p-ph\x + h) -llgHo.

This implies

(3.12) \\ß-ßh\\x + t\p-ph\i<ch\\g\\0.

In turn, (3.12), together with (3.10), yields

(3.13) 11/7 -/»Jz.2(U)/r < ch\\g\\0.

Finally, from (2.12), (3.4), (3.5) and (3.12) we obtain

||w- wh\\x < ch\\g\\0.

We conclude with the following theorem.

Theorem 3.1. Let ß(t), w(t), <K0, P(0 and ßh(t), wh(t), ^„(r), p„(t) be the

solutions of (2.10)-(2.13) and (3.1)—(3.4), respectively. Then we have

(314)       ll£(0 -&(0 IL + MO - »*(0 111 + WHO - «MO Ik
+t\p(t)-Pk(t)\i+ÏP(t)-Pk(t)h*/*<d*hfo,

with c independent of h and t.

1 „      (1
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Remark 3.1. The use of higher-order schemes in order to improve the power of h

in (3.14) is not clearly advantageous, because of the boundary-layer effect (see

Remark 2.1) and the fact that \\ß(t)||3 may become unbounded when t -> 0.

Remark 3.2. It is also possible to transform Eq. (2.18) by the introduction of a

mixed method for the treatment of the term t2Ap(t). More precisely, one could

solve the problem:

Find (/?, p, a) G (^¿(ß))2 X L2(ß) X #0(rot; ß) such that

(3.15) a(ß,7L)+(P,wlrL) = X(v^,Ti),   Vt, g (Hx(SI))2,

(3.16) (rotß,q) = t(wta,q),   Vq G L2(ß),

(3.17) t(p,wtÔ) = (a,S),   VSG#0(rot;ß).

Equations (3.16)-(3.17) are a well-known weak form of the Neumann problem

tt2àp = rot/3,

(3.18) dp

for which successful discretizations have been developed (cf. [6]). This weaker

formulation can be expected to behave better with respect to boundary-layer effects.

Moreover, the limit problem for t = 0 becomes a standard "Stokes" problem, for

which very good approximations are known, using discontinuous fields for the

discrete pressure. Formulation (3.15)—(3.17) also suggests that, once p is computed

(for t = 0), an approximation a of rot/) (which is the physically interesting variable)

can be obtained a posteriori by solving

(3.19) («,5) = (p,TOl8);   VÔ G //(rot; ß); a G //(rot; ß).
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